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Spatial aliasing for near-field sensor arrays 

T.D. Abhayapala, R.A. Kennedy and R.C. Williamson 

An investigation is presented into the presence of spatial aliasing 
due to the operation of a linear array in the near-field. It shows 
that the standard half wavelength sensor spacings rule, which 
guarantees that no aliasing will occur in the operation of far-field 
arrays, is not sufficient to prevent aliasing in the near-field. This 
claim is justified by theoretical considerations and corroborated 
by simulation results. 

Introduction: There has been a growing interest in near-field array 
processing due to the use of microphone arrays in teleconferencing 
and speech acquisition systems [l - 31. In this Letter we consider 
the effect of spatially sampling a spherical wavefront received 
from a point source in the near-field of a linear array, along the 
array axis. 

Spatial aliasing: Consider a linear array aligned to the x axis and a 
point source at a distance r from the array origin and angle 8 
measured relative to endfire. The signal received at a point x on 
the array is given by 

ejkdrz+x2-2rx cos 0 

Jr2 + x2 - 2rxcosO s T , 8 ( x )  = (1) 

where k = 2dh is the wavenumber and h is the wavelength of the 
received signal. If the source of interest is in the far-field of the 
array, then the normalised signal received at a point x on the 
array is given by 

s,,e(s) = T+W lim sr,o(s)re-jkr = e- jkzCose (2) 

By using an array, we effectively sample the signal sJx) in the 
spatial domain. To determine the sampling distance, i.e. array 
spacings, we need to examine the spectral content of the signal 
s,,,(x) with respect to x. Let the Fourier transform of s(x) be 

s([) = /- s(z)ejc"dx (3) 
-CO 

where 5 is the spatial frequency. Using eqn. 3, we can write the 
Fourier transform of eqn. 2 as 

S,,e([) = %6(< - ICCOSO) (4) 

where s(.) is the Dirac delta function. Considering the usual 
Nyquist criterion, we need to sample sJx) with a sampling dis- 
tance of d I d(kcos0)) = U(2cos0) to avoid spatial aliasing. Since 
we assume that the possible range of 8 E [O, 4, it suffices to take 
d,,, = U2. This result, commonly known as the U2 rule, is stand- 
ard in the array literature [4]. To date, this rule has been used for 
designs in both the far-field and near-field (e.g. [5]). We show here 
that the U2 rule is generally not valid in the near-field. 

The Fourier transform Sr&) of s&c) can be obtained from 
the results in [q 

where fl'$ (.) is the Hankel function ofthe first kind of order zero 
and &(.) is the modified Bessel function of order zero. Note that 
there is a singularity at 151 = k. 

A graph of IS,,,(!)/ against normalised spatial frequency Ejk for 
three different sets of values (r,8) is shown in Fig. 1. From this 
result, it is evident that the function s,,,(x) is not bandlimited if 
the source is in the near-field of the array at a smaller angle meas- 
ured relative to the endfire, although it becomes more so as r -+ w 

or 8 + 90". Thus, the use of the U2 rule is not strictly sufficient 
to ensure no aliasing error, and indeed no sampling distance will 
entirely eliminate such an error. 
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Fig. 2 Magnitude of array response to near-field source at 3.5h from 
array origin 
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Aperture length of each of three arrays equal to 3h 

Near-field rule of thumb: To explain the above behaviour, we now 
examine S,,,(c) when 6 > k for different values of r and 8. Since 
&(z) = -In(z) for z -+ 0 and &(z) = d[d(2z)]ez for large z > 1 [7], 
lSr,O(x)l decays rapidly as the argument of &(.) (i.e. rsind[e-k2]) 
increases. Suppose there exists positive numbers M and z, such 
that (Q < M for r sin d(p_k2) > z, for a given r and 0. Then 
for a suitably small M we can assert that S,,,(Q is approximately 
bandlimited by 

(5) 

and a sampling distance of db or less reduces the aliasing up to 
an acceptable level. It is difficult to find an analytic expression for 
z, in terms of M or quantify an acceptable level of aliasing. How- 
ever, a convenient rule of thumb is z, = l. 

Note that when r -+ -, & -+ k, hence S&) is bandlimited by k 
for this case. For 8 = go", 5, = d[kz + l / r z ]  k for all practical 
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values of r in the near-field. For example if r = 3h = 6dk  then CO 
= kd[l + 1/3h2] = k. Hence, for angles close to 90°, S,,,(() is 
bandlimited by k even for near-field signals. However, near-field 
signals from smal l  angles are not spatially bandlimited which can 
be deduced from eqn. 5. 

Simulations and conclusion: To conclude we show the effect of spa- 
tial aliasing due to sampling a signal from a near-field source at 
3.51 from an array origin, where 1 is the wavelength of the signal. 
Fig. 2 shows the magnitude response of three arrays with different 
sensor spacings of V2, U4 and V6, to the above source as a func- 
tion of 8. For comparison, we make all three arrays have equal 
aperture length, thus they have 7, 13 and 19 elements, respectively. 
The effect of aliasing is clearly evident from the response of the 
U2 spaced array, however there is little or no effect of aliasing 
present in the response of the V6 spaced array. This result is in 
agreement with eqn. 5 which gives a sensor spacing of U5.6 to 
avoid aliasing for r = 3.51 and 8 = 1”. 

Thus we can conclude that the received signal from a point 
source in the near-field is not bandlimited in spatial frequency and 
hence the use of standard half wavelengths spaced arrays intro- 
duces undesirable aliasing effects to the array output. The use of 
finer sensor spacings can overcome limitations imposed by alias- 
ing. 
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Noninvasive estimation of left-ventricular 
end-diastole elasticity by analysing heart 
wall vibrations 

H. Kanai, S. Nakaya, H. Honda and Y. Koiwa 

A new noninvasive method was previously presented for the 
measurement of the left ventricular (LV) end-diastolic pressure 
(EDP) by combining Mmky‘s method and the experimentally 
derived relationship. The eigenfrequency was determined by 
applying a short-time Fourier transform to the velocity signal on 
the human heart wall which is transcutaneously measured in vivo 
by the phased tracking method using ultrasound. In the Letter the 
authors estimate the elasticity of the heart wall for several human 
patients. 
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Introduction: Left ventricular (LV) pressure and its elasticity are 
signiticant parameters necessary for the clinical diagnosis of heart 
diseases. In particular, knowledge of the LV end-diastolic pressure 
(EDP), PED, is usually needed to assess LV functioning in clinical 
settings; a noninvasive method to measure this was previously pre- 
sented [l]. The eigenfrequency was found by using a short-time 
Fourier transform to the velocity signal on the human heart wall 
[2] which is measured transcutaneously in vivo by the phased 
tracking method [3] using ultrasound. However, the LV EDP, the 
normal value of which lies between 5 and I2mmHg, cannot be 
obtained from the blood pressure measured at the brachial artery. 
Furthermore, the LV end-diastolic elasticity (EDE) EED cannot be 
noninvasively measured. To measure the LV pressure of a patient, 
invasive catheterisation is essential. Although the accuracy of this 
measurement has been confirmed, such cardiac catheterisation is 
difficult to apply at the bedside. Therefore, a noninvasive tech- 
nique for measuring of LV EDP, PED, and its elasticity, E,,, is 
needed. 

Based on dimension analysis and Advauni and Lee’s equation 
[4], by assuming that the LV wall vibration at the end-diastole is 
approximated by the free vibration of an elastic shell, Honda et al. 
[5] have experimentally derived a simple relationship between 
Young’s modulus E [pa] of the LV wall, the LV internal radius r 
[m], the LV wall thickness h [m], the myocardial density p Fg/m‘], 
and the LV instantaneous mode-2 eigenfrequencyf, [Hz] as fol- 
lows: 

where the coefficient A(Wr) is a function of h/r and is independent 
of elasticity. From Honda’s experiment [4], the values of A(h/r) are 
determined for various values of hlr and it is experimentally found 
out that A(Wr) does not strongly depend on the values of Wr. By 
assuming a myocardial density p of 1.02 x lo3 [kg/m3], eqn. 1 is 
approximated by 

It is worth noting that the elasticity E of the shell is noninvasively 
estimated without measuring the LV EDP when r ,  h, andf ,  are 
measured. 

In Mirsky’s method [6], on the other hand, the LV elastic stiff- 
ness E, pa]  is given by 

where V = 4nr3/3 [m3] and V ,  = 4N(r + h)3 - r3)/3 [m3] are the 
internal and wall volumes, respectively, om = V/V, x (1 + (r  + h))/ 
2R3)PEF pa]  is the stress on the LV wall, and R = r + W2. The 
coeficients a and p satisfy the relationship dP,ddV = a. PED + p. 
It is experimentally found that p is negligibly small and a is given 
by PED = 57.32Pv. 

By assuming that the E of eqn. 2 is equal to the E, of eqn. 3, 
the LV EDP PED is determined from the eigenfrequencyf, of the 
LV wall vibration, where the internal radius r ,  and the thickness h, 
are easily measured by echocardiography. The LV wall vibration 
y( t) is transcutaneously measured by the novel phased tracking 
method [3] developed in our laboratory using ultrasound. By 
applying a short-time Fourier transform to the resultant y ( f ) ,  its 
eigenfrequency f ,  is determined at the end-diastole. At the same 
time, the LV EDE EED is obtained from eqn. 2. 

In vivo experimental results: Fig. l a  and b show a typical example 
of the electrocardiogram (ECG) and the vibration y(t), respec- 
tively, on the LV side of the interventricular septum (IVS) meas- 
ured by the phased tracking method of a 60 year old male patient 
(A) with mitral regurgitation (MR). By referring to the cross-sec- 
tional B-mode image, the direction of the ultrasonic beam is set so 
that the beam is perpendicular to the IVS during the measure- 
ment. Fig. I C  shows the time-frequency distribution of y ( f )  of Fig. 
lb. The instantaneous eigenfrequencyf, of mode 2 is determined 
for the five instants at the end-diastole. With the determinedf,, 
the LV EDP PED is calculated for each instant t as shown by the 
squares in Fig. Id using eqns. 2 and 3. The resultant pressure 
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