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ABSTRACT

In this paper, an exact series representation for a nearfield spheri-
cally isotropic noise model is introduced. The methodology uses
the spherical harmonics expansion of the waveficld at a sensor to
obtain the correlation between two sensors due to the nearfield
isotropic noise field. The result is useful in nearfield application
of sensor arrays. The proposed noise model can be utilized ef-
fectively to apply well established farfield array processing algo-
rithms for nearfield applications. Specifically, auy signal process-
ing criterion based on farficld isotropic noise correlation can be
reformulated with nearfield noise with this representation. A sim-
ple array gain optimization is used to demonstrate the new noise
model.

1. INTRODUCTION

Nearfield sensor array design is of considerable importance in tele-
conferencing and speech acquisition applications [1, 2, 3, 4]. The
majority of array processing literature deals with the situations
where the desired source and the noise sources are assumed to be
in the farfield of the array; this considerably simplifies the design
problem. In most stochastic optimization techniques, the noise
correlation matrix plays an integral part of the design. In fixed
beamformer design, the noise field is assumed to be known, and
usually modeled by either white gaussian noise or farfield spheri-
cally isotropic noise which results from a uniform distribution of
point noise sources over all directions in the farfield.

For nearfield applications of sensor arrays such as telecon-
terencing, the noise field consists of undesirable nearfield sound
sources as well as reverberation caused by the desired and noise
sources. Using the source-image method [3], we can model re-
verberation with point sources. In an average size room, some or
all first order reflected reverberant sources will be in the nearfield
of the array while multiply reflected ones will be in the farfield.
Duc to absorption by walls, a multiply reflected reverberant noise
source contributes less power compared to first order reflected ones.
Thus, the overall noise field is due to nearfield as well as farfield
noise sources, and an assumption of farfield spherically isotropic
noise or white gaussian noise is a very crude approximation. In
[6], the farfield spherically isotropic noise was used to model the
effect of reverberation without considering the effect of nearfield
noise sources.

11

Rodney A. Kennedy

Robert C. Williamson

Department of Engineering
Faculty of Engineering
and
Information Technology
Australian National University
Canberra ACT 0200
Australia
Bob.Williamson@anu.edu.au

As an alternative, in this paper we model the noise field with
uniformly distributed sources over all directions in the nearfield
at a fixed distance from the array origin, We call this nearfield
spherically isotropic noise. This noise madel can be utilized effec-
tively to apply any signal processing criterion based on isotropic
type noise correlation to nearfield applications. In our simulation
example in section 4 we will show that a design based on this
nearfield noise mode! performs better than one based on a farfield
noise model in a more realistic mixed farfield-nearfield noise field.
As motivation for the theoretical development, we consider a sim-
ple array aptimization technique as applied to a nearfield array in
the following section.

2, GAIN OPTIMIZATION FOR AN ARBITRARY ARRAY

The array gain is ofien used as an indicator of overall array perfor-
mance. It is defined by

4 DOVET received from a desired location (Psource)

(=
total noise power received (Prois:)

n

Consider an array of 2N +1 sensors, arbitrarily placed in a bounded
region ) C R 3, Thenthe response of this array to a source located
outside the region € at y, is given by
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where w,, is the complex gain asqociated with the sensor posi-

tionedat 2, € 0y = |yl and k & 27f/c = 2n/X is the
wavenumber which can be expressed in terms of the propagation
speed ¢ and the frequency f, or the wavelength . Thus, the power
received from the desired location y, is given by

Psourcc = b*(ys)b(ys)!

where* denotes complex conjugaie transpose. Arranging the weights
inan (2N + 1)-element column vector

W—N
W =

W
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and defining a square ((2N + 1) x (2N + 1)} Hermitian matrix
Roouree =aa” 3
in terms of the (2N + 1) column vector
etkly—x_n|

|y — &)

ety -zl
ly — @ni
leads to the matrix formulation

Psmn*ce = W*Rsourch3 (S)

By assuming the nearfield spherically isotropic noise field,
i.e., having uniformly distributed noise sources on a sphere of ra-
dius y, we can write the tolal noise power received as,

Proise = j 6 (y) bly) di (6)

where # = g /y is aunit veclor in the direction of % and the inte-
gration is over the unit sphere. We define the ((2N41) % (2N 1))
matrix fneise = [Fam] with elements

.y2 eikly_’“ﬂ e"““kly_‘“m|

Tam = o— a N
U An )y -l (- @l
(Note that Bsis. 15 Hermitian and positive definite). Then,
Pﬂoise = 4TI'W*RnaiseW7
and equation (1) becomes a ratio of quadratic forms
W*RSDUI’CGW
G = e, 8
W*Rnoisew ( )

The usual goal is to find the weights which maximize &, Equation
(8) is a well known result for array gain [7, page 141] and [8, page
1641 and R.ource and Binoise are commonly known as the source
correlation matrix and noise correlation matrix respectively. The
optimum array gain and weights are given by [9]

GDPI =a R;z:tse (9}
and

Wopt R;;nse (10)

respectively.

3. NEARFIELD ISOTROPIC NOISE

In this section, we find an exact serics representation for the neise
correlation ry.m (7) between two sensors due to nearfield isotropic
noise tield.

We write the wavefield at the sensor location @, due to a
source at y for y > xy using the spherical harmonic expansion
[10, page 30] as

e“kh;—mn!

o p
= 4mik 3 ST B (ky) Yoq (i) (kon) Yy (dn)
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whete zn = |2n|; Jn() and hS () are the so called spherical
Bessel and Hankel functions of IIrst kind which are defined as [11,
page 125]
. iy
Jn(?) \/TJJP+ (¢),
RED (1) ‘f ( e +1N+}_(t

where p and ¢ are integers; J, 4 1(-) and N4 5 () are the half
intoger order Bessel [unctions of the first and second kind respec-
tively; ¥pq(#) are known as spherical harmonics and are given by
[10, page 23]

- PP+ 1{p—iq i
Ypo() = ﬁ;% qul (cosB)e'*,

where (4, ¢} is the clevation and azimuth of the location given by
i, and P,lq‘(-) arc the Associated Legendre functions. It is known
that {Ypq(:) : p=0,1,2,...; g = —p, ..., p}, form a complete
orthonormal system in the unit sphere, where

o rw pen e 1 ifp=pandg=q,
Yq yhdy = 12
/ ra () Yig () {0 otherwise (12

where integration is over the unit sphere as before,

We can now obtain an exact expression for the nearfield isotropic
noise correlation matrix as follows: we substitute (11) and its con-
jugate in to (7}, interchange integration and summations, and eval-
nate the resulting integral using (12) to obtain

Tam — 47{']\,2112 Z Z Ehgll) I‘y)i } (Zﬂn) Y;J‘?(g"m)
p=0 g=—p
% Jp(ken) Jp(kem).
{13

Equation (13) is a novel result, which gives the noise correlation
between 2 pair of sensors for a noise field generated by uniformly
distributed point noise sources on the surface of a sphere radius of
y which encircles the pair of sensors. Another form of (13) canbe
derived using the relationship [10, page 27]

r 2
- N 2p+1
Z ‘lpq(wﬂ)ym(mm) = p’21r

9=-p

Pp(cos 'ynm), (14}

Where cos Ynen = in « &m is the cosine of the angle between &,
and &, and Pr{-) are the Legendre functions. Combining (13}
and (14), we write the correlation between two sensors as

[e2e]
rum = 265 3 (20 + DA (k)7 Gol(kwn) go(kom)

=0

(15)
% Pp(cos Tam ).

An attractive feature of (15) is that for each term in the scries,
the dependence on the distance to the noise source y, the angle
between tWo SenSOrs ¥ . and the distance to two sensors &, and
Tm Appear as separate factors.
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3.1. Linear array

For the simple case of 4 line array through the origin, 4x.m would
be equal to either O or 7 depending on the location of the origin,
for all pairs of sensors. That is

008 Ypm = gy - &m)
where sgn(+) is the Signum function. Since

{=1)"Py(cos v), (16)

i

Pp(—cos )
Po(1)

for all integers p [12, page 208], the correlation between two sen-
sors Tor a line array is

ram = 26292 S (2p 4 1) {sgn (i - m) P B4 ()
o (17
X jp(kmn) jp(kwm)~

3.2, Farfield isotropic noise

The simplest special case of (15) is for farfield isotropic noise, in
which case y — cc. Making use of

. 1
Jim o* | (Rl = 7,
(10, page 30] we find (15) reduces to
Pam =2 3 (2p + 1)jp(ken) p(kem) Po(cos Yam).  (18)
p=0

Using [13, page 366], (18} is reduced 1o
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which is a well-known result for farfield spherically isotropic noise
Gields [7, page 49]. For the simple case of a linear array with half
wavelength spacings, the observed noisc are uncorrelated between
sensors; this fact is readily evident from (19},

4. SIMULATION EXAMPLE

We now present a design example to demonstrate the use of nearficld
isotropic noise modelling for nearficld beamforming. Our demon-
stration is based on the simple array gain optimization technique
outlined in section 2, however this noise model can be applied to
wide class of optimization methods such as Minimum Variance
MV}, Maximum Likelihood (ML) and Mcan Square Error (MSE)
as applied to beamforming.

The design is for a double-sided linear array of 8 sensors with
an inter-sensor spacing of A/2, where X is the wavelength. Sup-
pose the desired source is in the nearfield at 3 from the array
origin, on the broadside of the array. We calculate the optimum
weight vector (10), with the noise correlation matrix Rpoise for
nearfield isotropic noise (17) at a sphere of radius 2X. Even though
the series (17) has infinite number of terms, we approximate it
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Figure 1: Response of the optimum array based on nearfield noise
model (solid line) to sources at 3 and 30 wavelengths from the
array origin. Also shown is the response of the farfield noise mode!
based array response (dashed line).

by first 21 terms for this example. Generally these serics expan-
sions are convergent and could be approximated by finite number
of terms depending on the array configuration and the desired op-
erating distance.

The responses of the resulting array (solid line) to a nearficld
source at 3 wavelengths from the array origin and to a farfield
source at 30 wavelengths are given in Figure 1. Also shown is the
response of a optimum array designed using farfield isotropic noise
mode) (19) (dashed). Observe that the nearfield noise model based
design provides a better directional array gain in the nearfield and
simultaneously provides similar farfield noise rejection when com-
parced with the farficld noise model based design. For both design
methods, the power received from a source at 30A at the look di-
rection is about 25dB less than that of the desired source at 3A,
The trade-off for using the nearfield noise model is the better di-
rectional gain at the expense of slightly wider main lobe width.
Figure 2 shows the vesponse of the optimum array (designed to
operate at 34 using nearfield noise model) at different radial dis-
tances from the array origin. From this figure, we can note that
the nearfield noise other than in look dircction and farfield noise in
all directions are attenuated with respect to the signal from the de-
sired source. Thus we can conclude that our design has acceptable
performance in a mixed farfield-nearfield noise environment.

5, CONCLUSION

In this paper, we have introduced an exact series representation
for nearfield/farfield isotropic noise field, which may be useful in
sensor array applications in the nearficld. For cach term in these
series representation, the dependence on the position coordinates
of the sensors is factored in to components, each of which depends
on a single coordinate. This property of the series expansion fa-
cilitates the calculation of the correlation matrix for various sensor
orientations. While the model has only been demonstrated here
for a small line array, it generally applicable to more complex ar-
rays (2D and 3D). More importantly, this result can be utilized
to apply well established farfield array processing algorithms for
the nearfield applications. A study of a more general noise model
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using an arbitrary directional distribution of spatial harmonics is
currently underway.
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Figure 2: Response of the optimum array (nearfield noise model)
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5, 10, 20 and 30 wavelengths from the array ovigin.
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