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ABSTRACT
This paper presents a new method for nearfield lin-
ear array beamforming that achieves a desired beam-
pattern (as a function of direction) at any nominal fi-
nite distance from the array origin. Given a set of ar-
ray weights which achieves the desired beampattern for
farfield sources, we device a linear transformation to
obtain another set of array weights which achieves the
same beampattern for sources in the nearfield. A sim-
ulation example is presented to demonstrate the effec-
tiveness of this method in producing a nearfield beam-
pattern using a standard farfield design technique and
the proposed transformation.

1. INTRODUCTION

Sensor arrays provide an efficient means to detect and
process signals arriving from different directions. The
majority of array processing literature deals with the
case in which the source is assumed to be in the farfield
of the array, which simplifies the beamforming design
problem. However, in many practical situations, the
source is in the nearfield of the array and using farfield
assumption to design the beamformer results in se-
vere degradation in the beampattern. In the simplest
case, the beamforming problem consists of finding ar-
ray weights that satisfy a set of specifications on the
beampattern. In this paper, we propose a method to
“refocus” a farfield beamformer to nearfield sources by
a simple matrix transformation of array weights.

There appears to be little work in the literature on
nearfield beamforming. In [1] the curvature of a spher-
ical wavefront of a nearfield source is approximated by
a quadratic surface and in [2] time delays were applied
to compensate for differing propagation delays. How-
ever, both of these methods do not accurately achieve
the desired response over all angles. Other related work
we are aware of dealing with nearfield arrays can be
found in [3–7].

In this paper, a new method of nearfield beamform-
ing is proposed in which a desired arbitrary beampat-

tern in angle may be produced using standard farfield
design techniques. The design methodology relies on
three key ideas: 1) a relationship between nearfield
response and farfield response of a same theoretical
continuous sensor based on modal expansion; 2) a
Fourier transform relationship between farfield beam-
pattern and a continuous aperture function; and 3) an
expression relating modal coefficients of a beampattern
in terms of farfield array weights. Using these ideas,
we redesign the farfield array weights using a linear
transformation to produce the desired beampattern in
the nearfield.

2. PROBLEM FORMULATION

Suppose, there exists a linear array of(2M +1) sensors
with array weight vector

W(∞) = [w(∞)
−M , · · · , w

(∞)
M ]T

aligned to thex axis, such that the response to plane
waves from a farfield source, impinging at an angleθ
to the array axis, is

a(θ) =
M∑

m=−M

w(∞)
m e−ikxm cos θ (1)

wherei =
√−1 andk

∆= 2πf/c = 2π/λ is the wave
number which can be expressed in terms of the propa-
gation speedc and the frequencyf , or the wavelength
λ. We assume that the propagation speedc is a con-
stant, implyingk is a constant multiple of frequencyf
and throughout this paper we will often refer tok as
“frequency”. Let

W(r) = [w(r)
−Q, · · · , w

(r)
Q ]T

be the weights of a linear array of(2Q + 1) sensors,
which achieved the desired beampattern specification
a(θ) for a nearfield source at an angleθ and distancer



from the array origin. Hence,

a(θ) =
Q∑

q=−Q

w(r)
q

r

d(r, xq, θ)
eik(d(r,xq,θ)−r), (2)

where

d(r, x, θ) ∆= (r2 − 2rx cos θ + x2)1/2

is the distance from the source to a sensor positionx in
the array axis.

The problem we consider is determining the
“farfield-nearfield” transformation matrixA such that

W(r) ≈ AW(∞) (3)

and identify the nature of the approximation in (3).

3. BEAMPATTERN FORMULATION

3.1. Nearfield Modal Analysis

Consider a theoretical continuous sensor aligned to
the x axis with an aperture illumination function
ρ(r)(x, k), wherex is the distance to a point in the sen-
sor from the sensor origin. Then the response of the
sensor to a source at an angleθ and distancer from the
array origin is

br(θ) =
∫ ∞

−∞
ρ(r)(x, k)

r

d(r, x, θ)
eik(d(r,x,θ)−r)dx,

(4)

provided the functiond(r, x, θ) 6= 0 (which is the dis-
tance from the source to a pointx in the sensor). Also
we assume thatρ(r)(x, k) ≈ 0 for |x| > r. Under
these mild conditions, we can use the convergent series
expansion [8, page 366],

eikd(r,x,θ)

d(r, x, θ)
= ik

∞∑
n=0

(2n + 1)h(1)
n (kr)jn(kx)Pn(cos θ)

wherePn(·) are the Legendre functions andjn(·) and
h

(1)
n (·) are the so calledspherical Bessel and Hankel

functionsof first kind which are defined as [9, page
125]

jn(t) =
√

π

2t
Jn+ 1

2
(t),

h(1)
n (t) =

√
π

2t
(Jn+ 1

2
(t) + iYn+ 1

2
(t))

whereJn+ 1
2
(·) andYn+ 1

2
(·) are the half integer order

Bessel functions of the first and second kind respec-
tively. By substituting above expansion in (4) and tak-
ing integration term by term of the series, on account
of its convergence, we obtain the nearfield sensor re-
sponse as

br(θ) = ikr e−ikr
∞∑

n=0

(2n + 1) α(r)
n (k)

h(1)
n (kr)Pn(cos θ),

(5)

where

α(r)
n (k) ∆=

∫ ∞

−∞
ρ(r)(x, k)jn(kx)dx. (6)

Equation (5) is the standard modal representation of a
beampattern [7], but it has a different derivation in [7].
Also we can evaluate the coefficientsα

(r)
n (k) of the se-

ries (5) for a fixed frequencyk using the orthogonally
property of Legendre functions [10, page 85] as

α(r)
n (k) =

eikr

2ikr

1

h
(1)
n (kr)

∫ 1

−1

br(u)Pn(u)du, (7)

whereu = cos θ. Here we have replacedbr(θ) by
br(u), since the beampatternbr(θ) is a function of
cos θ.

Suppose the responsebr(θ) of the continuous sensor
is equal to the desired beampattern specificationa(θ).
Hence, we can substitute (1) into (7) and interchange
the integration and summation to obtain

α(r)
n (k) =

eikr

2ikr

1

h
(1)
n (kr)

M∑

m=−M

w(∞)
m

∫ 1

−1

e−ikxmuPn(u) du.

The integral of the above equation can be evaluated to
get

α(r)
n (k) =

eikr

kr

(−i)n+1

h
(1)
n (kr)

M∑

m=−M

w(∞)
m jn(kxm). (8)

Thus we have established an expression relating model
coefficientsα

(r)
n (k) of a beampattern in terms of its

farfield array weights.

3.2. Behaviour of Nearfield Design in Farfield

Response of the same continuous sensorρ(r)(x, k),
that was considered in the last section, to waves from a
farfield source, impinging at an angleθ to the sensor, is
given by

b∞(θ) =
∫ ∞

−∞
ρ(r)(x, k) e−ikx cos θ dx. (9)

Again using a Legendre series expansion, we can write
[8, page 368]

e−ikx cos θ =
∞∑

n=0

(−i)n(2n + 1)jn(kx)Pn(cos θ).

(10)

By substituting (10) in to (9) and interchanging the
summation and integration, we obtain the model rep-
resentation of a farfield beampattern as

b∞(θ) =
∞∑

n=0

(−i)n(2n + 1)α(r)
n (k)Pn(cos θ). (11)



Note that from (5) and (11),

lim
r→∞

br(θ) = b∞(θ), (12)

since the asymptotic behavior of the spherical Hankel
functions for large arguments is given by [8, page 201]

h(1)
n (t) = (−i)n+1 eit

t
{1 + O

(
1
t

)
}, t →∞. (13)

Thus, we can viewb∞(θ) as the beampatternbr(θ)
evaluated atr = ∞. What we can grasp from the above
result is that the farfield and nearfield responses of the
same continuous sensor differ only by a simple factor
in each moden which depends on the operating radius.

3.3. Aperture Illumination

In order to derive an expression for aperture function
ρ(r)(x, k) in terms of the array weights, we rewrite the
farfield array response (9) as

b∞(u) =
∫ ∞

−∞
ρ(r)(x, k) e−ikux dx (14)

whereu = cos θ. Note that (14) is the standard Fourier
transform relating a farfield aperture responseb∞(u)
to the aperture illumination functionρ(r)(x, k) for fre-
quencyk. Thus the inverse Fourier transform corre-
sponding to (14) is given by

ρ(r)(x, k) =
k

2π

∫ 1

−1

b∞(u) eikux du. (15)

We substitute (11) in (15), perform the intergration af-
ter interchanging integral and summation to get an ex-
act expression for aperture illumination

ρ(r)(x, k) =
k

π

∞∑
n=0

(2n + 1)α(r)
n (k) jn(kx). (16)

For practical purposes, we assume that there are only
N +1 significant terms in the infinite series expression
(16) for the continuous sensorρ(r)(x, k). From (8) and
truncated series (16) we get

ρ(r)(x, k) =
N∑

n=0

(2n + 1)
(−i)n+1eikr

πrh
(1)
n (kr)

jn(kx)

M∑

m=−M

w(∞)
m jn(kxm),

(17)

which relate the continuous aperture function required
to produce the beampatterna(θ) for a nearfield source
to the weights of a linear array of sensors which pro-
duce the same beampatterna(θ) for a farfield source.
In the following section, we truncate and discretize this
continuous aperture to obtain the desired transforma-
tion matrix between farfield and nearfield.

4. TRANSFORMATION MATRIX

It can be shown that the Fourier transform ofρ(r)(x, k)
with respect tox is bandlimited byk. This implies that
we can representρ(r)(x, k) by its samples if the sam-
pling distance is less thanλ/2 (= π/k). Further we
have assumed thatρ(r)(x, k) has only finite support in
x; hence we can approximate the integral in (4) by a
finite summation to obtain

br(θ) ≈
Q∑

q=−Q

gq ρ(r)(xq, k)
r

d(r, xq, θ)

eik(d(r,xq,θ)−r)dx,

(18)

where [x−Q, · · · , xQ] is a possible set of sampling
points (sensor locations) andgq depend on the sensor
separations. By comparing (2) with (18) we can ob-
serve that

w(r)
q ≈ gqρ

(r)(xq, k) for q = −Q, · · · , Q

so that

W(r) ≈




g−Qρ(r)(x−Q, k)
...

gQρ(r)(xQ, k)


 . (19)

By combining (19) and (17) we can obtain the follow-
ing matrix equation,

W(r) ≈ DJDJT
 W(∞),

where

D =




g−Q 0 · · · 0

0
. ..

...
...

. .. 0
0 · · · 0 gQ




is a(2Q + 1)× (2Q + 1) diagonal matrix,

J =




j0(kx−Q) · · · , jN (kx−Q)
...

...
j0(kxQ) · · · , jN (kxQ)




is a(2Q + 1)× (N + 1) matrix,

D =
eikr

πr




(2×0+1)(−i)0+1

h
(1)
0 (kr)

0 · · · 0

0
. ..

...
...

. .. 0
0 · · · 0 (2N+1)(−i)N+1

h
(1)
N (kr)




is a(N + 1)× (N + 1) diagonal matrix, and

J =




j0(kx−M ) · · · , jN (kx−M )
...

...
j0(kxM ) · · · , jN (kxM )




is a(2M +1)×(N +1) matrix, Hence we can conclude
that the farfield-nearfield transformation matrixA =
DJDJT

 .
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Figure 1: Desired nearfield beampattern.

5. EXAMPLE

The following example illustrates the use of above
transformation technique for nearfield beamforming in
comparison with a technique in [1, page 36]. We wish
to design a nearfield beamformer having the response
in Figure 1 at a distance of 3 wavelengths from the ar-
ray origin.

A set of weights for array of 7 half wave-length
spaced sensors is designed according to [11] to pro-
duce the required beampattern in the farfield. For the
actual array for nearfield operations, we choose 13 sen-
sors with uniform sensor separation of half a wave-
length. Then we calculate the transformation matrix
A with the maximum number of modesN = 15
for this example. Next we evaluate the correspond-
ing nearfield weight vector using (3). The resulting
beamformer is simulated in the nearfield and the re-
sponse is depicted (solid) in Figure (2). Also shown
is the desired beampattern (dotted), and the response
of the nearfield method [1] (dashed). We note that the
proposed nearfield design technique provides a close
realization of the desired beampattern over all angles,
not just at angles close to broadside as for the nearfield
method of [1].
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