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Abstract—Three dimensional (3D) spatial sound field repro-
duction enables enhanced immersive acoustic experience for a
listener. Recreating an arbitrary 3D spatial sound field using
a practically realizable array of loudspeakers is a challenging
problem in acoustic signal processing. This paper exploitsthe
underlying characteristics of wavefield propagation to devise a
strategy for accurate 3D sound field reproduction inside a 3D
region of interest with practical array geometries. Specifically
we use the properties of the associated Legendre functions and
the spherical Hankel functions, which are part of the solution
to the wave equation in spherical coordinates, for loudspeaker
placement on a set of multiple circular arrays and provide a
technique for spherical harmonic mode-selection to control the
repoduced sound field. We also analyze the artifacts of spatial
aliasing due to the use of discrete loudspeaker arrays in the
region of interest. As an illustration, we design a a third order
reproduction system to operate at a frequency of500 Hz with 18

loudspeakers arranged in a practically realizable configuration.

Index Terms—Sound field reproduction, Spherical harmonics,
Circular loudspeaker array, 3D loudspeaker array, Surround
sound

I. I NTRODUCTION

Three dimensional (3D) sound field reproduction systems
offer potential for creating immersive acoustic environments
where the listener perceives a realistic but virtual replication
of a sound field. This can be achieved by controlling the
sound field in a defined spatial region of interest using the
signals emitted from a set of loudspeakers. Whilst there
are a plethora of techniques for sound field reproduction
in two dimensional spatial regions, accurate 3D sound field
reproduction is still considered a difficult problem unlessthe
loudspeakers are placed on a sphere that enclose the 3D spatial
region of interest. In this paper, we present theory and design
of 3D sound field reproduction using practically realizable
loudspeaker array geometries in standard rooms.

The method of controlling the loudspeaker signals has
been studied under various sound reproduction techniques.
Generally, this involves issues relating to spatial loudspeaker
placement and calculation of their driving signals for accurate
sound reproduction. Arguably there are two main methods
of sound field reproduction. A few authors have tried to
differentiate the techniques, and understand their similarities
however there is much clarity still to be achieved [1]. The
first one is based on circular harmonic representation of
sound fields and was first introduced in 1973 by Gerzon [2].
The method introduced by Gerzon, is called Ambisonics and
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mainly focusses on lower order, 2D sound reproduction [3]–
[5]. It has since been further developed into higher order
Ambisonics [6]–[9] extensively. In addition there are alsosome
other systems that employ spherical harmonics [10]–[14] for
2D sound reproduction.

The second approach of sound reproduction relies on the
Kirchhoff-Helmholtz integral which shows that reproduction
is possible inside a given region if the pressure and normal
velocity on the surface are known. This is the basis of Wave
Field Synthesis (WFS) and was introduced by Berkhout in
1993 [15]. To make this technique more practically applicable,
several simplifications have been introduced, such as the use of
monopole sources only instead of both monopole and dipole
loudspeakers and the selection of a subset of loudspeakers
for reproduction in the direction of an external source. This
method requires knowledge of the original source also called
the primary source. WFS has been applied for 2D sound
reproduction using linear and planar arrays [16] and 2.5D [17].
However, to the knowledge of the authors, there is very limited
work in 3D sound field reproduction systems using WFS
technologies. WFS systems are generally applied for large
areas and hence require a significant number of loudspeakers.
A 3D WFS system would thus need an increased number of
loudspeakers, which needs to be justified for applied use [18].
In [19], a feasibility study of 3D sound field reproduction
at low frequencies was reported by controlling the acoustic
pressure measured at the boundary surface of the desired
region of reproduction.

There are a few systems developed for 3D reproduction
using spherical harmonics/ higher order Ambisonics [9], [20]–
[27]. In [20], Poletti compared mode-matching and simple
source methods for 3D sound reproduction. He uses regulari-
sation techniques to reduce reproduction errors. There wasno
optimum solution applicable for accurate reproduction over a
large range of frequencies. It was also shown that the num-
ber of loudspeakers rises quadratically with the reproduction
frequency.

All of the existing 3D sound field reproduction methods re-
quire to place the loudspeakers on a sphere that encapsulatethe
desired reproduction region. Whilst using spherical harmonics,
the natural and obvious geometry of loudspeaker placement is
a sphere. In terms of user comfort and practice, this is an
unpractical approach and thus has hindered the growth of 3D
systems using spherical harmonics. The goal of this work is
to design a 3D sound field reproduction system with a flexible
loudspeaker array geometry that can be implemented in real
rooms and auditoria.

The rest of the paper is organized as follows. We identify
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the issues to be resolved for 3D sound field reconstruction in
Section II, and address these in the rest of the paper. We start
by describing existing 3D methods using spherical arrays in
Section III, and highlight the practical limitations of these that
lead to the development of our method using multiple circular
arrays. In Section IV, we develop the theory of multiple
circular loudspeaker arrays and analyse the underlying charac-
teristics of wavefield propagation. The main contribution is the
novel implementation strategy of selected spherical harmonic
modes that enables control of the reproduced sound field
through its soundfield coefficients. This enables accuracy and
full control of the loudspeaker signals to match the desired
sound field in the reproduction region and is described in
Section V. We also analyse the effect of the discretization error
that provides aliasing in the reproduced signal only outside
the region of interest in Section VI. We complete the paper in
Section VII by discussing a simulation design example for a
third order system and the reproduction error in the 3D region
of sound field reproduction.

II. PROBLEM FORMULATION

A. Spherical harmonic analysis of sound fields

In the spherical coordinates system, an efficient set of
basis functions to represent sound fields is given by spherical
harmonics, which are orthonormal functions of the elevation
angleθ and the azimuth angleφ. An arbitary sound field within
a source-free region can be expressed as a linear combination
of these spherical harmonics

S(r, θ, φ; k) =

∞∑

n=0

n∑

m=−n

αnm(k)jn(kr)Pnm(cos θ)Em(φ)

(1)
wherem andn (≥ 0) are integers,αnm(k) are the spherical
harmonic coefficients of the sound field,k = 2πf/c is the
wavenumber,f is the frequency,c is the speed of sound,jn(·)
are the spherical Bessel functions [28] of ordern, Em(φ) =
(1/

√
2π)ejmφ are the normalized exponential functions and

Pnm(cos θ) =

√
2n + 1

2

√
(n − |m|)!
(n + |m|)!Pn|m|(cos θ) (2)

are the normalized associated Legendre functions. Note that
the normalized exponential functions and the normalized as-
sociated Legendre functions form orthonormal basis sets in
azimuthφ ∈ [0, 2π) and elevationθ ∈ [0, π], respectively.

1) Truncation: Let the sound field reproduction region of
interest namelyΩ be a sphere of radiusRr. Since we are
interested in a finite regionΩ, the sound field withinΩ can be
expressed approximately by a finite set of coefficients, i.e., a
finite number of terms of (1). Thus, for a sound field withinΩ,
the infinite summation in (1) can be truncated [29] to the upper
bound of,N = ⌈keRr/2⌉. The order of the field is related to
the radial spatial component of spherical harmonics, givenby
the spherical Bessel functions [28], [30]. The order depicted by
n starts at the smallest radius of the spherical regionΩ being
0, and varies till the radiusR, defined byN = ⌈keRr/2⌉.
The spherical harmonic coefficients also vary over modesm
ranging from−n to n.

m�n 0 1 2 . . . N

N αNN

...

2 α22

...
1 α11 α21

m = 0 α00 α10 α20 . . . αN0

−1 α1(−1) α2(−1)

−2 α2(−2)

...
...

...
−N αN(−N)

TABLE I: sound field coefficients arranged with ordern and
degreem.

2) sound field coefficients:As we are interested in control-
ling the sound field restricted inside a regionΩ of a defined
radiusRr, this places a constraint on the spherical harmonics
order of the field and making the reproduced field order
limited to the truncation factorN . Hence, the total number
of coefficients required to describe the desired sound field is
given by(N + 1)2 [10]. If we can control, all these(N + 1)2

spatial coefficients, we can successfully generate the desired
sound field inside the regionΩ. For a field order limited to
N , Table I depicts the growth of the number of coefficients
as ordern with modesm ranging from−n to n.

B. Loudspeaker placement

The desired sound field is given by(N + 1)2 sound field
coefficients. Therefore, the number of loudspeakers required
for reproduction must be equal to or greater than this number.
Let the number of loudpseakers beQ, where

Q > (N + 1)2.

The questions that arise now are (i) how to find suitable
weights or driving functions for the loudspeakers in order
to reproduce the desired sound field, and (ii) what are the
optimum and/or practical 3D spatial positioning of these
loudspeakers to ensure desired reproduction of sound field.

III. L OUDSPEAKERDRIVING SIGNAL /WEIGHTS

A. Direct Least Squares

For sound field reproduction inside a spherical regionΩ
of radius Rr, we need to place loudspeakers outside this
region. There are a few strategies for loudspeaker placement
in the literature, however, here we briefly describe two of the
methods that use spherical harmonics.

The simplest method for loudspeaker placement is to ran-
domly distribute them in space. In that instance, let there be
Q > (N + 1)2 loudspeakers randomly placed outside the
region Ω at locationsyq ≡ (rq, θq, φq), q = 1, . . . , Q. The
sound field at a pointx ∈ Ω due to these loudspeakers is then
given by

S̃(r, θ, φ; k) =

Q∑

q=1

wq(k)
eik‖yq−x‖
‖yq − x‖ , (3)
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wherex ≡ (rr, θr, φr), andwq(k) are the loudspeaker weights.
After loudspeaker placement, the goal is to determine the
loudspeaker weights which shall produce the desired sound
field in the region of interest. We substitute into (3) the Jacobi-
Anger expansion [31] which is given by

eik‖yq−x‖
‖yq − x‖ = 4πik

∞∑

n=0

n∑

m=−n

h(1)
n (kyq)Pnm(cos θq)

× E−m(φq)jn(krr)Pnm(cos θr)Em(φr) (4)

whereh
(1)
n (·) is the spherical hankel function, and then equate

with (1) to obtain the loudspeaker weights in terms of the
sound field coefficients

αnm(k) = 4πik

Q∑

q=1

wq(k)h(1)
n (krq)Pnm(cos θq)E−m(φq).

(5)
In the above equation, when we substitute the desired sound
field’s coefficient intoαnm(k), we have one known coefficient
and Q unknown loudspeaker weights. In order to solve such
a system, and estimate all the loudspeaker weightswq(k),
we can form a system of simultaneous equations [10] by
evaluating (5) forn = 0, . . . , N , and m = −n, . . . , n .
Such a system of equations could be solved using the least
squares method. In that case, the accuracy of sound field
reproduction is doubtful, as the method does not study the
underlying wavefield complexities and does a brute force
approximation to find the weights. So, as there is no con-
trol on loudspeaker placement, the rendering thus also has
practical limitations, such as not knowing where to place the
loudspeakers for varying system environments. In addition,
with random loudspeaker placement, it would be difficult to
quantify spatial aliasing or sampling issues. In order to have a
deeper grasp on the reproduced sound field, a better system is
required that considers the underlying wavefield components
and reproduction accuracy.

B. Mode-matching on a sphere

For the analysis of a sound field using spherical harmonics,
the ideal geometry for the loudspeaker array due to spatial
symmetry would be a sphere [20]. Therefore, a suitable design
strategy for sound rendering using spherical harmonics would
be to place the loudspeakers on a sphere.

In this solution for sound field reconstruction, a large
number of loudspeakers are placed on a sphere with radius
R > Rr. The loudspeaker driving signals are represented
by a spatial function called a loudspeaker aperture function
ρ(θ, φ; k), which gives the weights of a loudspeaker positioned
at (θ, φ) on the sphere of radiusR. Such a function would
describe the spatial-spectral properties of the loudspeakers, and
thus enable control over the reproduced sound field. For ana-
lytical purposes, consider acontinuous aperture function[9]1

[20], which is a limiting case of a closely packed set of
discrete loudspeakers. The corresponding sound field at a point

1Also sometimes referred to as loudspeaker aperture or loudspeaker driving
function.

x ≡ (rr, θr, φr) ∈ Ω due to such a continuous spherical
loudspeaker aperture is given by

S(rr, θr, φr; k) =

∫ 2π

0

∫ π

0

ρ(θ, φ; k)
ei(k‖y−x‖)

‖y − x‖ sin θ dφdθ.

(6)

Since the spherical harmonics form a better complete basis set
over the unit sphere, we can use them to define the loudspeaker
aperture function at a point(θ, φ) on a spherical surface. Thus,
an arbitrary spherical aperture function can be written using
spherical harmonics as

ρ(θ, φ; k) =
∞∑

n=0

n∑

m=−n

γnm(k)Pnm(cos θ)Em(φ) (7)

whereγnm(k) are the spherical harmonic coefficients of the
aperture function. By substituting (4) and (7) into (6) and
evaluating the integral, we have

S(rr, θr, φr; k) = 4πik

∞∑

n=0

n∑

m=−n

γnm(k)h(1)
n (kR)

× jn(krr)Pnm(θr)Em(φr). (8)

By equating the loudspeaker sound field (8) with the desired
field (1), we can obtain the unknown aperture function coeffi-
cients,γnm(k) in terms of the desired sound field coefficients
αd

nm(k) as

αd
nm(k) = 4πik γnm(k)h(1)

n (kR). (9)

This method is given in [20] and is called mode-matching
since a mode of the desired sound field is matched to the
corresponding mode of the aperture function. However, there
is a limitation of this method. In practice, the continuous
spherical apertureρ(θ, φ; k) needs to be sampled to find an
equivalent array of loudspeakers, and placing loudspeakers
equidistantly on a sphere is not straightforward2. Similarly, it is
hard to imagine having a practical spherical shell loudspeaker
array where the desired region of interest is in the middle
of the spherical array. Such practical limitations motivate
us to consider alternative design geomertries for sound field
reproduction using spherical harmonics.

IV. M ULTIPLE CIRCULAR ARRAY CONFIGURATION

A. Circular aperture

Consider a circular loudspeaker aperture located at a con-
stant elevation angleθq and radial distancerq from the origin.
Thus, the aperture function is spatially only dependent on the
azimuth angleφ and let it be depicted byρq(φ; k). We can
represent the circular continuous loudspeaker aperture function
by a Fourier series as

ρq(φ; k) =
∞∑

m=−∞

β(q)
m (k)Em(φ) (10)

2However, there are number of possible geometries reported in spherical
microphone array literature including vertices of polyhedra.



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4 SUBMISSION TO IEEE TRAN. AUDIO, SPEECH & LANGUAGE PROCESSING

whereβ
(q)
m (k) are the frequency dependent Fourier coefficients

of the circular aperture function and are given by

β(q)
m (k) =

∫ 2π

0

ρq(φ; k)E−m(φ)dφ. (11)

Now, the resulting sound field due to this circular loudspeaker
aperture inside the reproduction areaΩ is

Sq(rr, θr, φr; k) =

∫ 2π

0

ρq(φ; k)
eik‖yq−x‖

‖yq − x‖ dφ (12)

whereyq ≡ (rq, θq, φ) is a point on the circular loudspeaker
aperture andx ≡ (rr, θr, φr) is any point within the desired
region of reproduction. Upon substituting the Jacobi-Anger
expansion (4) and the Fourier series expansion of the aperture
function (10) into (12), we get

Sq(rr, θr, φr; k) = 4πik
∞∑

m′=−∞

∞∑

n=0

n∑

m=−n

β
(q)
m′ (k)h(1)

n (krq)

× Pnm(cos θq)

orthonormal︷ ︸︸ ︷∫ 2π

0

Em′(φ)E−m(φ) dφ

× jn(krr)Pnm(cos θr)Em(φr). (13)

Then, by using the orthonormality of the exponential func-
tions, we express (13) in the spherical harmonic expansion
form (1) as

Sq(rr, θr, φr; k) =

∞∑

n=0

n∑

m=−n

4πikh(1)
n (krq)Pnm(cos θq)β

(q)
m (k)︸ ︷︷ ︸

coefficients

× jn(krr)Pnm(cos θr)Em(φr). (14)

Therefore, the spherical harmonic coefficients of the sound
field in the region of interestΩ due to a horizontal continuous
circular loudspeaker aperture at(rq, θq) with aperture function
ρq(φ; k) are given by

α(q)
nm(k) = 4πik h(1)

n (krq)Pnm(cos θq)β
(q)
m (k) (15)

for n = −N · · ·N andm = −n · · ·n.
In order to control the reproduced sound field and hence its

spherical harmonic coeffcients, we need to control the right
hand side of (15). Upon observing the underlying functions,
we see that the normalized associated Legendre functions
Pnm(·) have a number of zeros (see Figures 2 and 3). Thus, for
some values ofn, m andθq, the induced sound field coefficient
α

(q)
nm(k) in (15) is equal to zero irrespective of the value of

β
(q)
m (k). We exploit this fact later in the paper to create a

design strategy for loudspeaker layouts.
Additionally, a single circular aperture (10) on a circle

can only control the sound field coefficientsαnm(k) along
different degreesm but not on ordersn (see (15)). Therefore,
we need to consider multiple circular continuous loudspeak-
ers to evaluate aperture coefficients for all desired spherical
harmonic coefficients and control the entire reproduced sound
field insideΩ.

q

y

x

z

φ

r
q

θq

Fig. 1: Circular continuous aperture located at(rq , θq) outside
the region of interestΩ
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Fig. 2: Magnitude of the normalized associated Legendre
functionsPnm(cos θ) in dB, where the addition of ordern and
modem are even:(n, |m|) = (0, 0); (2, 0); (1, 1); (2, 2); (3, 1).
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Fig. 3: Magnitude of the normalized associated Legendre
functionsPnm(cos θ) in dB, where the addition of ordern
and modem are odd:(n, |m|) = (1, 0); (2, 1); (3, 0); (3, 2).
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B. Multiple circles

In order to calculate coefficients of all orders and further
accurately control the entire reproduced sound field inΩ, we
place additional circular loudspeaker apertures in space outside
Ω. Suppose there is a set ofQ circles of horizontal continuous
loudspeakers located at(rq , θq), whereq = 1, . . . , Q, and the
corresponding aperture functionsρq(φ; k) are given by (10).
Then the coefficients of the resulting sound field are

αnm(k) =

Q∑

q=1

4πik h(1)
n (krq)Pnm(cos θq)β

(q)
m (k), for n > m.

(16)
From (16), we note that for a specificm, the aperture function
coefficientsβ

(q)
m (k) from all circles contribute to the sound

field coefficients of degreem and ordersn > m
For a finite dimensional spherical region of interest with

radiusR, the field is truncated to orderN = ⌈keR/2⌉, and
we only need to control sound field coefficients up to orderN .
Thus, by having a sufficient number of circular distributions
of loudspeakers, we can control the required countable sound
field coefficients to reconstruct a desired given sound field
within the region of interest. In the next section, we show
how to calculate the aperture function coefficients when given
a desired sound field.

C. Matrix formulation

Suppose the desired sound field is given by(N + 1)2

coefficients represented byαd
nm(k). To find the required

aperture coefficientsβ(q)
m , we equate the left hand side of (16)

to αd
nm(k) for a specificm andn = |m|, |m| + 1, · · · , N for

Q circles. We write the resulting set of simultaneous equations
in matrix form, as

Am = HmBm (17)

whereAm = [αd
|m|m(k), αd

(|m|+1)m(k), . . . , αd
Nm(k)]T ,

Hm = 4πik× (18)



h
(1)
|m|(kr|1|)Pmm(cos θ1) · · · h

(1)
|m|(krQ)Pmm(cos θQ)

...
. . .

...

h
(1)
N (kr1)PNm(cos θ1) · · · h

(1)
N (krQ)PNm(cos θQ)


 ,

andBm = [β
(1)
m , . . . , β

(Q)
m ]T .

Equation (17) could be solved for loudspeakers’ aperture
coefficientsBm, using the Least Squares method provided that
Hm is non singular. Such a solution may or may not exist
if an arbitrary set of circles is used. In a practical set up,
we need to avoid certain spatial placement of loudspeakers
due to Legendre nulls, which give no energy for reproduction
of certain desired reproduction coefficients and field. In the
following section we develop a systematic procedure to set up
a circular loudspeaker array system.

V. M ODE MATCHING ON CIRCLES

A. Location of circles using mode selection

Here we show an implementation process to calculate the
aperture coefficientsβ(q)

m (k) from different circles, by picking

the modes which are best obtained from the respective circles,
and we term this process as mode selection. Such a careful
strategy of placement enables improved control over the sound
field based on spatial properties of the underlying wavefields
as well as to consider any practical constraints imposed by
room geometries.

We suggest the following procedure to determine valid
locations of circular apertures and also to calculate their
relevant aperture coefficientsβ(q)

m (k) for driving signals.

Step 1 (m = N series): Consider (16) and Table I
for m = N , then the only applicable sound field coefficient
for this series isαd

NN(k). Since, the desired region of interest
is order limited toN , as it is in our case, then there are no
lower order coefficients and the higher order components
have negligible effect inside this region. Therefore, we have

αd
NN (k) =

Q∑

q=1

4πik h
(1)
N (krq)PNN (cos θq)β

(q)
N (k). (19)

In this case, there is only one sound field coefficientαd
NN (k)

to be controlled, and hence, we only need to place a single
circle for the loudspeaker aperture function. To determine
the spatial placement of the loudspeaker aperture function,
we need to find an appropriate radius and elevation angle.
Consider (19), in order to calculateβ(q)

N (k) for a desired repro-
duced field, we need to examine the spherical Hankel functions
h

(1)
N (krq) and Legendre functions propertiesPNN (cos θq) for

this circle. From Figure 2, we observe that there are certain
elevation angles where the magnitude of the field is quite low
or zero. These angles are avoided, because at these angles
the energy is not enough to provide the desired sound field
coefficientαd

NN (k) and hence the resulting reproduced field
will not be as accurate as desired. Thus, we chooseθq such that
the associated Legendre functions have significantly largeand
stable values (see Figure 2). Secondly, as we are considering
an even harmonic, thus, we selectθq = π/2, as all even3

associated Legendre functions at this angle have good values
to ensure accuracy and stability.

Therefore, we choose thex-y plane to place the first circle.
We also setβ(q)

N (k) = 0 for all other circlesq = 2 · · ·Q, which
we will add to the system in the subsequent steps. Thus, (19)
reduces to

αd
NN (k) = 4πik h

(1)
N (kr1)PNN (cos θ1)β

(1)
N (k),

which can be used to determine the loudspeaker aperture
function β

(1)
N (k) coefficient for them = N series from the

first circle as

β
(1)
N (k) =

αd
NN (k)

4πik h
(1)
N (kr1)PNN (cos θ1)

. (20)

Step 2 (m = N − 1 series): For this series, consider
Table I, there are two available desired harmonic coefficients
αd

N−1N−1(k) andαd
NN−1(k). Therefore, we need at least two

3Evenand odd are defined as the sum of the scalar values of ordern and
degreem are equal to an even integer and odd integer, respectively.
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aperture function coefficientsβ(q)
N−1(k), q = 1, 2 to be calcu-

lated that would render the desired field for them = N − 1
series. Since there are two sound field coefficients, the system
of simultaneous equations (16) only has two equations. From
(17) we have,

αd
N−1N−1(k) =

Q∑

q=1

4πik h
(1)
N−1(krq)PN−1N−1(cos θq)β

(q)
N−1(k),

(21)
and

αd
NN−1(k) =

Q∑

q=1

4πik h
(1)
N (krq)PNN−1(cos θq)β

(q)
N−1(k).

(22)
As we need at least two unknown aperture function coeffi-
cients, we require two loudspeaker apertures or circles. In
other words, we needβ(q)

N−1(k), from two circles to realize
the desired sound field coefficients. As one of the sound
field coefficientsαd

N−1N−1(k) is even, we can reuse the first

circle (q = 1), for the aperture coefficientβ(1)
N−1(k). Now,

the next step is to find an appropriate valid placement of the
second circle and ensure that the desired spherical harmonic
αd

NN−1(k) is present inside the region of interestΩ. The valid
choices ofrq and θq would ensure accurate calculation of
β

(2)
N−1(k) for the second loudspeaker aperture.
The second circle needs to be located at a particular ele-

vation angleθ2 wherePN(N−1)(θ2) 6= 0. We can use Figure
3 to determine an appropriate value4 for θ2 such that there
is significant energy for the relevant Legendre functions and
spherical harmonics. We also setβ

(q)
N−1(k) = 0 for q > 2, i.e.,

for other circles. To obtain the aperture coefficients, we solve
the system of simultaneous equations or matrix equation (17)
which becomesAN−1 = HN−1BN−1. Thus,

[
β

(1)
N−1

β
(2)
N−1

]
= 4πikH−1

N−1

[
αd

(N−1)(N−1)(k)

αd
N(N−1)(k)

]
(23)

whereH
−1
N−1 is the inverse ofHN−1 = ik×



h
(1)
N−1(kr1)PN−1N−1(cos θ1) h

(1)
N−1(kr2)PN−1N−1(cos θ2)

h
(1)
N (kr1)PNN−1(cos θ1) h

(1)
N (kr2)PNN−1(cos θ2)



 .

Step 3 (m = N − 2 series): In this case, we need to
calculate three aperture function coefficients to control three
harmonic sound field coefficientsαd

N−2N−2(k), αd
N−1N−2(k)

andαd
NN−2(k). From (17) we have,

αd
N−2N−2(k) =

Q∑

q=1

4πik h
(1)
N−2(krq)

PN−2N−2(cos θq)β
(q)
N−2(k), (24)

4A complete guideline to choosing elevation angles for even and odd
associated Legendre functions are given in [32].

αd
N−1N−2(k) =

Q∑

q=1

4πik h
(1)
N−1(krq)

PN−1N−2(cos θq)β
(q)
N−2(k). (25)

and

αd
NN−2(k) =

Q∑

q=1

4πik h
(1)
N (krq)PNN−2(cos θq)β

(q)
N−2(k).

(26)
In this case, we have twoeven and oneodd sound field
coefficients namelyαd

N−2N−2(k) and αd
NN−2(k). Since the

first circle (q = 1) is on the x-y plane, we reuse it to control the
evenharmonic coefficientαd

N−2N−2(k), and the second circle
(q = 2) to control theoddharmonicαd

N−1N−2(k). Since there
are two even coefficients, we introduce a third circle to control
αd

NN−2(k) with appropriateθ3 whereP(N)(N−2)(θ3) 6= 0. As

before, we setβ(q)
N−2(k) = 0 for q > 3. Now we use (17) to

determineβ(q)
N−2(k) for q = 1, 2, 3 as



β
(1)
N−2

β
(2)
N−2

β
(3)
N−2


 = H

−1
N−2




αd
(N−2)(N−2)(k)

αd
(N−1)(N−2)(k)

αd
(N)(N−2)(k)


 (27)

whereH
−1
N−2 is the inverse ofHN−2.

Step N+1 (m = 0 series): There areN + 1 coefficients in
this series. Hence, we can reuse all previously established
circles together with a new circle. Since, the final circle is
needed for a single coefficient, it can be a single point at
θN+1 = 0. As before,β(q)

0 (k) for q = 1, . . . , N + 1 can be
calculated from (17).

Note that the same set of circles could be reused for negative
values ofm, i.e., starting withm = −N from the first circle.

B. Loudspeaker driving signals

As a result of the mode-matching algorithm, we have
calculated all the aperture coefficients from all the circles, that
can be used to evaluate the loudspeaker aperture functions for
each respectiveqth circle by

ρq(φ; k) =

Nq∑

m=−Nq

β(q)
m (k)Em(φ) (28)

whereNq is the highest active mode of theqth loudspeaker
aperture.

VI. D ISCRETIZATION

A. Sampling of circles

In order to have a practically realizable loudspeaker array,
we cannot have continuous aperture functions. A more suitable
representation of the loudspeaker array would be to discretize
the continuous aperture functions. Therefore, consider (28),
and let the circular aperture be sampled onLq points given
by ℓ = 1, · · · , Lq. According to Shannon’s theorem for a
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complete representationLq > 2Nq + 1. Thus, the weight of
the ℓth loudspeaker located at theqth circle is given by

ρq(φ
(ℓ)
q ; k) =

2π

Lq

Nq∑

m=−Nq

β(q)
m (k)Em(φ(ℓ)

q ) for ℓ = 1 . . . Lq

where the factor2π/Lq results from uniform sampling. How-
ever, we could use nonuniform sampling as long as the
maximum sensor separation angle is less than2π/Nq. In the
next section, we quantify the errors involved with the above
discretization in the reproduced field.

B. Sampling Error in reconstruction

There is an inherent error in reproduction due to discretiza-
tion of the aperture function and this is a natural byproduct
of practical implementation of the sound field reproduction
system. Here, we analyse this aliasing error and its effect
on the sound reproduction. As it is a linear system, we can
objectively say

SR = SD + SA (29)

where SR is the reproduced field in the region of interest,
SD the desired sound field andSA is the aliasing error in the
reproduced sound field, respectively.

Let the loudspeakers on a given circle be equally spaced
and on positions given asφ(ℓ)

q = (2πℓ/Lq). Then, the general
expression for the reproduced sound field from a discretized
loudspeaker array consisting ofQ circular arrays (whereqth
circular array consists ofLq loudspeakers) is given by

SR(rr, θr, φr; k) =

Q∑

q=1

Lq∑

ℓ=1

2π

Lq

ρq(φ
(ℓ), k)

eik‖y
ℓ
q−x‖

‖yℓ
q − x‖

where2π/Lq is the discretization step or the angular loud-
speaker spacing on the aperture. Upon substituting for the
aperture functionρq(φ

(ℓ), k) from (28) and the Jacobi-Anger
expansion (4) we obtain

SR(rr, θr, φr; k) =

Q∑

q=1

Lq∑

ℓ=1

Nq∑

m=−Nq

2π

Lq

β(q)
m (k)Em(φ(ℓ)

q )

× 4πik

∞∑

n=0

n∑

m′=−n

h(1)
n (krq)Pnm′(cos θq)E−m′(φ(ℓ)

q )

× jn(krr)Pnm′(cos θr)Em′ (φr).

We rewrite the above expression as

SR(rr, θr, φr; k) =

Q∑

q=1

∞∑

n=0

n∑

m′=−n

Nq∑

m=−Nq

4πikβ(q)
m (k)h(1)

n (krq)

×

orthogonal︷ ︸︸ ︷
Lq∑

ℓ=1

2π

Lq

Em(φ(ℓ)
q )E−m′(φ(ℓ)

q )Pnm′(cos θq)

× jn(krr)Pnm′(cos θr)Em′(φr). (30)

From the geometric progression [33], forφℓ
q = ℓ2π/Lq, we

have

Lq∑

ℓ=1

Em(φℓ
q)E−m′(φℓ

q) =

{
Lq

2π
if m′ = m + sLq

0 otherwise,
(31)

where s is an integer. By substituting (31) into (30), the
reconstructed field becomes

SR(rr, θr, φr; k) =

∞∑

s=−∞

∞∑

n=0

n∑

m=−n

Q∑

q=1

4πikβ
(q)
m+sLq

(k)

× h(1)
n (krq)Pnm(cos θq)jn(krr)Pnm(cos θr)Em(φr) (32)

Note that thes = 0 term in (32) gives us the desired field,
i.e.,

SD(rr, θr, φr; k) =

∞∑

n=0

n∑

m=−n

Q∑

q=1

4πikβ(q)
m (k)h(1)

n (krq)Pnm(cos θq)

︸ ︷︷ ︸
αd

nm(k)

× jn(krr)Pnm(cos θr)Em(φr). (33)

All the other terms in (32) fors 6= 0 produce undesirable
errors. However, we can quantify these errors to see their
effect to the sound field reproduced inside the desired region
of interestΩ. Thus, the aliasing error is given by

SA(rr, θr, φr; k) =
∞∑

s=−∞
s6=0

∞∑

n=0

n∑

m=−n

Q∑

q=1

4πikβ
(q)
m+sLq

(k)

× h(1)
n (krq)Pnm(cos θq)jn(krr)Pnm(cos θr)Em(φr). (34)

We have following comments on the aliasing error:

• Since the desired reproduction regionΩ has a finite
dimension of radiusRr, the field inside it is mode limited
to N ≈ ⌈keRr/2⌉. Hence, the summation

∑∞
n=0 is

truncated toN .
• Also, recall that we only illuminate limited number

of modes of each circular loudspeaker array. I.e., we
have the following constraint on the loudspeaker modal
coefficientsβ(q)

m (k) = 0 for |m| > Nq. Therefore,

β
(q)
(m+sLq)(k) = 0 for |m + sLq| > Nq.

Thus, the aliasing error given by (34) is non zero for
integer values ofs that satisfies the constraint−Nq−m ≤
sLq ≤ Nq − m. Also note that|m| ≤ N ≈ ⌈keRr/2⌉,
Lq ≥ (2Nq + 1), and Nq ≤ N . It can be shown
that only s = 0 satisfies all these constraints. Thus,
the aliasing error is zero inside the desired reproduction
region for a loudspeaker array design for a particular
frequency. However, the aliasing error is non-zero for
higher frequencies inside the reproduction region. Also,
there is aliasing error outside the desired reproduction
region even at the design frequency. One can quantitively
calculate these errors for various scenarios using (34).
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VII. S IMULATION

A. Design Example

To illustrate the new method, we simulate a third order
system (N = 3) in this paper. According to the truncation
theory N ≈ ⌈keRr/2⌉. Thus, there are three interconnected
variables for the reproduction region; orderN , radiusRr and
wave numberk or frequencyf . Based on reasonable practical
systems we choose the order to beN = 3, and frequency of
operationf = 500 Hz. In which case, the region of interest
is limited to a radius ofRr = 0.11 m. If we consider the
size of a typical human head, such a region of interest seems
reasonable. Higher orders of the reproduced sound field lie
outside the0.11 m radius of the region of interest. In this
paper, we shall focus our attention to this limited region for
accuracy of sound field reproduction. For a larger reproduction
region, we would require a higher order system and/or lower
frequency of operation.

After setting the desired region of reproduction, we need
to carefully select the placement of the circular loudspeaker
arrays based on the mode selection process and underlying
wavefield properties of the Hankel and Legendre functions as
described in Section V. The mode selection method ensures
that each circular loudspeaker array controls coefficientsupto
a certain orderNq.

Geometry: Following the technique provided in Section V,
for this design example, we place the first circular array
on the xy plane to control theeven spherical harmonics
i.e., at elevation angleθ1 = 90o and radiusr1 = 1.8 m.
The loudspeaker aperture in this circle is mode limited to
N1 = N = 3. The next circle is used for controlling the
odd spherical harmonics with mode limit ofN2 = 2 and, is
placed atθ2 = 65o and radial distancer2 = 1.9 m from the
origin. The third circular array controls the even harmonics
of lower orders with a mode limit ofN3 = 1 and is placed
at θ3 = 25o and radial distancer3 = 2 m. The last array is
merely a single loudspeaker to control the mode limitN4 = 0
harmonics and is placed on the z-axis, atθ4 = 0o (above the
listening region) and at a radial distancer4 = 1.8 m. The radii
of the different circles are chosen such that the array can be
fit into a typical room with minimum dimensions of4 m × 4
m × 3 m.

Note that, for a third order system, there are a total of three
circular arrays and a single loudspeaker placed on thez-axis
above thexy plane and have radii approximately comparable
to that of a room, or fit in a cylindrical shape inside a
standard room. Based on the truncation limit of each circle,the
minimum number of loudspeakers on each circle is given by
2Nq+1 = 7, 5, 3, 1. However, we include an extra loudspeaker
at the second and third circles to improve the accuracy of the
reproduced field. Thus, there are a total of18 loudspeakers in
a multiple circular loudspeaker array configuration to control
16 coefficients. The aperture function coefficientsβ

(q)
m (k) for

each circle is as described in Section V. The design infor-
mation is tabulated in Table II together with the illuminated
aperture coefficients for each circle.

q (rq, θq) Mode limit Lq Aperture modesβ(q)
m

Nq = 2Nq + 1
1 1.8m, 90o 3 7 β1

±3, β1
±2, β1

±1, β1
0

2 1.9m, 65o 2 5 β2
±2, β2

±1, β2
0

3 2m, 25o 1 3 β3
±1, β3

0
4 1.8m, 0o 0 1 β4

0

TABLE II: Design formulation for a third order system using
four circles to determine loudspeaker aperture coefficientsβ

(q)
m.

m

m

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(a)

m

m

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(b)

m

m

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(c)

m

m

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(d)

Fig. 4: Real part of the desired and reproduced sound fields
at an operating frequency of 500 Hz: (a) Desired sound field
corresponding to a plane wave arriving from a direction of
(θ, φ) = (90o, 45o), (b) Desired sound field corresponding to
a plane wave arriving from a direction of(θ, φ) = (135o, 60o),
(c) Reproduced sound field corresponding to (a), and (d)
Reproduced sound field corresponding to (b).

B. Example sound field

To demonstrate the designed loudspeaker array, we repro-
duce a plane wave sound field and observe it in the region of
interest. To illustrate, we plot the real part of the reproduced
sound field within a square slice of the region of interest on
the x-y plane. The desired and reproduced fields are shown in
Figure 4, where the encircled region is the region of interest
for a third order system and the plane wave is arriving at a
direction of(θ, φ) = (90o, 45o) and(θ, φ) = (135o, 60o) at an
operating frequency off = 500 Hz. Observe that within the
encircled region, the desired and reproduced fields are similar,
hence showing accurate reproduction. The root squared error
between the desired and the reproduced field of the above
two examples are given in Fig. 5a and Fig. 5b respectively.
A quantitative error analysis over entire spherical regionof
interest is given in the next subsection.
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Fig. 5: Root squared error between the desired and reproduced
sound fields at500 Hz: (a) a plane wave arriving from a
direction of (θ, φ) = (90o, 45o), (b) a plane wave arriving
from a direction of(θ, φ) = (135o, 60o).

C. Mean Square Error over 3D

We define the Mean Square Error (MSE) of the reproduction
over the spherical reproduction region of radiusRr as

MSE =

√√√√
∫ Rr

0

∫ 2π

0

∫ π

0
|SR(rr, θr, φr; k) − SD(rr, θr, φr; k)|2dΩ

∫ Rr

0

∫ 2π

0

∫ π

0
|SD(rr, θr, φr; k)|2dΩ

(35)
where the integration is over all points in the sphere of radius
Rr and dΩ = r2

r sin θrdθrdφrdrr, and SD(rr, θr, φr; k) and
SR(rr, θr, φr; k) are the desired and reproduced sound fields,
respectively.

Since the designed array is non-symmetric unlike a spherical
array, we quantify the performance of the loudspeaker system
for desired sound fields due to plane waves arriving from all
directions in 3D. Figure 6 shows theMSE of the system as
a function of the elevation and azimuth angle of an incoming
plane wave sound field. As before, the desired reproduction
region is a sphere of radiusRr = 11 cm and the frequency
of the plane wave is500 Hz. Observe (from Fig. 6) that
MSE varies for different elevation of the plane wave and
relatively constant over azimuth. This is due to the fact that
the loudspeaker array is non symmetric with elevation and
symmetric in azimuth, or in other terms symmetric with
respect to the z-axis. Theoretically, we have shown in Section
VI-B that there are errors outside the reproduction region due
to aliasing. Figure 7 depictsMSE as a function of the radius
Rr of the reproduction region for different plane wave sound
fields. Upon observing it, we see thatMSE for a spherical
region of radius11cm is quite small, showing that a third
order system does accurate reproduction. However, outsideof
this region, with increasing radius, the error increases ashigher
order harmonics (> 3) are included in the desired field which
are not accounted for in the calculation of aperture coefficients.

D. Aliasing Errors/ Broadband performance

Based on the theory and analysis, for a fixed order system,
upon increasing the frequency, the region of interest for
accurate sound field reproduction reduces. Figure 8 shows the
desired and reproduced fields for a plane wave atf = 2500
Hz arriving from two different angles of(θ, φ) = 90o, 45o

and (θ, φ) = 135o, 60o respectively. The reproduced field is
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Fig. 6: Mean Square Error (MSE) of the reproduce sound field
with a spherical reproduction region of radiusRr = 11 cm as
a function of the elevation and azimuth angle of a incoming
plane wave desired sound field of frequency of500 Hz.
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Fig. 7: Error as a function of radius of spherical region of
interest for a plane wave operating at 500 Hz arriving at
varying elevation angles and fixed azimuthφ = 45o
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Desired Field at f=2500 Hz for plane wave at θ
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Fig. 8: Real part of the desired and reproduced sound fields:
A plane wave arriving at an operating frequency of 2500 Hz
and direction of(θ, φ) = 90o, 45o on the left and(θ, φ) =
135o, 60o on the right respectively. The encircled region is the
truncated region of interest.
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Fig. 9: Error as a function of frequency on a spherical region
of 11 cm for a plane wave arriving over varying elevation
angles and fixed azimuthφ = 45o

accurate in a smaller region but however aliasing errors occur
over larger areas.

Figure 9 depicts the MSE over the 3D spherical region of
radius 11 cm for a plane wave as a function of frequency
arriving at θ = 0o, 45o90o, 135o, 180o and φ = 45o. From
Figure 9, we note that the MSE is low showing accurate
reproduction atf = 500 Hz, which is consistent with the
design and theory.

VIII. C ONCLUSION

Practical implementation of three dimensional sound field
reproduction systems in the literature are difficult due to the
spherical nature of the loudspeaker array configurations. A
practically realizable method of 3 dimensional sound field
reproduction system has been proposed in this paper. The
methodology uses some properties of the associate Legendre
functions to control selected spherical harmonics modes of

the sound field by specific modes of the circular loudspeaker
driving functions. The loudspeaker configuration consistsof
number of circular arrays where the radii can be adjusted to fit
to a given room size without compromising the design. A third
order system using18 loudspeakers has been implemented
and tested for different sound fields. A detailed error analysis
has also given with quantifying aliasing errors and broadband
performance.
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