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This paper studies HRTF sampling and synthesis in a three-dimensional auditory scene based on a
general modal decomposition of the HRTF in all frequency-range-angle domains. The main finding
is the HRTF decomposition with the derived spatial basis function modes can be well approximated
by a finite number, which is defined as the spatial dimensionality of the HRTF. The dimension-
ality determines the minimum number of parameters to represent the HRTF corresponding to all
directions and also the required spatial resolution in HRTF measurement. The general model is
further developed to a continuous HRTF representation, in which, the normalized spatial modes
can achieve HRTF near-field and far-field representations in one formulation. The remaining HRTF
spectral components are compactly represented using Fourier Spherical Bessel (FSB) series, where
the aim is to generate the HRTF with much higher spectral resolution in fewer parameters from
typical measurements which usually have limited spectral resolution constrained by sampling condi-
tions. A low-computation algorithm is developed to obtain the model coefficients from the existing
measurements. The HRTF synthesis using the proposed model is validated by three sets of data,
(i) synthetic HRTFs from the spherical head model, (ii) MIT KEMAR data, and (iii) 45-subject
CIPIC measurements.

PACS numbers: 43.60.Ac, 43.60.Uv, 43.66.Pn

I. INTRODUCTION

A. Motivation and Background

People hear sound in three dimensions and the per-
ception of the spatial aspects of sound has been essential
to people’s lives. Multiple cues are involved for the spa-
tial localization1 including the amplitude and the time
arrival of the sound at each ear and most importantly,
the spectrum of the sound, which is modified by the in-
teraction between the sound wave and a person’s body
(the torso, head, and external pinna shape). The Head-
Related Transfer Function (HRTF)2, an acoustic transfer
function from the sound source to a listener’s eardrums,
contains all the listening cues used by the hearing mech-
anism for decoding spatial information encoded in bin-
aural signals. The HRTF changes with direction from
which sound arrives to the listener; and any sound source
can be realistically located by filtering sound with the
HRTF corresponding to the desired location and present-
ing the resulting binaural signals to the subject using two
playback channels achieved typically by a pair of head-
phones3.

Nowadays in practice, hundreds of measured HRTFs
from all directions surrounding a subject (person or
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dummy head) is fully recorded and have always been
directly applied to study the transformation character-
istics of the external ear and to synthesize virtual reality
over headphones2,4,5. Two major problems with the di-
rect use of measured HRTFs are that firstly it is impos-
sible to simulate every conceivable direction and create
source movement (panning) smoothly through the space
given the HRTF measurements are discrete by necessity,
and secondly there is no standard HRTF spatial sam-
pling theory to make HRTF measurement practical for
commercial applications.

One common approach towards the goal to study the
HRTF is to model the HRTF or HRIR (Head-Related
Impulse Response) by a reduced number of parameters
and to make the processing more effective by operating
in this parametric domain. In the case of discrete data
and sets of measurements corresponding to different hu-
man subjects, many techniques have been proposed for
HRTF modeling. The filter bank models3,6 could achieve
accurate reconstruction of the original HRTF measure-
ments, but the expansion weights in the model are cou-
pled with both angle and frequency variables, which lim-
its the usefulness of the model for HRTF analysis. Sta-
tistical methods have been used to analyze the HRTF
in an effort to reduce the redundancy (correlation) of a
data set. One important study is principal component
analysis (PCA)7,8. However, the facts are that this PCA
representation is not continuous and the basis vectors
may change for each individual. Both filter bank models
and statistical models like PCA only allow the synthesis
of the measured HRTF samples. Interpolation is still re-
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quired9–11 between the discrete measurement positions.
HRTFs have also been represented as a weighted sum

of spherical harmonics in three dimensions12, and as a
series of multipoles based on the reciprocity principle13.
The spherical harmonics, a complete orthogonal basis
functions on 2-D sphere, provide a natural continuous
representation in the angular domain. Therefore, it leads
to a straightforward solution to the problem of HRTF in-
terpolation in elevation and azimuth. In both models, the
expansion weights are functions of frequency; analyzing
these components can provide a new means to study the
scattering behavior of the human body.

B. Contributions and Organization

In the previous work14, we studied horizontal plane
HRTF representation. Here we extended our work to
three dimensional auditory scene. Three main contribu-
tions of this paper are summarized below.

In Section II, we use the acoustic reciprocity principle
and modal expansion of the wave equation solution to
develop a general HRTF representation in all frequency-
range-angle domains. We show that the HRTF decom-
position with the derived spatial basis function modes
can be truncated to a finite number and still with rel-
ative high accuracy. This means the HRTF is essen-
tially a mode-limited function; a finite number of spatial
modes (we named as the dimensionality) can represent
the HRTF corresponding to all directions. The value of
dimensionality also determines the required spatial reso-
lution in HRTF measurement.

In Section III, we further develop the general HRTF
model to a continuous representation. We apply nor-
malized spatial modes to achieve near-field and far-field
HRTF representations in one formulation, which pro-
vides a way to obtain the range dependence of the HRTF
from measurements conducted at only a single range. We
study the radially invariant HRTF spectral components
and find the HRTF spectrum has an underlying pattern
similar to the spherical Bessel functions. We use an or-
thogonal property of the Bessel functions to form fre-
quency basis functions, Fourier Spherical Bessel (FSB)
series, to model the HRTF spectral components. Besides
achieving much higher spectral resolution, this series rep-
resentation can has far few parameters compared to the
measurements for a more efficient HRTF representation.

The practical model implementation issues are dis-
cussed in Section IV. A low-computation algorithm is
proposed to calculate the modal coefficients from dis-
crete measurements. The proposed method separates
the HRTF azimuth and elevation sampling effects, from
which we have the following observations, i) the HRTF
measurements that are coarsely sampled in elevation can
still be reconstructed with reasonable accuracy and ii)
as for the azimuth, we need finer azimuthal sampling on
the elevations closer to the equator but less azimuthal
sampling points closer to the pole.

Section V validates the developed HRTF sampling the-
ory and the proposed HRTF continuous representation
by decomposing the experimentally measured15,16 (or an-

FIG. 1. Geometry of HRTF measurement based on the reci-
procity principle.

alytically simulated17) HRTFs on a single sphere and
synthesizing HRTFs at any frequency for an arbitrary
spatial location to check both reconstruction and inter-
polation performances.

II. MODAL ANALYSIS OF HRTF

HRTFs are usually obtained by emitting a signal from
a loudspeaker at different positions in space and record-
ing it at a microphone in the listener’s ear. At the physi-
cal level, the HRTF is characterized by the classical wave
equation subject to boundary conditions. The general
solution to the wave equation can be obtained by separa-
tion of variables (frequency, range, azimuth and elevation
angles). Thus, in principle, we can use the wave equa-
tion solution to expand the HRTF with separable basis
functions.

A. Theoretical Development

When sound propagates from the source to the listener,
the received sound at the listener’s ear is transformed by
the structure and shape of the listener’s body. We seek
a representation of the sound pressure at the listener’s
ear (left or right), where two sources should be taken
into account: one is the original acoustic source from the
speaker and the other is the secondary source due to the
scattering of human body. It is a complicated problem to
apply the wave equation in this configuration because the
receiver, the listener’s ear, is within the scatterer region
of human body. The principle of reciprocity18 can be
used to remove this difficulty and to develop a general
representation of the HRTF13.

To apply the principle of reciprocity to the HRTF anal-
ysis, we assume that the original acoustic source is lo-
cated at the listener’s ear and microphones are some dis-
tance away (Fig. 1). Here, we consider all the scattering
sources of human body as the secondary level sources
with the original sources at the listener’s ear together
constituting the source field. From Huygens’ principle19,
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the sum of the waves from all the sources (including both
original and secondary sources) to any point beyond the
scatterers (the human body) can be calculated by inte-
gration or numerical modeling. To exactly model the
effect of the source field, we develop an equivalent source
field on a sphere of radius s with origin at the head cen-
ter as shown in Fig. 1, where the sphere should be large
enough to enclose all the sources. Note that the reason
we choose the sphere to include all the sources is because
we can use a specific set of orthogonal series, spherical
harmonics, to represent the source field; for example, we
write the equivalent source field as a function of angular
position and wavenumber, i.e.,

ρ(x̂s, k) =
∞∑

n=0

n∑
m=−n

αm
n (k)Y m

n (x̂s), (1)

where x̂s is a unit vector (or a set of 2D angles, elevation
and azimuth {θs, φs}) pointing into the equivalent source
direction and xs ≡ s·x̂s defines the equivalent source po-
sition. The wavenumber is defined as k = 2πf/c, where
f is frequency and c is the speed of sound propagation.
Y m

n (x̂s) are the spherical harmonics characterized by two
indices, degree n and order m,

Y m
n (x̂s) ,

√
2n + 1

4π

(n− |m|)!
(n + |m|)!P

|m|
n (cos θs)eimφs . (2)

αm
n (k) are the spherical harmonic coefficients of the

equivalent source field at wavenumber k and obtained
from

αm
n (k) =

∫

S2
ρ(x̂s, k)Y m

n (x̂s)d%(x̂s) (3)

on the 2-sphere S2, where (·) stands for the complex con-
jugate and

∫
S2 d%(x̂s) =

∫ 2π

0

∫ π

0
sin θsdθsdφs. We can

see that the αm
n (k) carry information about the origi-

nal source and also the human body scattering behavior.
Then the received signal at y ≡ r · ŷ (the HRTF corre-
sponding to that position) can be written in terms of the
equivalent source field as

Ĥ(y, k) =
∫

S2
ρ(x̂s, k)

eik‖xs−y‖

4π‖xs − y‖d%(x̂s), r > s, (4)

where r is the distance between the head center (origin,
or source center) and the receiver position and ŷ is the
direction of the receiver. The integral is over the sphere
to account for all sources. Using the Jacobi-Anger ex-
pansion19, we have

eik‖xs−y‖

4π‖xs − y‖ =

ik

∞∑
n=0

n∑
m=−n

jn(ks)h(1)
n (kr)Y m

n (x̂s)Y m
n (ŷ), r > s, (5)

where jn(·) is the spherical Bessel function and h
(1)
n (·)

is the spherical Hankel function of the first kind. By
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FIG. 2. Dependence of the spherical Bessel function jn(ks) vs
degree n at different ks shown on the vertically shifted curves.

substituting (5) into (4), we can expand the HRTF at
position y as

Ĥ(r, ŷ, k) =
∞∑

n=0

n∑
m=−n

β̂m
n (k)h(1)

n (kr)Y m
n (ŷ), (6)

where

β̂m
n (k) = 4πik αm

n (k)jn(ks). (7)

In (6), the HRTF dependence on each variable (fre-
quency, range, and 2D angle) is represented by separable
basis functions. The spatial modes, i.e.,

h(1)
n (kr)Y m

n (ŷ) (8)

account for the HRTF spatial variations and β̂m
n (k) are

the modal decomposed HRTF spectral components.

B. Dimensionality of HRTF as a Mode-limited Function

In this section, we show that the HRTF decomposition
in (6) can be well approximated by choosing a sufficiently
large truncation order N , viz.,

Ĥ(r, ŷ, k) ∼=
N∑

n=0

n∑
m=−n

β̂m
n (k)h(1)

n (kr)Y m
n (ŷ), (9)

which indicates that the HRTF is essentially a mode-
limited function20. The required number (N + 1)2 of
spatial modes (8) to represent the HRTF spatial varia-
tions should be determined by a typical size of human
head/torso and by bounds on the spherical Bessel func-
tion jn(ks) which decides the upper limit of β̂m

n (k) in (6)
(because firstly, both the source field coefficients αm

n (k)
and the spherical harmonics Y m

n (·) are bounded func-
tions; secondly, the spherical Hankel function h

(1)
n (kr)

has a weaker impact than the same order of the spheri-
cal Bessel function jn(ks)21.). We define this number of
spatial modes as the spatial dimensionality of the HRTF.
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Fig. 2 illustrates typical dependence of the spherical
Bessel function on the degree n for various values of ks.
It is clearly seen that there are two distinct regions sep-
arated by value22,23

N = deks/2e. (10)

For n < deks/2e, the spherical Bessel functions oscillate
and there is no decay in the amplitude for growing n.
However, when n ≥ deks/2e the functions monotonically
decay to zero with growing n, and the decay is very fast.
Therefore, we only need to include all spatial modes lower
than the order of N = deks/2e for HRTF spatial repre-
sentation. This yields the spatial dimensionality of the
HRTF, or the required number of weights {β̂m

n (k)} that
can represent HRTFs corresponding to all directions, i.e.,

DIM(H) = (N + 1)2 = (deks/2e+ 1)2. (11)

In order to obtain the required number of weights, (11)
also defines the least number of the HRTF samples in the
space. The dimensionality depends on the wavenumber
k and the radius of the equivalent source field s; and we
have the following comments:

(1) The dimensionality increases with wavenum-
ber/frequency. This is because for a fixed size
region of sphere, the low frequency HRTF requires
fewer spatial modes since the waves are spatially
varying more slowly; for increasing frequency, we
need more spatial modes as the smaller wavelength
indicates faster changes in the space.

(2) The value of s relates to the typical size of human
head/torso. For example, for the spherical head,
the value of s is simply the radius of the head (0.09
m). While for the KEMAR or human subjects, we
need to enlarge the radius of the equivalent source
field to include the main torso effect, i.e., the shoul-
der reflection. However, the torso only contributes
to the HRTF at frequencies below 3 kHz. For fre-
quencies above 3 kHz, it is the pinna effect that
allows the perception of elevation effects24,25. So
we propose to set two separate values of the equiv-
alent source field radius for two ranges of frequency,
that is,

s =

{
0.20 m for f ≤ 3 kHz
0.09 m for f > 3 kHz.

(12)

(3) Fig. 3 plots the calculated truncation order N re-
quired for the HRTF representation (9) as a func-
tion of frequency (note an interpolation function on
the truncation order derived from the two equiva-
lent source field radii is applied; the value of N
in the frequency range of [3, 6] kHz is decided by
the maximum value at f = 3 kHz after which the
source field radius reduces to 0.09 m). In the case
for a given frequency range, such as the audible
frequency range (200 Hz to 20 kHz), the maximum
number of the discrete frequency points included
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FIG. 3. Calculated the required truncation order N for the
HRTF representation as a function of frequency.

in the frequency range determines the least num-
ber of measurements. For example, 20 kHz band-
width has the highest truncation order N = 46 and
requires at least 2209 HRTF measurements in the
space.

III. HRTF CONTINUOUS REPRESENTATION

In this section, we further develop the general repre-
sentation (9) into a continuous HRTF model which can
i) link near-field and far-field HRTFs directly, and ii)
parameterize the spectral components by a set of basis
functions.

A. Normalized Modes for HRTF Spatial Representation

The spatial modes in (6) cannot directly represent far-
field HRTFs because the radial term tends to zero, viz.,

h(1)
n (kr) ∼ (−i)(n+1) e

ikr

kr
→ 0, as r →∞. (13)

It is desirable to normalize the spherical Hankel function,
i.e.,

Rn(kr) , i(n+1)kre−ikrh(1)
n (kr), (14)

so that we can achieve both near-field HRTF and far-field
HRTF representations in one formulation. As demon-
strated later in this section, we will show that this def-
inition is consistent with the analytical spherical head
HRTF model.

Referring to (9), the modified HRTF representation
with the normalization is then

H(r, ŷ, k) =
N∑

n=0

n∑
m=−n

βm
n (k)Rn(kr)Y m

n (ŷ), (15)
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noting that limr→∞Rn(kr) = 1, ∀n, when r → ∞, we
have the normalized far-field representation

H(ŷ, k) =
N∑

n=0

n∑
m=−n

βm
n (k)Y m

n (ŷ). (16)

Equations (15) and (16) show that the HRTF spectral
components βm

n (k) are radially invariant and can be ob-
tained from the spherical harmonic transform of the mea-
surements at a single radius, i.e.,

βm
n (k) =





1
Rn(kr)

∫

S2
H(r, ŷ, k)Y m

n (ŷ)d%(ŷ), near-field
∫

S2
H(ŷ, k)Y m

n (ŷ)d%(ŷ), far-field

(17)
and later used for HRTF reconstruction at any spatial
point. In addition, from (7), we have

βm
n (k) =

β̂m
n (k)

i(n+1)kre−ikr
=

4παm
n (k)jn(ks)
inre−ikr

. (18)

Example of Spherical Head Model
We use the spherical head model17 as an example

to solve the HRTF spectral components, in which the
HRTFs are represented as

ϕH(r,Θ, k) =
−r

ka2
e−ikr

∞∑
n=0

(2n + 1)Pn(cosΘ) h(1)
n (kr)

h
′(1)
n (ka)

,

r > a, (19)

where a is the spherical head radius, Θ is the angle of
incidence (the angle between the ray from the center of
the sphere to the source, ŷ, and the ray to the measure-
ment point on the surface of the sphere, ϑ̂ear), Pn(·) is
the Legendre function of degree n and h

(1)
n (·), h′(1)n (·) are

the spherical Hankel function of the first kind and its
derivative. Applying the addition theorem19, we have

Pn(cosΘ) =
4π

2n + 1

n∑
m=−n

Y m
n (ŷ)Y m

n (ϑ̂ear). (20)

Then we can expand the spherical head model HRTF
with the normalized modes, where the spectral compo-
nents are

βm
n (k) =

4πY m
n (ϑ̂ear)
in

(
jn(ka)− j

′
n(ka)

h
(1)
n (ka)

h
′(1)
n (ka)

)
. (21)

B. Fourier Spherical Bessel Series for HRTF Spectral
Representation

The goal of seeking an efficient continuous HRTF spec-
tral representation is to determine the spectrum of the
HRTF with higher spectral resolution and fewer parame-
ters from a finite number of measurements, which usually
have limited spectral resolution constrained by the sam-
pling rate and number of samples (or the record time).

The βm
n (k) exhibit an underlying pattern similar to the

spherical bessel functions (implicitly shown in (18))26.
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FIG. 4. Examples to demonstrate the structural similarities
between the HRTF spectral components βm

n (k) and the spher-
ical Bessel functions of the first kind. Top plots and mid-
dle plots are the real and imaginary parts of βm

n (k) with (a)
n = 0, m = 0 and (b) n = 12, m = 0; and the bottom plots
are the spherical Bessel functions jn(·) at the corresponding
degree n = 0 and n = 12 against arguments from 0 to 30.

FIG. 5. Magnitude of the HRTF spectral components over
spatial modes and wavenumber for the spherical head case.
The spatial mode of degree n and order m corresponds to
number of n2 + n + m + 1 on x-axis.

An example is the spectral components of the spherical
head HRTF, (21), in which the first component repre-
sents the incident wavefield and the second term is the
scattered field. Both terms show the similar structures
to the spherical Bessel functions; so we can observe the
strong correlation between the HRTF spectral compo-
nents and spherical Bessel functions in Fig. 4.

Fig. 5 shows the energy spread of the HRTF spectrum
over the spatial modes (n,m) and wavenumber k, which
has a significant triangular null region and has been de-
scribed as the butterfly shape of the HRTF spectrum14,27

for the horizontal plane HRTF. The explanation for this
special shape of the spectrum is because the HRTF di-
mensionality increases linearly with frequency as shown
in Section II.B. At low frequencies, only low order spatial
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modes are signification and the high spatial modes have
very small contributions; at higher frequencies, the higher
order spatial modes become significant. Therefore, most
of βm

n (k) energy is present in a triangular shaped region
and outside this region, the energy is greatly reduced.

In Fig. 4, the resemblance between the patterns of
βm

n (k) and the spherical Bessel functions of the same de-
gree indicates that the HRTF spectrum can be compactly
represented by the spherical Bessel functions. Here, we
apply the Fourier Spherical Bessel (FSB) series for the
representation of the HRTF spectral components. The
FSB series28 (derived from the Fourier Bessel series used
for the horizontal plane HRTF spectral representation14)
are orthogonal basis functions on the interval (0, 1)

∫ 1

0

x2jn

(
xZ

(n)
`

)
jn

(
xZ

(n)
h

)
dx =

1
2
δ`,h

(
jn+1(Z

(n)
` )

)2

,

(22)
where Z

(n)
` and Z

(n)
h are the positive roots of the jn(·)

and δ`,h is the Dirac delta function. The derived HRTF
spectral components representation is

βm
n (k) =

∞∑

`=1

Am
n;` jn

( Z
(n)
`

kmax
k
)
, (23)

where from (22)

Am
n;` =

2

k3
maxj

2
n+1

(
Z

(n)
`

)
∫ kmax

0

k2βm
n (k) jn

( Z
(n)
`

kmax
k
)
dk.

(24)
kmax is the maximum wave number of an HRTF data set
being modeled. In (23), the HRTF spectral components
are decomposed as a linear combination of FSB series.
Given the FSB series expansion is convergent, (23) can
be truncated as

βm
n (k) ∼=

L∑

`=1

Am
n;` jn

( Z
(n)
`

kmax
k
)
, (25)

where by choosing L sufficiently large the contribution
of the neglected higher order FSB terms can be made
sufficiently small. Section IV gives a practical way to
determine L.

Besides compact representation, the continuous FSB
series can achieve HRTF spectral reconstruction at any
frequency value (not necessity of measured frequencies)
and therefore provide a way for generating HRTFs at
higher spectral resolutions than the measurements.

C. Proposed continuous HRTF model

In summary, the above development leads to the HRTF
functional model written as

H(r, ŷ, k) =
N∑

n=0

n∑
m=−n

L∑

`=1

Am
n;` jn

( Z
(n)
`

kmax
k
)
Rn (kr)Y m

n (ŷ),

(26)
which can transform any HRTF data set to a set of co-
efficients {Am

n;`} of cardinality (N + 1)2×L. This HRTF
representation exhibits three significant advantages:

• Firstly, the representation has well studied closed
form orthogonal basis functions, which can make
the HRTF approximation easily implemented and
model parameters Am

n;` simply computed using (17)
and (24). A low-computation algorithm is devel-
oped in Section IV given finite discrete measured
HRTFs.

• Secondly, using continuous basis functions, the pro-
posed model is powerful for the computation of the
HRTF at any frequency point for an arbitrary di-
rection from a given set of measurements at a fixed
radius.

• Thirdly, the basis functions are independent of the
data. As the basis is same for all subjects, the
model coefficients Am

n;` carry all information about
the individuality. Thus, the model has capability
to represent the individualized HRTF by assigning
a subject specific set of parameters to the model.

IV. IMPLEMENTATION ANALYSIS

In this section, we investigate the modal decomposi-
tion of the discrete measured HRTFs using the proposed
functional model (26). A practical method to solve the
integral equations (17) and (24) given the typical HRTF
measurement setup is introduced in the following.

A. Typical HRTF Measurement Setup

Typically HRTFs are measured from humans or man-
nequins for both left and right ears at a fixed radius from
the head center. Thus, the source location is specified by
a 2D angle, elevation θ and azimuth φ (denoted as a unit
vector ŷ in our previous analysis). The elevation an-
gle θ from top to bottom is defined as changing from 0◦
to 180◦; and the azimuth φ is counterclockwise rotating
from 0◦ to 360◦, where 0◦ and 180◦ are the direct front
and back directions and 90◦ and 270◦ are defined as the
left and right sides (note this definition is in accordance
with the right hand coordinate system and may be dif-
ferent from others).

It is commonly believed that the HRTF should be sam-
pled uniformly on the sphere; however, arranging points
evenly on the sphere is a complicated mathematical prob-
lem. Two most used strategies for HRTF measurement
are equidistance in the azimuth arc15 and equiangular16.
In the former one, the sampling points are distributed
equally in the azimuth arc at all elevations, resulting in
a decline of azimuth resolution towards the pole of the
sphere. While the latter one applies the equal angular
interval along both elevation and azimuth and samples
the sphere with very high spatial resolution. These two
sampling arrangements are compared in Section V using
the proposed modal decomposition method, which helps
us thoroughly investigate the azimuth and the elevation
sampling effects.
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B. Practical Modal Decomposition Method

The proposed modal decomposition method is a two-
step procedure corresponding to approximating the two
integral equations (17) and (24) given the discrete mea-
sured HRTFs.

1. Estimating the HRTF Spectral Components

The HRTF spectral components are obtained from the
spherical harmonic transform of the measurements on a
single sphere as shown in (17). We rewrite the spherical
harmonic transform in elevation and azimuth, given ŷ =
{θ, φ}, as

βm
n (k) =

∫ π

−π

∫ π

0

H(θ, φ, k)Y m
n (θ, φ) sin θdθdφ. (27)

Note here we only consider extracting βm
n (k) from far-

field HRTFs; same procedure can be applied to near-
field measurements with an additional step of dividing
the normalized spherical Hankel function.

Let H(θq, φv, k) be the HRTFs measured at several
elevations θq, q = 1, . . . , Q, and several different/same
azimuths φv, v = 1, · · · , Vq, at each elevation. We write
the far-field measured HRTFs decomposition with the
spherical harmonics (16) as

H(θq, φv, k) =
N∑

n=0

n∑
m=−n

βm
n (k)Y m

n (θp, φv), (28)

where the spherical harmonics Y m
n (·) are defined in terms

of the associated Legendre function P
|m|
n (·) and the ex-

ponential function as shown in (2). We use (2) to express
(28) in terms of the normalized Legendre function P |m|n (·)
and the normalized exponential function Em(·) as

H(θq, φv, k) =
N∑

n=0

n∑
m=−n

βm
n (k)P |m|n (cos θ)Em(φ), (29)

where Em(φ) , (1/
√

2π)eimφ and

P |m|n (cos θ) ,
√

2n + 1
2

(n− |m|)!
(n + |m|)!P

|m|
n (cos θ). (30)

Azimuth Harmonics: At each elevation with the
use of the orthogonality of the exponential functions over
circle, we multiply (29) by E−m(φ) and integrate it with
respect to φ over [0, 2π) to get the azimuth harmonics

am(θq, k) =
N∑

n=|m|
βm

n (k)P |m|n (cos θ); (31)

while given Vq azimuth samplings at each elevation θq,
we have

am(θq, k) ≈ ∆φv

Vq∑
v=1

H(θq, φv, k)E−m(φv),

|m| 6 b(Vq − 1)/2c, (32)

where ∆φv is the azimuth sampling interval in radians.
The azimuthal HRTFs of Vq samples contains at most
Vq expansion components, which means we can estimate
am(θq, k) for |m| 6 b(Vq−1)/2c. However, if the sampling
is non-uniform, we should emphasize the approximation
(32) is determined by the maximum sampling interval;
only the coefficients of |m| 6 b( 2π

∆φmax
v

− 1)/2c can be
accurately solved.

Least-Squares Fitting: By writing (31) for a specific
order of m for all measured elevations, we can now form
a system of simultaneous equations given by

PmBm = am, m = −N, . . . , N (33)

where the matrix Pm and the vector Bm are in the fol-
lowing forms

Pm =



P |m||m| (cos θ1) · · · P |m|N (cos θ1)

...
. . .

...
P |m||m| (cos θQ) · · · P |m|N (cos θQ)


 , (34)

Bm = [βm
|m|(k), βm

|m|+1(k), . . . , βm
N (k)]T , (35)

and

am = [am(θ1, k), am(θ2, k), . . . , am(θQ, k))]T . (36)

The HRTF spectral components βm
n (k) can be cal-

culated by solving these linear equations described by
(33) for each order m. Since there will be noise in the
HRTF measurement, it is necessary to solve (33) in the
least-squares sense by minimizing the mean squared error
‖PmBm − am‖2. Another issue in the HRTF measure-
ment is that no samplings are made for lower elevations
(i.e., θ ≥ 140◦) because of the strong distortions from
the ground and measurement apparatus. To avoid the
enlargement of the unmeasured HRTFs, we need to reg-
ularize the solution (the power in the ‖Bm‖2 may be in-
cluded as a constraint). The minimum norm least squares
solution is denoted by

B+
m = P+

mam, (37)

where P+
m is the general inverse of Pm

29. Given the
size of Pm is Q × (N − |m| + 1), there are two cases of
interest and the Tikhonov regularized solutions are given
explicitly by

P+
m = [PT

mPm + λI]−1PT
m, Q ≥ (N − |m|+ 1) (38)

P+
m = PT

m[PmPT
m + λI]−1, Q < (N − |m|+ 1), (39)

where λ is the regularization control parameter and I is
the identity matrix. A systematic approach to evaluate
λ for a meaningful result is given in the work30. In our
experiment, we set a small value of λ = 10−5, which was
seen to achieve reasonable reconstruction and interpola-
tion quality.

Insights into Spatial Sampling: The main contri-
bution of this low computation algorithm is based on
factorization of the spherical harmonics, which helps to
separate the azimuth and the elevation sampling effects.
We have the following comments regarding on the HRTF
spatial sampling,
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(1) In theory, it is necessary to set (33) as an over deter-
mined system, i.e. the number of elevation samples
should be greater than (N + 1), so that the least-
squares solutions are valid. However, with the use
of the regularization technique, we can loosen this
condition. Our experiment results show the HRTF
measurements that are coarsely sampled in eleva-
tion (given the total number of samples greater
than the dimensionality) can still be reconstructed
with reasonable accuracy.

(2) For smaller elevations (θ towards the pole), the asso-
ciated Legendre functions P

|m|
n (cos θ) have values

close to zero for higher m, i.e., P
|m|
n (cos 0) = 0,

for m 6= 031. This means as elevation increases
from the pole towards the equator, higher order
m of coefficients begin to appear. Thus, in prin-
ciple, we need less dense azimuth sampling closer
to the pole and more azimuth sampling points on
the elevations closer to the equator. This shows
the sampling of equidistance in the azimuth arc is
appropriate for the HRTF measurement, which we
will further corroborate using the real data valida-
tion.

2. Calculating the Modal Coefficients

From the estimated HRTF spectral components
βm

n (k), the modal coefficients Am
n;` is obtained by using

the left Riemann sum to approximate the integral (24).
The most important issue is to determine the truncation
order L. We define the relative power of the `th order
FSB series term against the total power as

η` =
|Am

n;`|2∑∞
`=1 |Am

n;`|2
, ` = 1, 2, . . . (40)

In (40), the denominator is an infinite sum over modal
coefficients. Since only HRTFs at discrete frequencies are
obtained by measurements, we evaluate the contribution
of the FSB series over the maximum order Lf (the num-
ber of HRTF frequency samples), the relative power ratio
is defined as

η =

∑L
`=1 |Am

n;`|2∑Lf

`=1 |Am
n;`|2

. (41)

Then for each HRTF spectral component βm
n (k), calcu-

late η for L = 1, 2, . . . , Lf and when η reaches a power
criteria (such as 0.9), L is chosen as the truncation order
above which the contribution of higher-order FSB series
is negligible.

V. SIMULATION RESULTS

A. HRTF Database

Three sets of HRTF database are used.

TABLE I. MIT KEMAR data measurement steps (angles in
degrees)

Elevation Azimuth Resolution Number of

(θ) (φ) Azimuthal Measurements

70 to 110 5.00 72

60 and 120 6.00 60

50 and 130 6.43 56

40 8.00 45

30 10.00 36

20 15.00 24

10 30.00 12

0 – 1

(1) Analytically simulated HRTF from the spherical
head model17.

The HRTF for an ideal rigid sphere is defined as the
pressure on the sphere at the defined ear position divide
by the pressure that would exist at the sphere center
in the absence of the sphere. The synthetic data are
without noise influence and provide reliable reference to
check the proposed sampling theory and the continuous
model performance.

(2) The HRTF database for KEMAR from the MIT
media laboratory15.

KEMAR (Knowles Electronics Mannequin for Acous-
tics Research) is designed according to the mean anatom-
ical size of the population; thus results from KEMAR
HRTF represent the mean performance. The measure-
ments are the head related impulse responses in the time
domain at 44.1 kHz sampling rate and each response is
512 samples long, from which a 512-tap HRTF can be
obtained by the discrete-time Fourier transform. The
speakers were at a distance of 1.4 m away from the
head center. The HRIR (or HRTF) were sampled in
the equidistance in the azimuth arc, where the measure-
ments are available for elevation steps of 10◦ ranging from
0◦ (north pole) to 130◦ (40◦ underneath the horizontal
plane) and for full azimuth cover but have a decline of
azimuthal resolution towards the pole as shown in Ta-
ble I.

(3) HRTF database of human subjects from CIPIC in-
terface laboratory16.

The HRIR measurements performed at CIPIC include
45 subjects. A 200 samples long pseudo-random signal
generated by the Snapsshot system (sampling frequency
is 44.1 kHz) is used as the test signal. For each subject,
the HRTFs are measured at 1250 points on the sphere
of 1 m away from the listener. The elevation varies uni-
formly from 0◦ to 135◦ in the step of 5.625◦; and there are
50 azimuth samples at each elevation but not uniformly
sampled, i.e., φ = [0 : 5 : 45, 55, 65, 80, 100, 115, 125, 135 :
5 : 225, 235, 245, 260, 280, 295, 305, 315 : 5 : 355]◦. The
samplings are more dense near the median plane but very
coarse near the ear where the azimuth varies in the step
of 20◦.
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FIG. 6. Synthetic HRTF reconstruction error performance
for the audible frequency range of [0.2, 20] kHz.

B. Results for Dimensionality and Analysis

Simulations are run on some audible frequency range
for each HRTF database, where the total number of spa-
tial samples determines the maximum frequency point
that can be reconstructed with high accuracy. The rel-
ative mean square error (MSE) over all M angles (in-
cluding both azimuth and elevation) at each frequency is
used as the error metric

ε(f) =

∑M
j=1 |H(f, ŷj)− H̃(f, ŷj)|2∑M

j=1 |H(f, ŷj)|2
, (42)

where H(f, ŷj) and H̃(f, ŷj) are the original and the re-
constructed HRTFs, respectively.

Fig. 6 plots the synthetic HRTF reconstruction perfor-
mance for the whole audible frequency range up to 20
kHz. The analytically simulated HRTFs are generated
at 1.0 m away from the head center on a sphere accord-
ing to the equidistance in the azimuth arc sampling (2640
samples) and the equiangular sampling (4371 samples);
both satisfy the required dimensionality (2209 samples)
for reconstruction up to 20 kHz. We can see the max-
imum reconstruction error is at the highest frequency.
This shows more than dimensionality large number of
measurements can fit the low frequency data very well.
Both equiangular and equidistance sampling have very
small reconstruction errors; but the equiangular method
needs much more samples and its biggest failure is the
sampling points near the pole are dense, small, and can
be very distorted when measurements in this region are
contaminated by noise.

We next investigate the dimensionality results of the
HRTF measurements on KEMAR mannequin and hu-
man subjects. Fig. 7 shows both data sets reconstruction
errors are larger than that of the theoretical model due
to the possibility of noise contamination at some mea-
surements. This is especially more likely to occur for
human subjects where the movement of the subject in
the measurements can lead to inconsistency in the mea-
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FIG. 7. HRTF measurements reconstruction error perfor-
mances. (a) MIT KEMAR mannequin measurements of fre-
quency range [0.2, 12] kHz. (b) HRTFs of CIPIC subject 3 of
frequency range [0.2, 8] kHz.

sured response. Thus, we can see that the reconstruction
of KEMAR HRTFs is more accurate than that of the hu-
man subjects data. In addition, both data sets have very
similar error pattern.

As introduced in Section V.A, the MIT KEMAR mea-
surements are equidistance sampled which has 72 az-
imuth samples on the horizontal plane and less azimuth
samplings for the elevations towards the pole. In to-
tal there are 710 spatial samples on the sphere, which
means we can solve the spatial modes decomposition up
to N = 25 corresponding to the frequency about 12 kHz
according to (11). In Fig. 7(a), the MIT data reconstruc-
tion shows a reasonable match to the original data in the
frequency range of [0.2, 12] kH with maximum error less
than −40 dB.

The CIPIC data has finer elevation samplings but is
not uniformly sampled in azimuth. Even though the
CIPIC measurements are sampled at a much higher spa-
tial resolution (1250 samples on sphere), it has even
larger errors (Fig. 7(b)) compared to MIT measurements.
This is due to the possible large measurement variations
and the coarse azimuthal sampling (50 not uniformly az-
imuths at each elevation). Very large azimuthal interval
of 20◦ at both ear sides determines the modal coefficients
can only be solved accurately for low order N . This is
corroborated in Fig. 7(b), where the CIPIC data recon-
struction errors are less than −17 dB for f ≤ 4 kHz and
increase to large values for higher frequencies.

In summary, the simulation results prove that the pro-
posed dimensionality (11) determines the required num-
ber of spatial samples in the HRTF measurement. Only
when the number of measurements are larger than the
required dimensionality for a given frequency range (or
a particular frequency point), reasonable reconstruction
with high accuracy can be achieved. As for the HRTF
measurement, equidistance in the azimuth arc is appro-
priate; with the use of the regularization technique, the
spatial sampling for elevations can be coarse while the
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FIG. 8. The relative power distribution of the FSB series
components for the HRTF spectral representation. (a) An-
alytically simulated HRTFs from the spherical head model;
(b) MIT KEMAR mannequin left ear HRTFs. For all spatial
modes, the relative contribution of lower order FSB series is
significant.

sampling along the azimuth should be finer (especially
for the measurements close to the equator).

C. Continuous Model Performance

1. HRTF Reconstruction Results

Fig. 8 shows how the relative power distribution of each
FSB series coefficient varies with the spatial modes. We
can clearly see that for all spatial modes, the relative con-
tribution of lower order FSB series is significant, which
corresponds to the smooth HRTF spectral variations. It
also proves using the relative power ratio as the criteria to
choose the truncation order of the FSB series expansion
is appropriate. We suggest the truncation order of the
FSB series expansion based on the power criteria of 0.9.
Table II summarizes the number of FSB series and the
number of spatial modes (i.e., the dimensionality results
given in Section V.B) for the three sets of HRTF database
representation for a given frequency range. Note that we
only validate the CIPIC data at low frequencies here be-
cause its spectral components are accurately solved up to
4 kHz as stated in Section V.B. It can be seen that the
number of FSB series for the HRTF spectral represen-
tation increases with frequency; in addition, the human
subjects HRTF needs more basis functions to emulate.

Fig. 9 plots the original and reconstructed HRTF mag-
nitude and phase for synthetic HRTF (θ = 90◦, φ = 80◦)
and KEMAR left ear measurements (θ = 60◦, φ = 0◦).
The reconstruction errors for both data sets are shown
in Table II. It is clear that the reconstructed responses
closely match the synthetic and the KEMAR responses
in both cases. We also use CIPIC subject measurements
to check the model performance. The emulation error of
subjects HRTF tends to be a larger value (average MSE
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FIG. 9. Examples of analytical simulated and measured
HRTFs reconstruction using the proposed continuous model.
(a) Analytical simulated HRTFs at elevation 90◦ and azimuth
of 80◦ (-85.3 dB error) and (b) Left ear MIT KEMAR data
at elevation 60◦ and azimuth of 0◦ (-41.5 dB error). Original:
dotted line (·), Reconstruction: solid line (−).

TABLE II. Summary of the number of spatial modes and the
number of FSB series for the three sets of HRTF database.

Given Number of Number of Average

Freq. Range spatial modes FSB series MSE

Synthetic [0.2, 20] kHz 472 = 2209 85 -78.7 dB

HRTF

KEMAR [0.2, 12] kHz 262 = 676 67 -28.6dB

HRTF

Subject [0.2, 4] kHz 162 = 256 16 -8.6 dB

HRTF

around −8.6 dB), which demonstrates that human sub-
jects are harder to model than the spherical head and the
KEMAR mannequin.

2. HRTF Interpolation and Range Extrapolation

We further investigate the HRTF interpolation and
range extrapolation performances using the proposed
continuous model. The MIT KEMAR data are measured
at the sampling frequency of 44.1 kHz with 512 samples
for each measurement. Fig. 10 plot the polar response
magnitudes for data at 8 kHz, where the synthesized po-
lar responses (generated at a much higher spatial reso-
lution of ∆θ = 5◦ and ∆φ = 5◦ at each elevation) are
smooth forms of the original data and the match is rea-
sonably accurate. In addition, the polar response at not
measured frequency (f = 4.15 kHz) is interpolated by
applying the decomposed modal coefficients to the con-
tinuous HRTF model as shown in Fig. 11. We can see
that the proposed continuous FSB series can achieve rea-
sonable HRTF spectrum interpolation.

In Fig. 12, the plots on the left are the magnitudes of
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FIG. 11. MIT left ear HRTF polar response at 4.15 kHz,
which is not measured but interpolated by applying the modal
decomposed coefficients to the continuous spectral modeling
basis functions, FBS series.

the analytical HRTFs at different ranges on the horizon-
tal plane, compared to the range extrapolation results
from the proposed model on the right. We observe the
reconstruction is perfect with average approximation er-
ror around 0.52% (-45 dB).

3. Discussion

We summarize the performance of the proposed con-
tinuous model in the following three aspects. Firstly,
the proposed continuous functional HRTF model pro-
vides accurate reconstruction to the experimental mea-
surements. The interpolated results are also reasonable
emulations. Secondly, as given in Table II, each of the in-
dividualized HRTF data set is transformed to a set of co-
efficients. This coefficient set is much smaller in size com-
pared to the original HRTF database. For example, for
frequency range of [0.2, 12] kHz, original MIT databases
has 81920 sample points (710 directions and 160 fre-
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frequency and the vertical axis is azimuth from [0◦, 360◦).

quency samples for each position); now the transformed
coefficient just has 45292 entries (N = 25, ` = 67). The
data needs to be saved has been reduced by nearly 45%.
Compared to the statistical PCA model8 which is truly
the optimal low-dimensional description for the HRTF
data set, the disadvantage of our model using more basis
functions is countered by the universality (data indepen-
dent and measurement grid independence of the basis)
and the continuous nature of the basis functions (elimi-
nating the need for interpolation). Thirdly, the proposed
model can be regarded as noise discriminated as the ba-
sis functions we choose has structural similarities to the
HRTF being analyzed. Thus, the unwanted components
(noise or distortion) will not be represented with the same
accuracy as the signal interested. For example, the noise
components of high spatial bandwidth (n > N) is re-
moved and the noise with frequency components outside
the triangular shaped region will be significantly reduced.

VI. CONCLUSION

A general HRTF representation in all frequency-range-
angle domains was developed in this paper. The HRTF
spatial dimensionality is defined as the required number
of spatial modes to represent HRTFs corresponding to
all directions. A continuous functional model can rep-
resent the HRTF in both spatial and spectral domains.
The model is powerful for the computation of the HRTF
at any arbitrary position in space and at any frequency
point from a given set of measurements at a fixed dis-
tance. A practical method was developed to obtain the
model coefficients. We observed good HRTF spatial and
spectral components reconstruction and interpolation re-
sults from both analytical solutions and measurement
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data. We also need to state that the current approach
is dealing with the representation of empirical measure-
ments at the technical level. Psychoacoustic validation
has to be performed in the future to confirm the error
bounds and the truncation orders given in the paper.
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