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Abstract Lung disorders or injury can result in changes
in the production of lung sounds both spectrally and
regionally. Localizing these lung sounds can provide
information to the extent and location of the disorder.
Difference in arrival times at a set of sensors and trian-
gulation were previously proposed for acoustic imaging
of the chest. We propose two algorithms for acoustic
imaging using a set of eigen basis functions of the
Helmholtz wave equation. These algorithms remove
the sensor location contribution from the multi sensor
recordings using either an orthogonality property or
a least squares based estimation after which a spa-
tial minimum variance (MV) spectrum is applied to
estimate the source locations. The use of these eigen
basis functions allows possible extension to a lung
sound model consisting of layered cylindrical media.
Theoretical analysis of the relationship of resolution to
frequency and noise power was derived and simulations
verified the results obtained. Further, a Nyquist’s crite-
ria for localizing sources within a circular array shows
that the radius of region where sources can be localized
is inversely proportional to the frequency of sound.The
resolution analysis and modified Nyquist criteria can be
used for determining the number of sensors required at
a given noise level, for a required resolution, frequency
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range, and radius of region for which sources need to
be localized.

Keywords Localization · Lung sounds ·
Helmholtz equation · Basis decomposition ·
Cylindrical harmonics · Nyquist’s criteria · Resolution

1 Introduction

Localization of lung sounds from multi-sensor record-
ings can be classified as a problem of source localization
within a circular array of sensors. Ward et al. [1] showed
how to locate a single source in the interior field of a
sensor array. We propose algorithms to localize multi-
ple sources within a circular array of sensors using cylin-
drical harmonic functions. It is advantageous to use
these functions since propagation of layered cylindrical
media can be analyzed by these functions and the chest
can be modeled as consisting of cylindrical layered me-
dia. Performance metrics for the algorithms accounting
for noise levels, frequency of sounds, and region of lo-
calization are derived. We apply a Minimum Variance
(MV) spectrum to the processed sensor recordings to
obtain high resolution localization algorithms.

The stethoscope since its invention in 1816 has been
used as a first diagnosis tool for pulmonary, cardiac, and
gastric disorders. The stethoscope allows physicians
to diagnose the pulmonary system over the auditory
range. This is useful since most physiological processes
and structure of the body causes sounds that resonate
in the audible sound range. The stethoscope is a non-
invasive, quick and low cost diagnosis tool which can
be used for out-patient home and field monitoring. The
use of one stethoscope allows diagnosis from one loca-
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tion only and is qualitative being dependent on the skill
of the physician. Multiple sensors to record data from
several location simultaneously can be used to capture
more information from the audible range of sounds
produced by the lungs. Moreover, signal processing and
statistical methods using microprocessors or computers
can provide a quantitative analysis of lung sound data.

Research interest in localizing and analyzing lung
sounds in the audible range was a result of the short-
comings of existing tools for lung diagnosis. These
lung diagnosis methods involved using ultrasound tech-
niques. However, ultrasound techniques have not been
applied for lung diagnosis due to its poor performance
with high frequency sounds (in the order of 1 MHz)
[2]. This poor performance is caused by the high at-
tenuation property of the lung parenchyma for high
frequency sounds. Lung sound analysis with multiple
stethoscopes can be used as a first diagnosis tool for
lung disorders. Well established methods such as com-
puted tomography (CT) and x-rays can later be applied
to confirm the results obtained form the multiple
stethoscope device. Diseases or injury can cause alter-
ations in the structure and function of the lungs can
cause changes in lung sound production and transmis-
sion. Lung consolidation, pneumothorax and airway
obstructions are some of the conditions that can cause
spectral and regional changes in lung sounds. If these
changes are properly analyzed and localized from multi
sensor recordings then the extent and location of the
trauma can be acquired [3, 4].

Simultaneous recordings of breath sounds can be
processed to provide a surface acoustic image of
the thorax using interpolation [5]. Studies on healthy
subjects and subjects with interstitial pneumothorax
illustrated that thoracic surface acoustic images1 can
provide information on the spatial extent of the dis-
ease [6].

To get more information from the lung sounds re-
searchers began to develop algorithms for localization
of lung sounds in a 3D co-ordinate system. One of
the earliest work on this was by Kompis et al. who
presented a solution for acoustic imaging of the hu-
man chest [4]. His algorithm was independent of the
time of arrival of lung sounds and used a triangulation
approach to locate sound sources given that multiple
sensor recordings were available. Kompis assumed a
uniform sound speed throughout the whole thorax and
a constant attenuation factor per unit length. This al-
gorithm applied computer post-processing to recorded

1Here acoustic imaging refers to obtaining the location of all
sound sources, and is different from x-ray imaging and CT scans
which show the lungs in a visual format.

chest sounds obtained from multiple sensors placed
on the chest. Kompis further went on to represent
intrathoracic sound sources in a three dimensional dis-
tribution taking into account the thoracic volume. This
algorithm was designed to be used for any number
of sensors and be robust enough to deal with sensor
failure or high noise levels. Kompis split the sensor
recording using Tukey window functions [7] in the time
domain and then transformed the resulting data into
the frequency domain using the Fast Fourier Trans-
form (FFT). This allowed the spatial sound source
representation to be separated into multiple frequency
bins. Kompis evaluated his algorithm using computer
simulations, a gelatin model and human subjects. The
resolution of Kompis’s algorithm was reported from
measurements to be 2 cm. Moreover, he was able to
show that lung sound localization can give information
on lung consolidation.

Other researchers tried to either incorporate a more
accurate acoustic transmission model of the lung at the
expense of the localizing algorithm or proposed better
localizing algorithms simplifying the acoustic transmis-
sion model. Murphy assumed an isotropic velocity and
calculated the locations of lung sounds based on differ-
ences in arrival times at the different sensors [8]. Other
researchers used an experimentally determined focal
index to localize lung sounds assuming free field prop-
agation [9]. All the research mentioned previously de-
veloped algorithms on simplified model of lung sound
propagation to the surface of the chest. Ozer et al. com-
putationally and experimentally validated a boundary
element for sound propagation within the chest [10].
The propagation model separated transmission through
the parenchyma, and coupling to and transmission
through tissue to reach the chest surface. Moreover,
the model accounted for reflections, refractions and
standing waves that may be present within the chest.
Using this refined model of propagation, a matched
field method was proposed for localizing sound sources.
However, this algorithm cannot be applied for localiz-
ing multiple sources [10].

The aim of this paper is to propose and analyze
sound localization algorithms within a circular sensor
array applied to breath sounds. However, the algo-
rithms can also be applied in sensor monitoring, hands
free communication in a room or for recording sounds
in an auditorium. The solution to the Helmholtz wave
equation can be synthesized and analyzed for a cylin-
drical co-ordinate system with a set of eigen basis
functions. These eigen basis functions are the cylindri-
cal harmonics. The lung can be modeled as a layered
cylindrical structure and propagation in such environ-
ments can include reflections and refractions and can
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be analyzed using cylindrical harmonic functions [11–
13]. This paper aims to develop localizing algorithms
using these eigen basis functions and investigates their
performance under different conditions. The localizing
algorithms rely on the eigen basis decomposition since
this will allow easy extension to a layered cylindrical
model of lung sound propagation. Further, these eigen
basis function were shown to be versatile for direction-
of-arrival (DOA) estimation [14].

The contributions made by the paper are discussed
as follows:

– We propose two localizing algorithms using cylin-
drical harmonics with the aim of extending these
algorithms for localizing sources within a layered
cylindrical structure. The propagation through a
layered cylindrical structure can be comparable to
that of lung sounds propagating to the surface of
the chest.

– The proposed algorithms will aim to use spectral
search to locate source since spectral based meth-
ods are more accurate than triangulation. Further,
methods using differences in arrival times require
higher precision equipment than spectral based al-
gorithms.

– We investigate the performance of the algorithms
for different levels of noise and for different fre-
quencies of sound.

– This paper also derives a relationship for resolution
in terms of noise level and frequency for the pro-
posed algorithms. This relationship will be useful
in designing multi sensor systems for lung sound
localization. Given the resolution required, noise
levels and frequency range, the number of sensors
can be determined for localizing sounds within a
specific region.

– We prove that the Nyquist’s criteria for localizing
sources within a circular sensor array is different
when compared to the Nyquist’s theorem applied
to linear arrays used for farfield beamforming.

This paper is organized as follows: Section 2 outlines
the system model and defines the problem. Section 3
discusses a eigen basis decomposition method for wave-
fields. Section 4 presents two algorithms for lung sound
localization that use this eigen decomposition. Section 5
provides theoretical analysis on the noise transforma-
tion, resolution and Nyquist’s criteria for the proposed
algorithms. Section 6 presents and describes the sim-
ulation results obtained for localizing sound sources
using the proposed algorithms. Section 7 discusses some
useful properties of the localizing algorithms and also
presents a comparison of the two algorithms. Section 8
concludes this paper with a summary of major findings

and discusses future work needed in acoustic imaging
of the chest.

Notation

The notation used in this paper is a follows:

i = √−1
A uppercase, bold letters represent matrices
a lowercase, bold letters represent vectors
AT transpose of A
A∗ conjugate transpose of A
E{.} is the expectation operator
〈a, b〉 inner product of vectors a and b defined as a∗b
| · | is the modulus operator

2 System Model

Lung sounds due to normal breathing are recorded by
microphones placed on the chest as illustrated by Fig. 1.
These microphone recordings can be processed to lo-
cate lung sounds. In this paper, we consider localizing
two dimensional lung sound sources completely sur-
rounded by a circular array of uniformly spaced sensors
(microphones) placed at a radius, R. We assume that
the velocity of the sound is isotropic. This was proved
for lung sounds above 100 Hz using in vivo experiments
[15].

The uniform spacing assumption is not a neces-
sary condition, however it simplifies notation and

Sensors

R

2D Sources

Figure 1 System model with lung sound sources located interior
of a circular sensor array placed around the chest.
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calculations. We assume that the source signals are zero
mean and stationary. In most array signal processing
literature, the sources are in the farfield such that the
impinging wavefront is planar. The scenario presented
in this paper is different and considers the sources to be
in the nearfield with cylindrical impinging wavefronts.

Let there be Q sensors located at xq with q =
1, ..., Q, where xq ≡ (xq, θq), in polar coordinates, xq

is the distance from the origin and θq is the angle to
the qth sensor. For a circular array xq = R for all q.
Assume that there are V sources present within the
region enclosed by the sensors at locations yv where
yv ≡ (yv, φv).

Lung sounds are broadband and the sensor data
can be separated into different frequency bins by the
Discrete Fourier Transform (DFT). The data captured
by the sensors at a frequency bin with central frequency
f0 is

z(k) =
V∑

v=1

a(yv, k)sv(k) + n(k) (1)

where

k is the wavenumber and k = 2π f0/c with c as
the speed of propagation,

z(k) is the Q × 1 vector of sensor recordings,
n(k) is the Q × 1 vector containing additive

noise,
sv(k) is the signal emitted by the vth source as

received at the origin, and
a

(
yv, k

)
is the array manifold vector generated by a
source located at yv .

The array manifold vector is composed of elements that
contain information on the attenuation and the phase
change as the wave propagates from the source location
to the sensors and is defined by

a
(
yv, k

)
�

[
B

(
x1, yv, k

)
, . . . , B

(
xQ, yv, k

)]T (2)

where

B (x, y, k) = i
4

H(1)
0 (k|x − y|) . (3)

B(x, y, k) is the Green’s function which is the funda-
mental solution to the 2D Helmholtz equation. The
term H(1)

0 (·) is the Hankel function of the first kind
and zeroth order. The Hankel function of the first kind
is used since the wavefield is radiating away from the
origin. An example of a 2D wavefield for k = 2 (fre-
quency of 108 Hz in air with speed of sound 340 m/s) is
illustrated in Fig. 2. For multiple sources, the principle
of superposition can be applied to derive the wavefield
magnitude and phase at vector point x.
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Figure 2 Wavefield generated by a 2-D source at [3, π/4]. The
field magnitude at the source location is infinity and the mag-
nitude dies down very sharply. The phase information can be
expected to be more different at the sensors than the magnitude.

Note that for a farfield case using linear arrays, the
array manifold entries for different sensors changes in
phase only.2 However, for our case involving cylindrical
wavefronts, the entries in the array manifold change in
both magnitude and phase for different sensor record-
ings as illustrated in Fig. 2.

Previous work [1] for locating sources contained in
the interior of a sensor array is only applicable for lo-
calizing a single source and uses an optimization trans-

2a(θv, k) �
[
eikx1sin(φ), . . . , eikxQsin(φ)

]T
where φ is the DOA.
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formation to cancel out the magnitude changes. This
optimization transformation cannot be applied when
multiple sources are involved. The algorithm developed
in this paper takes into account both the magnitude and
the phase variation between sensors in order to locate
multiple sources.

Localization algorithms discussed in this paper will
consider narrowband sources. This can be easily ex-
tended to a broadband scenario since broadband sig-
nals can be decomposed to a set of narrowband bins by
applying a set of narrowband filters to the sensor data.
The DFT decomposes the array data to different fre-
quency bins and the proposed localization algorithms
are applied independently to each of these bins. For
the rest of this paper, we will be considering data from
only one frequency bin, therefore rewriting Eq. 1 in
matrix notation and ignoring k for the narrowband
case, we have

z = A(Y)s + n (4)

where

A(Y) = [
a(y1), . . . , a(yv)

]
, (5)

Y = [
y1, . . . , yv

]
(6)

and

s = [
s1, . . . , sv

]T
. (7)

Direction of Arrival (DOA) methods aim to deter-
mine the angle only, however the localization problem,
considered in this paper, is set up similar to a DOA
problem but aims to estimate Y which includes both
the range and angle in polar co-ordinates. In a similar
fashion to DOA methods, the localization algorithms
will use the correlation matrix of the received data
which is

Rz = E{zz∗}. (8)

By substituting Eq. 4 into Eq. 8 and assuming that the
noise and source signals are uncorrelated, the correla-
tion matrix is equivalent to

Rz = A(Y)E{ss∗}A(Y)∗ + E{nn∗}. (9)

3 Eigen Basis Decomposition

A sensor array captures information on the imping-
ing wavefield which can be decomposed to a set of
orthogonal basis functions depending on the spatial
coordinates used. These basis sets are useful for syn-
thesizing and analyzing wavefield information captured

by a sensor array. For a three dimensional wavefield,
spherical harmonics form the basis sets and for a two
dimensional wavefield, as investigated in this paper,
cylindrical harmonics make up the basis set.

Eigen basis functions for wavefields have been ap-
plied in research pertaining to antennas. Works [16, 17]
used eigen basis modes to synthesize antenna shapes.
In beamforming, eigen basis modes were used for
designing nearfield broadband beamformers [18, 19].
Moreover, in acoustic signal processing, these basis
modes were applied to soundfield recording [20] and
reproduction [21]. More importantly, sound propaga-
tion through the chest can be modeled similar to a
layered cylindrical media. Eigen basis modes or more
specifically cylindrical harmonics have been applied to
wave propagation in layered cylindrical media [11–13].

The two dimensional wavefield investigated in this
paper can be decomposed to basis functions [22, p. 66]

B(x, y) = i
4

∞∑

n=−∞
H(1)

n (kx)Jn(ky)einθx e−inφy (10)

where Jn(·) is the Bessel function of order n. This
decomposition consists of an infinite number of terms
and is called the addition theorem for Hankel functions,
valid only when |x| > |y|. The decomposition can be
used if the significant number of terms are finite. The
Bessel functions of finite argument approach zero as
the order n becomes large. Therefore, for a finite region
of space bounded by a circle of radius, R and for the
wave length of sound being λ, the number of eigen
basis functions that characterize a wavefield without
incurring significant errors [23] can be limited to

M =
⌈

πeR
λ

⌉
≈ kR. (11)

In the truncated 2D wavefield decomposition, the
order, n spans the set n ∈ [−M, . . . , 0, . . . , M] in Eq. 10.
In the rest of this paper, the truncated 2D Green’s
function approximated by 2M + 1 basis functions is
denoted by B̃(x, y).

4 Sound Localization

The cylindrical waves impinging on the sensor array
caused by 2D sources, results in an array manifold
defined by

A(Y) =
⎡

⎢⎣
B̃(x1, y1) . . . B̃(x1, yV)

...
. . .

...

B̃(xQ, y1) . . . B̃(xQ, yV)

⎤

⎥⎦ . (12)
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The elements in A(Y) represent both the magnitude
and phase difference of wavefields received by the
sensors. Further, these elements can be represented by
Eq. 3 or by the summation of eigen basis modes Eq. 10.
Source and sensor location information are present in
the elements of A(Y). However, by considering these
elements as the sum of eigen basis modes, we can
separate A(Y) into two independent terms containing
sensor locations and source locations, respectively. The
two proposed algorithms presented in the next two sub-
sections exploit the idea that the sensor location terms
can be removed from the array manifold, A(Y) and
then source locations can be estimated using spectral
techniques.

4.1 Orthogonality Based Algorithm

4.1.1 Fourier Series Expansion

The angular positions of the sensors span the range
[0, 2π ], allowing exploitation of the orthogonality prop-
erty of exponential functions, einθ . Let z(θ) be a contin-
uous function denoting the received signal for a sensor
placed at an angle θ . This continuous function z(θ) is
periodic on 2π and can be expressed as

z(θ) =
M∑

n=−M

α(R)
n einθ (13)

where α(R)
n is called the spatial Fourier coefficients of

the sensor data for mode n. We can view Eq. 13 as
a Fourier series expansion of the received signal. By
multiplying both sides of Eq. 13 by e−inθ and integrating
with respect to θ over [0, 2π), we obtain

α(R)
n = 1

2π

∫ 2π

0
z(θ)e−inθ dθ. (14)

From Eq. 1

z(θ) =
V∑

v=1

B
(
(R, θ), yv

)
sv + n(θ) (15)

where n(θ) is the AWGN (additive white, Gaussian
noise) at a sensor placed at an angle θ on the circular
array. Substituting Eqs. 10 and 15 into Eq. 14, we get

α(R)
n = i

8π
H(1)

n (kR)

V∑

v=1

Jn(kyv)e−inφv + ñn. (16)

where ñn is the noise for the spatial Fourier coefficient
at mode n. Writing Eq. 16 in matrix notation

α = H Js + n̂ (17)

whereα=8π/ i
[
α

(R)

−M, . . . ,α
(R)

M

]
T, H =diag

[
H(1)

−M(kR), . . . ,

H(1)

M (kR)
]

and J contains information on the source
locations

J =
⎡

⎢⎣
J−M(ky1)eiMφ1 . . . J−M(kyV)eiMφV

...
. . .

...

JM(ky1)e−iMφ1 . . . JM(kyV)e−iMφV

⎤

⎥⎦ . (18)

The spatial Fourier coefficients comprise of terms
dependent on the positions of the V sources and the
radius at which the sensors are placed. Contributions of
the sensor angular positions are removed by transform-
ing the array data to a spatial Fourier domain Eq. 14.

4.1.2 Discrete Angular Samples

In practice, we measure z(θ) only on discrete sensor
positions at θq, q = 1 . . . Q. Thus, one can approximate
the integral Eq. 14 by a summation

α(R)
n = 1

2π

Q∑

q=q

z
(
θq

)
e−inθ�θq (19)

where �θq is the angular separation between the qth

and (q + 1)th sensors. If the sensors are uniformly
spaced on the circle, then Eq. 19 can be viewed as a
Discrete Fourier Transform. The operations required
to transform the discrete sensor data to the spatial
Fourier domain are summarized3 in Fig. 3. We write
Eq. 19 in matrix form as

α = 4

iQ
�∗z (20)

where

� =
⎡

⎢⎣
e−iMθ1 . . . eiMθ1

...
. . .

...

e−iMθQ . . . eiMθQ

⎤

⎥⎦ . (21)

and the columns of � are the Q discrete samples of the
orthonormal function einθ .

The spatial Fourier coefficients has a component
that is dependent on the radial positions of the sensor.
This algorithm aims to transform the sensor data to a
domain dependent only on the source locations. This

3The discrete form of the orthogonality relationship for exponen-
tial functions applied in Eq. 19 is valid only if there is no aliasing.
A discrete number of sensors sample the imping wavefront and
is analogous to sampling the function einθ at the angular positions
of the sensors. For large n, a greater number of sensors spanning
the circumference of a circle is required in order to avoid aliasing.
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Figure 3 Transformation of the sensor data to the spatial Fourier
domain.

would create a unified representation for data recorded
by different sensor arrays for an impinging wavefield
caused by sources in the same locations. However,
removal of the matrix H from the spatial Fourier co-
efficients by using its inverse can cause instability of the
solution when the condition number, κ{H} is large.

If the radial sensor components are not removed
then the source locations can be estimated by first
calculating the covariance matrix of the spatial Fourier
coefficients, Rα by

Rα = E{αα∗}. (22)

In practice, the covariance matrix is not acquirable.
However, α can be obtained for a finite number of snap-
shots, T. Then a maximum likelihood approximation

Rα ≈ 1

T

T∑

t=1

α(t)α(t)∗ (23)

can be used to estimate Rα . It is important to mention
that maximum likelihood approximations improve if
the value of T is larger.

The Minimum Variance (MV) or the Capon’s
method [24] was developed to overcome poor reso-
lution methods that were available in classical beam-
forming. The MV method passes the signal from the
look direction and minimizes the output power from
all other directions. The output power of the circular
sensor array as a function of y and φ is given by the MV
spatial spectrum

Z̃ (y, φ) = 1

d(R, y, φ)∗ R−1
α d(R, y, φ)

(24)

where

d(R, y, φ) =
⎡

⎢⎣
H(1)

−M(kR)J−M(ky)eiM	

...

H(1)

M (kR)JM(ky)e−iMφ

⎤

⎥⎦ . (25)

The spectrum is computed and plotted over the
whole range of y and φ. It is important to mention that
the spacing of the y and φ in computing the spectrum
must be smaller than the resolution of the MV method.
Form the MV spatial spectrum, the source locations are
estimated by locating the peaks in the spectrum.

If the condition number, κ{H} is small, we can re-
move the sensor radial component by

α̃ = H−1α (26)

where

H−1 = diag
[

1
H(1)

−M(kR)
, . . . , 1

H(1)
0 (kR)

, . . . , 1
H(1)

M (kR)

]
.

(27)

and α̃ is called the modal space or the eigen space
domain of the sensor array data. The covariance matrix
of α̃ can be estimated by the maximum likelihood
approximation

Rα̃ ≈ 1

T

T∑

t=1

α̃(t)̃α(t)∗ (28)

and the source locations are the peaks in the new MV
spectrum

Z (y, φ) = 1

c(y, φ)∗ R−1
α̃ c(y, φ)

(29)

where

c(y, φ) =
⎡

⎢⎣
J−M(ky)eiMφ

...

JM(ky)e−iMφ

⎤

⎥⎦ . (30)

Comparing Eqs. 24 and 29, the MV spectrum when the
radial component is removed is less computationally
expensive since computing d(R, y, φ) for the entire
range of y and φ is more expensive than computing
c(y, φ).

In normal DOA scenarios, the MV spectrum is less
computationally expensive since the spectrum is ob-
tained as a function of one variable, the DOA. Further,
the MV spectrum can be computationally expensive for
a large sensor array as it requires the computation of
a matrix inverse. Note that high resolution subspace
methods such as MUSIC [25] can be applied to the or-
thogonality based algorithm in place of the MV spatial
spectrum.
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4.1.3 Condition Number of H

The Hankel function is a complex function with a
corkscrew like behavior with increasing argument.
Since H(1)

−n(kR) = eiπn H(1)
n (kR), we have

∣∣H(1)
−n(kR)

∣∣ =∣∣H(1)
n (kR)

∣∣ and so the condition number for matrix H,
κ{H} = ∣∣H(1)

M (kR)
∣∣/

∣∣H(1)
0 (kR)

∣∣. If κ{H} is large, then
removing H by multiplying α by H−1 can result in
instability of the solution since noise is amplified and
the results obtained for the source locations will be
practically useless. However, in such cases regulariza-
tion methods can be applied resulting in a degradation
of resolution in the solutions obtained.

Further, the magnitude of the Hankel functions in-
crease with the mode n for a given argument, so the
greater the number of modes used the larger the value
of κ{H}, but κ{H} decreases as values of kR get larger
(for cases when kR is a real number with zero imagi-
nary component). From Fig. 4, we can see that as a rule
of thumb if kR > 0.75 × M then κ{H} is small (in this
definition we ensure that κ{H} < 102) thus ensuring a
stable solution when H−1 is multiplied to α.

If the sensor radial component is to be removed,
there are two conditions that need to be considered
when choosing the number of modes to use, given both
the wavenumber, k and the radius of the region of
interest, R. These two conditions include the stability
condition and Eq. 11 resulting in M being

kR < M <
4

3
kR. (31)

10 20 30 40 50 60 70 80
10

0

10
2

10
4

10
6

10
8

10
10

10
12

kR

lo
g(
κ
{H

})

 

 

M=10
M=15
M=20
M=25
M=30

Figure 4 Variation of the condition number κ{H} with kR and
number of modes (M) used.

4.2 Least Squares Based Algorithm

Similar to the orthogonality based algorithm, the least
squares based algorithm removes the sensor contribu-
tions to transform the sensor array data to a eigen basis
domain, α̃. The source locations can be estimated by
peaks in the MV spectrum Eq. 29 after an estimate
of the covariance matrix in the eigen space domain is
calculated Eq. 28.

From Eq. 10, each element in the array manifold
matrix, A(Y) consists of summation of orthogonal basis
functions of 2D wavefields. Therefore, the matrix A(Y)

can be separated into two matrices as

A(Y) = i
4
�ϒ (32)

where

� =
⎡

⎢⎣
H(1)

−M(kR)e−iMθ1 . . . H(1)

M (kR)eiMθ1

...
. . .

...

H(1)

−M(kR)e−iMθQ . . . H(1)

M (kR)eiMθQ

⎤

⎥⎦ (33)

and

ϒ =
⎡

⎢⎣
J−M(ky1)eiMφ1 . . . J−M(kyV)eiMφV

...
. . .

...

JM(ky1)e−iMφ1 . . . JM(kyV)e−iMφV

⎤

⎥⎦ . (34)

One of these matrices, � contains data on the sensor
locations. The other matrix, ϒ contains the data on the
source locations.

From the array manifold, we need to remove the
contribution of sensor locations. Given that the sen-
sor locations are known, we can construct the matrix,
�. The contribution of the sensor locations from the
sensor recording vector, z can be removed by using
the Moore-Penrose pseudo-inverse of �, denoted by
�†.This pseudo-inverse is

�† = [�∗�]−1�∗. (35)

Multiplying the sensor recording vector by the
pseudo inverse, α̃ = 4/ i�†z = ϒs + n̂, transforms the
data to the modal space, with α̃ containing the source
location matrix and the modified noise is denoted by n̂.
This operation is equivalent to a least squares approxi-
mation.

4.2.1 Pseudo-Inverse of �

The calculation of the Moore-Penrose pseudo-inverse
for � is equivalent to Eq. 35 only when � is not close
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to being singular. From trials constructing � for sev-
eral different arrangement in a circular array, it was
observed that in most cases � was close to singular. The
reason for � being close to singular in certain situations
is because elements in � can only be approximated to a
certain number of decimal places and the magnitude of
these elements can be very small. In such a case, �† can
be calculated by using Singular Value Decomposition
(SVD). The SVD of � ∈ CQ×(2M+1) is

� = U DF∗ (36)

where U ∈ CQ×Q and F ∈ C(2M+1)×(2M+1) are orthogo-
nal matrices, and D is a Q × (2M + 1) diagonal matrix

D =

⎡

⎢⎢⎢⎢⎢⎣

ξ1 0 0 . . . 0 0 . . . 0
0 ξ2 0 . . . 0 0 . . . 0
0 0 ξ3 . . . 0 0 . . . 0
...

...
... . . .

...
... . . .

...

0 0 0 . . . ξp 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎦
(37)

where ξi are the singular values of � with p =
min

[
Q, 2M + 1

]
and ξ1 > ξ2 > . . . > ξp > 0.

From Eq. 37, �† can be obtained by

�† = F D†U∗ (38)

where

D† =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ξ1

0 0 . . . 0
0 1

ξ2
0 . . . 0

0 0 1
ξ3

. . . 0
...

...
... . . .

...

0 0 0 . . . 1
ξp

0 0 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (39)

For more information on the Moore-Penrose pseudo-
inverse, the reader is referred to the article [26].

5 Theoretical Performance Analysis

5.1 Noise

In this section, we analyze how the measurement noise
at each sensor affects the performance of the proposed
localization algorithms. We assume that the additive
noise at each sensor is zero mean white, complex

Gaussian and the noise at different sensors are uncor-
related. The covariance of the noise matrix is

Rn = E{nn∗} = σ 2
n I (40)

where σ 2
n is the noise power at each sensor and I repre-

sents an identity matrix. In literature, DOA algorithms
applied to scenarios with correlated noise such as sonar
applications led to biasing of the estimate and a degra-
dation in resolution [27]. In this subsection, we analyze
what effect the two proposed algorithms have on the
noise covariance matrix and if these transformations
result in the noise being correlated.

Firstly, for the orthogonality based algorithm, the
noise covariance matrix after transformation into the
eigen basis domain becomes

R̃n = E
{
n̂n̂∗} =

(
4

Q

)2

σ 2
n H−1�∗�

(
H−1)∗

. (41)

Since the series {einθ }M
n=−M is orthogonal, �∗� = QI.

Further,

H−1 (
H−1)∗

= (H H∗)−1 = (H∗ H)−1

= diag
[

1∣∣H(1)

−M(kR)

∣∣2 , . . . , 1∣∣H(1)
0 (kR)

∣∣2 , . . . , 1∣∣H(1)

M (kR)

∣∣2

]
.

(42)

and the modified covariance matrix can be simplified to

R̃n = 16

Q
σ 2

n (H∗ H)−1. (43)

From Eq. 43, the structure of the noise covariance
matrix remains diagonal meaning that the noise at
the different modes are uncorrelated after the trans-
formation to the new basis domain. The transforma-
tion of sensor recordings in the eigen basis domain
creates an analogy between the noise at the sensors
and the noise at the different modes. Further, the noise
distribution remains Gaussian but is scaled differently
at the different modes.

Secondly, for the least squares based algorithm, the
noise covariance matrix after transforming the received
data into the eigen basis domain becomes

R̃n = 16σ 2
n �†�†∗

= 16σ 2
n [�∗�]−1�∗�[�∗�]−1. (44)

We can decompose � to

� = �H (45)
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and simplifying Eq. 44, we get

R̃n = 16

Q
σ 2

n (H∗ H)−1. (46)

Similar to the orthogonality based algorithm, the mod-
ified noise covariance matrix maintains its diagonal
structure.

Both the proposed algorithms transform the sensor
data to a modal domain. This transformation preserves
the uncorrelated nature of the noise between different
sensors with a similar uncorrelated behavior between
the different modes. However, the noise is scaled by a
factor which differs between the different modes. This
noise scaling is symmetrical about the zeroth order,
meaning that mode n and −n undergo the same level
of noise scaling. The higher the modulus of the order
of a mode |n| the lower the noise scaling.4 Form the
modifications that occur to the noise covariance matrix,
we can conclude that both algorithms perform the same
transformation on the sensor data.

5.2 Resolution

The angular resolution of DOA estimation methods
depends on the number of sensors and the SNR. These
DOA estimation methods relied on correlation of the
phase vector of the source signal and the assumed
phase if the signal was present at a test direction. If
the test direction and the source direction were equal,
a maximum value in the spectrum was obtained. In a
similar manner, the two proposed algorithms localize
sound sources based on the correlation of the received
signal to the vector c(y, φ). This subsection aims to
present a theoretical analysis to the factors affecting
resolution in the two proposed algorithms.

We start our analysis by assuming that the source
signals are zero mean, Gaussian with variance, σ 2

s . The
data covariance matrix in the eigen basis domain is

R = σ 2
s c(y, 	)c∗(y0, φ0) + 16

Q
σ 2

n (H∗ H)−1. (47)

To simplify the analysis, we assume there is only one
source located at (y0, φ0). Using the identity for simpli-

4In this paper, the subscript n can refer to either noise or the
mode, whenever ambiguity arises in the equations clarifications
are provided in the description of these equations.

fying the inverse of a sum of matrices defined in [28,
p. 490], the inverse of the covariance matrix is

R−1

= 1

aσ 2
n
(H∗ H)−1

×
(

I− c(y0, φ0)c∗(y0, φ0)1/
(
aσ 2

n

)
(H∗ H)−1

σ−2
s + c∗(y0, φ0)1/

(
aσ 2

n

)
(H∗ H)−1c(y0, φ0)

)

(48)

where a = 16/Q. Using Eqs. 48 and 24, the output from
the MV spectrum can be derived as

Z −1(y, φ)

= 1

aσ 2
n

(
c∗(y, φ)H∗ Hc(y, φ)

− |c∗(y, φ)H∗ Hc(y0, φ0)|2
aσ 2

n /σ 2
s + c∗(y0, φ0)H∗ Hc(y0, 	0)

)
. (49)

We define the inner product between two vectors, a and
b as a scalar equivalent to a∗b and is denoted by 〈a, b〉.
The output of the MV spectrum Eq. 49 can be written
in terms of the inner products of vectors as

Z −1(y, φ)

= 1

aσ 2
n

(
〈Hc(y, φ), Hc(y, φ)〉

− |〈Hc(y, φ), Hc(y0, φ0)〉|2
aσ 2

n /σ 2
s + 〈Hc(y0, φ0), Hc(y0, φ0)〉

)
. (50)

The modulus is introduced in Eq. 50 since Z (y, φ) is a
real number. The maximum value of Z (y, φ) occurs at
y = y0 and φ = φ0. It is important to mention that the
MV spectrum obtained is the same whether we remove
H or not. However, removal of H upper bounds the
number of modes, M that we can use for a specified
region of interest.

The MV spectrum has a peak at the source location
which decreases gradually to a minimum, hence the
3dB point can be used to measure the sharpness of this
decrease and give a good measure of the resolution of
the proposed algorithms. The 3dB point occurs at (y, φ)

satisfying

Z −1(y0, φ0)

Z −1(y, φ)
= 1

2
. (51)

For a large SNR, the 3 dB point is close to the source
location, therefore

〈Hc(y, φ),Hc(y, φ)〉≈〈Hc(y0, φ0),Hc(y0, φ0)〉=|b |2.
(52)
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The peak of the MV spectrum occurs at y = y0 and φ =
φ0, and using Eq. 52, we have

Z −1(y0, φ0) = 1

aσ 2
n

(
|b |2 − |b |4

aσ 2
n /σ 2

s + |b |2
)

= 1

a2σ 4
n /σ 2

s + aσ 2
n |b |2

(
aσ 2

n

σ 2
s

|b 2|
)

(53)

and

Z −1(y, φ)

= 1

a2σ 4
n /σ 2

s + aσ 2
n |b |2

×
(

aσ 2
n

σ 2
s

|b |2 + |b |4 − ∣∣〈Hc(y, φ), Hc(y, φ)〉∣∣2
)

.(54)

Substituting Eqs. 53 and 54 into Eq. 51, we get

aσ 2
n /

(
σ 2

s |b |2)

aσ 2
n /

(
σ 2

s |b |2)+1−∣∣〈Hc(y, φ), Hc(y0, φ0)〉
∣∣2

/|b |4
= 1

2
.

(55)

The expression 〈Hc(y, φ), Hc(y0, φ0)〉/|b |2 is the co-
sine of the angle between the vectors Hc(y, φ) and
Hc(y0, φ0), we will denote this angle as ψ . In Eq. 55, the
modulus value of the inner product bounds the values
of cos(ψ) between 1 and 0. When the angle between
the two vectors is small, the inner product is close to
1 and when the inner product is close to 0 the angle is
large. The angle between these two vectors at the 3dB
increases as the SNR

(
σ 2

s /σ 2
n

)
decreases and is more

noticeable if we simplify Eq. 55 to

( |〈Hc(y, φ), Hc(y0, φ0)〉|
|b |2

)2

= 1 − 16

Q|b |2
σ 2

n

σ 2
s
. (56)

The angle between Hc(y, φ) and Hc(y0, φ0) at the 3 dB
point as a function of SNR is

ψ3dB = cos−1

(√

1 − 16

Q|b |2
σ 2

n

σ 2
s

)
(57)

and is valid only when σ 2
s > σ 2

n . From Eq. 57, the resolu-
tion increases as ψ3dB decreases, i.e., as the noise power
decreases. In summary, the resolution is inversely pro-
portional to ψ3dB.

From the solution obtained the following remarks
can be made

– The resolution is affected by the noise power which
distorts the correlation point,
c(y0, φ0) in the sensor data and pushes this corre-
lation point to overlap nearby correlation points

c(y0 + δ, φ0 + ς) where δ and ς are small in mag-
nitude. Therefore the higher the noise power the
lower the resolution and the larger the angle be-
tween the source location and the 3 dB vector.

– Increasing the sensors creates more noise averaging
thus reducing the effective noise power. This results
in a higher resolution and a similar effect can be
observed in DOA algorithms.

– The radius at which the sensors are placed (radius
of the chest) has an effect on the resolution, shown
by the presence of H in Eq. 56. This factor of sensor
radius is not present in DOA algorithms. From
Fig. 5, we can observe that for two points within the
sensor radius, the angle ψ decreases as the sensor
radius is increased, hence the ψ3dB occurs for points
that are further apart. Therfore, the resolution de-
creases as sensor radius increases given that the
radius of the region of interest is constant and thus
the number of modes used remains the same.

– The matrices H, c(y, φ) and c(y0, φ0) are depen-
dent on the wavenumber, k and so dependent
on the frequency. Testing for two points in close
proximity, we can observe from Fig. 6 that as the
frequency increases the angle between these two
points (placed at different radii), ψ increases. A
similar result was obtained for points at differ-
ent angles. Therefore, an increase in frequency in-
creases both the radial and the angular resolution
of the proposed algorithms.

5.3 Nyquist Criteria

Consider Eq. 19 as a sampling scenario. Here coeffi-
cients of a signal with angular frequency n needs to be
recovered given the sampling frequency is 2π/Q. Ac-
cording to Nyquist’s theorem, the sampling frequency

10 15 20 25 30 35
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0.0542

0.0543

0.0543

Rsensors

Ψ
 [r

ad
]

Figure 5 The decrease in angle, ψ , lower angular resolution as
sensor radius increases, refer to Eqs. 56 and 57.
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Figure 6 Increase in angle, ψ as frequency increases showing
better angular and radial resolution when frequency is increased,
refer to Eqs. 56 and 57.

must be greater than twice the highest frequency of the
signal. Since we have Q sensors over 2π radians, we
require

M <
1

2
Q. (58)

Substituting Eq. 11 in Eq. 58 for an arbitrary radius,
R̃, Nyquist’s criteria is satisfied if

R̃ <
λQ
2πe

. (59)

Works [29, 30] discussed spatial aliasing effects for
the case of linear arrays. Spatial aliasing in linear ar-
rays prevented localization of all sources. However, for
localizing sources within a circular array, aliasing can
be removed by reducing the radius of region, R̃ where
sources need to be located. As the frequency of sources
increase, this radius reduces. This scenario contains an
aliased region where R̃ > λQ/(2πe) and a non-aliased
region where R̃ < λQ/(2πe).

The result from the Nyquist’s criteria gives an impor-
tant interpretation towards sensor position in localizing
sources. Assuming that we want to localize all sources
within a radius, R̃ then from the Nyquist’s criteria
Eq. 59, the minimum number of sensors, Q̃ required
can be calculated. Further, these sensors can be placed
at any radius greater that R̃. Although, placing the
sensors at a large radius can diminish their sensitivity
to low power sources. In the sensor recordings noise
is present, therefore increasing the number of sensors
from Q̃ results in a better resolution since the maximum
likelihood estimations Eqs. 23 and 28 become more
accurate.

40 60 80 100 120 140 160
0.006

0.008

0.01

0.012

0.014

0.016

0.018

No. of Sensors

Ψ
3d

B
[r

ad
]

Figure 7 Variation of resolution with number of sensors for the
source localizing algorithms.

5.4 Number of Sensors

If the number of sensors increases then the computa-
tion load goes up, however the effective noise covari-
ance shown by Eqs. 43 and 46 is reduced which we term
as noise averaging. The number of sensors must satisfy
Nyquist’s criterion Eq. 59 in order to localize sound
source within a given radius. Further, the resolution
of both the algorithm increases as the number of sen-
sors increases, from Eq. 46 as Q → ∞ then ψ3dB → 0
meaning the resolution is infinite. Provided that the
Nyquist’s criterion is satisfied fro Q > 34, the variation
of ψ3dB (resolution) as the sensor number increases for
a SNR of 10 dB with source power set as unity is shown
by Fig. 7. The improvement in resolution decreases
as more and more sensors are added. Therefore, in
designing a system the number of sensors to be used
can be determined by a stopping criteria which states a
minimum change in resolution.

6 Simulations

The simulations investigate the performance of the two
proposed algorithms in localizing sound sources for
different noise levels and for different frequencies. A
circular array consisting of 40 uniformly spaced sensors
on the circumference of a circle is used to record sounds
from the sources. The radius of this circle is set to
8 units. The average chest diameter varies according
to gender. The approximate average male and female
chest diameters are 30 cm and 26 cm respectively [31].
To correspond to a male chest, 1 unit needs to represent
1.875 cm and for a female chest, 1 unit needs to repre-
sent 1.625 cm. We have used units since this allows the
simulations to be scaled for a wide range of dimensions.
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The source signals and the noise are modeled as sta-
tionary zero-mean white Gaussian processes. Further,
the noise at each sensor is independent of the noise
at any other sensor. The noise power received by the
sensors is defined from the total signal power at the
origin. For V sources, the SNR at each of the sensors
is defined to be

SNR = 10 log10

⎡

⎢⎢⎢⎢⎢⎣

V∑

v=1

Pv,0

σ 2
N

⎤

⎥⎥⎥⎥⎥⎦
(60)

where Pv,0 is the power of the vth source at the origin
and σ 2

N is the noise power.
The simulations are performed with narrowband

sources and for each trial 100 snapshots are taken.
The recorded signals are then discrete Fourier trans-
formed within the desired frequency band. Operations
described in Section 4 are performed on the data set to
obtain MV spectral estimates using the two proposed
algorithms. The MV spectral estimate shows peaks at
locations where sound sources are present. This paper
will not investigate the effect of increasing the number
of sensors or the number of snapshots. These factors
were previously investigated in works [32, 33] for linear
arrays.

The two proposed algorithms provide similar MV
spectra and so for brevity, one set of results are illus-
trated in the following subsections.

6.1 Localizing Multiple Sources

The environment consists of eight uncorrelated sound
sources placed at different radii. The marks “X”s in
Fig. 8a. shows the actual locations of the eight sources.
The SNR is set to 10 dB and the wavelength of the
sources is 4 units. Scaling for an average male chest
gives wavelength of the sound sources to be 7.5 cm. The
speed of sound in lung parenchyma varies between 25–
75 m/s [34]. Taking the lower speed, the frequency of
the sound sources is 333 Hz. Gavriely et al reported
spectral characteristics of normal lung sounds to lie
approximately between 50 and 1000 Hz [35, 36]. For
lung sound localization, the performance of the al-
gorithms are considered for frequencies between 100
and 1000 Hz when velocity of the lung sounds can be
considered isotropic. [15].

The use of units for the radius and wavelength can
be considered to be a powerful representation and
allows the spectrum obtained to be flexible. The dimen-
sions of the chest varies from one person to another.

Figure 8 Spectrum for multiple 2-D sources with SNR = 10 dB.
a X–Y view of the spectrum. This is a polar plot with angle versus
radius. Successive concentric circles represent an increase of one
unit of distance from the center. b 3-D plot of the spectrum.

Suppose a lung sound localization device providing a
spectral estimate for different people represents the
radius in units which can be scaled for application to
the specific chest diameter (measured beforehand with
a tape measure). Further, the speed of sound in the lung
varies. Therefore, wavelength represented in units can
be scaled and represented to frequencies for different
speeds using the relationship c = fλ.

Peaks in the MV spectral estimate as illustrated in
Fig. 8b. correspond accurately to actual source loca-
tions. In Fig. 8a, peaks are represented by the light col-
ored regions. The peaks decrease in height as the radius
is increased. Further, the source lying on equal radius
as the sensors (radius = 8 units) cannot be detected by
both proposed algorithms. Concerning resolution of the
algorithms at 10 dB noise, the sources at radius of 5 and
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6 are detected as one source since the resolution is not
high enough to give two peaks.

6.2 Performance with Different Noise Levels
and Number of Sensors

In the second scenario, the power of sound emitted by
the eight sources is kept constant, but noise power is
reduced by half to set the SNR to 20 dB. Even at a
reduced noise power, the source at radius of 8 units
cannot be detected.

Compared to the previous trial with SNR equal to
10 dB, the peaks corresponding to the source locations
are higher and narrower. According to Eq. 57, this
scenario has a resolution that is approximately two
times larger than the previous scenario with SNR equal
to 10 dB. This is illustrated by Fig. 9. where two distinct
peaks are obtained for sources at radii of 5 and 6 units.

To check if the resolution increases with increasing
the number of sensors, we left the noise power at
10 dB but increased the number of sensors to 80, the
resulting spectrum is similar to that of decreasing the
noise power to 20 dB. It is observed that the resolution
is increased as compared to the spectrum in Fig. 8. This
agrees with the theoretical result shown in Fig. 7.

6.3 Performance with Different Frequencies of Sound

In this scenario, the wavelength is increased to 7 units.
Using dimensions of an average male chest and speed
of sound in the chest as 25 m/s, this wavelength corre-
sponds to a frequency of 190.5 Hz. Comparing Figs. 10
and 8, we can see that the resolution is reduced when
the wavelength is increased or the frequency is reduced,
agreeing with results obtained for the theoretical reso-
lution analysis. Given that by experimental verification
under a known wavelength and noise power the resolu-

Figure 9 Spectrum obtained when SNR = 20 dB.

Figure 10 Spectrum showing a reduction in resolution when
wavelength is increased.

tion can be determined, then Eq. 57 can use this initial
resolution to give resolution of both algorithms for
different wavelengths and noise power. Thus, the result
obtained using Eq. 57 is important in the performance
analysis of the proposed localizing algorithms.

In this trial, wavelength is reduced to 1 unit. As
before, converting to an average male chest dimension,
the frequency is increased to 1333 Hz. For lung sounds,
this high a frequency does not have a high intensity.
However, for the purpose of demonstrating aliasing for
the proposed algorithms, we will use this frequency
to show that simulation results obtained in Figs. 11
and 12 are in agreement with the Nyquist’s criteria
described in Subsection 5.3. The aliasing that occurs
in localizing sources within a circular array is different
from the aliasing that occurs for linear arrays. This
difference in aliasing was discussed in Subsection 5.3.
The simulation results illustrated by Figs. 11 and 12.
prove that high frequencies causing aliasing with the
region for which sources can be localized is reduced to
R̃. From simulation results R̃ is approximately equal to
2.4 units and agrees to the result obtained by applying

Figure 11 Spectrum showing aliasing when the wavelength is
reduced. The region R̃ for which sources can be localized is
discernible.
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Figure 12 Spectrum of region R̃ where two sound sources are
present and each concentric circle represents a distance of 0.3
units.

Eq. 59 to this scenario. Further, within region R̃, the
resolution is higher than when the wavelength was
equal to 4 units. In summary, simulations verify that
increasing the frequency results in a higher resolution
but reduces the radius of the region in which sources
can be localized.

From simulation results presented in this subsection,
several deductions to the performance of the algo-
rithms can be made. These deductions are as follows:

– For a set up where the number of sensors and
noise power is known, experimental determination
of resolution at a certain frequency can be used
to calculate the resolutions at other frequencies
and noise powers using Eq. 57 for the proposed
algorithms.

– For localizing sources within a frequency range,
Eq. 59 can be applied to determine the radius of
the region where sources can be located without
aliasing.

– Given the radius of the region, minimum accept-
able resolution and frequency range, the number
of sensors can be determined using both Eqs. 57
and 59.

7 Comments and Comparison of the Proposed
Algorithms

Lung sound measurements at multiple locations can
give information on the lung sounds both spectrally,
i.e. in the frequency domain and the regional distrib-
ution of the sounds. Alterations from the normal lung
sounds can occur due lung injury or disease such as
pneumothorax, lung consolidation, asthma and airway
obstruction. These alterations involve a change in fre-
quency content, quantifying and locating sounds for

different frequency bins can be used to detect lung
abnormalities [3, 37]. The two proposed algorithms can
be modified to be used over the entire range of lung
sounds by separating this frequency range into a set
of narrowband frequency bins and then applying either
one of the two proposed algorithms iteratively.

From the simulations presented in the previous sec-
tion, it was shown that both the proposed algorithms
have similar performance. The orthogonality based
algorithm is less computationally expensive since it
requires calculation of one matrix inverse whereas
the least squares based algorithm involves calculating
the inverse of two different matrices. Both algorithms
perform the same transformation to the sensor data
and the MV spectrum remains the same whether the
contributions due the sensor radius is removed or not
removed. However, not removing the sensor radius
component increases the computational expense of the
MV spectrum.

Further, the following comments pertaining to both
proposed localizing algorithms can be made

– Both the localizing algorithms can work without
previous estimates of source locations.

– Since both the algorithms calculate covariance ma-
trices for the modified sensor recordings, other spa-
tial spectral methods such as MUSIC or its variants
can be applied instead of MV spectrum.

– For large sensor arrays and considering the fre-
quency of sound, the dimension can be reduced to
2M + 1 by converting to the eigen basis sets of a 2D
wavefield. This reduces the computation expense of
the proposed algorithms.

8 Conclusions

We have proposed two algorithms for localizing sound
sources within a circular array of sensors by decom-
posing the wavefield to a set of eigen basis functions.
These two algorithms can be applied for the purpose of
acoustic imaging of the chest. However, in this paper
we have assumed that the velocity of sound in the
chest is isotropic. Future work will look at extending
these algorithms for a layered cylindrical media that
is characteristic of the chest and include reflections,
refractions and standing waves.

The resolution of both algorithms increase with a
decrease in noise power and increase with an increase
in the frequency of the sound. We derived a theoretical
relationship for resolution in terms of the noise level
and frequency. Further, increase in frequency results
in a reduction in the radius of the region for which
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sound sources are localized provided the number of
sensors remain the same. This reduction in radius was a
result of Nyquist’s criteria applied to this scenario. The
Nyquist’s criteria and results from the resolution analy-
sis can be applied in designing a localization system for
the lung sounds given resolution, frequency range and
noise power.
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