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ABSTRACT

Three dimensional (3D) spatial soundfield reconstruction
techniques typically need multiple loudspeakers placed on
the surface of a sphere covering a desired region of recon-
struction. Such array geometries have certain limitationsthat
make them impractical in most of the intended applications.
In this paper, we show how to reconstruct 3D soundfields us-
ing a set of circular arrays. The proposed method uses circu-
lar harmonics alongwith the underlying theory of wavefield
propagation. Specifically, we use the properties of the associ-
ated Legendre functions and the spherical Hankel functions
for loudspeaker placement. As an illustration, we design a
third order spherical harmonic reconstruction system using
16 loudspeakers.

1. INTRODUCTION

Spatial soundfield reconstruction is an important problem
whereby a listener is able to be immersed in a realistic, yet
virtual, sound environment. Possible applications include
complex supervisory control systems such as telecommuni-
cations and air traffic control systems, teleconferencing and
telepresence applications, gaming industry, and auditorydis-
plays. Whilst there has been a deal of progress in designing
practical two dimensional (2D) spatial soundfield reconstruc-
tion systems, however, extending them to operate well in 3D
requires unrealistic loudspeaker array configurations. Inthis
paper, we present a systematic way of designing a realistic
loudspeaker array geometry and associated signal process-
ing methodology to reconstruct a desired spatial soundfield
over 3 dimensional space.

There are three main approaches for 3D soundfield re-
construction: (i) Wave field synthesis (WFS) approach [1–3],
(ii) Inverse or Least squares approach where a loudspeaker
response of a given geometry is compared to a desired field
over a set of points [4]; and (iii) Spherical harmonic expan-
sion based approach [5–8]. Both WFS and spherical har-
monic based approaches have provided elegant solutions for
3D soundfield reconstruction and their error analysis. How-
ever, to recreate a 3D sound environment, the loudspeakers
generally need to be located in all directions in 3D result-
ing in geometries (such as spherical) which are impractical
in most of the intended applications.

This paper considers 3D soundfield reconstruction using
spherical harmonic expansion. We make use of the charac-
teristics of associated Legendre functions together with the
concept of continuous aperture functions to develop non-
spherical loudspeaker array geometry for 3D soundfield re-
production.

2. 3D SOUNDFIELD ANALYSIS

2.1 Spherical Harmonic Expansion

An arbitrary soundfield within a source free region can be
expressed [6] using spherical harmonics as

S(r,θ ,φ ;k) =
∞

∑
n=0

n

∑
m=−n

αnm(k) jn(kr)Pnm(cosθ )Em(φ) (1)

where m and n (≥ 0) are integers,αnm(k) are the spher-
ical harmonic coefficients of the soundfield,k = 2π f/c is
the wavenumber,f is the frequency,c is the speed of sound,
jn(·) are the spherical Bessel functions of ordern, Em(φ) =

(1/
√

2π)ejmφ are the normalized exponential functions and

Pnm(cosθ ) =

√
2n+1

2

√
(n−|m|)!
(n+ |m|)! Pn|m|(cosθ ) (2)

are the normalized associated Legendre functions. Note that
the normalized exponential functions and the normalized as-
sociated Legendre functions form orthonormal basis sets in
azimuthφ ∈ [0,2π) and elevationθ ∈ [0,π ], respectively.

2.2 Desired Soundfield Coefficients

Let the region of interestΩ be a sphere of radiusR. Since we
are interested in the limited regionΩ, the soundfield here can
be expressed by a finite set of coefficients, i.e a finite number
of terms of (1). Thus, for a soundfield withinΩ, the infi-
nite summation in (1) can be truncated [9] toN = ⌈keR/2⌉.
Hence, giving the total number of coefficients required to de-
scribe the desired sound field by(N+1)2. Table 1 depicts the
growth of the number of coefficients as ordern grows with
modesm ranging from−n to n.

Given the desired soundfield by{αd
nm(k)} for n =

0, . . . ,N, m = −n, . . . ,n, the goal of this work is to design
a practically realizable loudspeaker array configuration to
recreate the desired soundfield in the region of interestΩ.

3. SOUNDFIELD USING MULTIPLE
LOUDSPEAKERS

In this section, we briefly outline the theory of 3 dimen-
sional spherical harmonic based soundfield reconstructionas
reported in the literature.

3.1 Least Squares Solution

Let there beQ> (N+1)2 loudspeakers randomly placed out-
side the regionΩ at locationsyq ≡ (rq,θq,φq), q = 1, . . . ,Q.
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m�n 0 1 2 . . . N
N αNN
...

2 α22
...

1 α11 α21
m= 0 α00 α10 α20 . . . αN0
−1 α1(−1) α2(−1)

−2 α2(−2)

...
...

...
−N αN(−N)

Table 1: Soundfield coefficients arranged with ordern and
degreem.

Then the soundfield at a pointx ∈ Ω due to these loudspeak-
ers is given by

S̃(r,θ ,φ ;k) =
Q

∑
q=1

wq(k)
eik‖y−x‖

4π‖y−x‖ , (3)

wherex ≡ (r,θ ,φ), andwq(k) are the loudspeaker weights.
The goal here is to determine the loudspeaker weights which
produce the desired soundfield.

We substitute the Jacobi-Anger expansion [10]

eik‖yq−x‖
‖yq−x‖ = 4π ik

∞

∑
n=0

n

∑
m=−n

h(1)
n (kyq)Pnm(cosθq)E−m(φq)

× jn(kr)Pnm(cosθ )Em(φ) (4)

into (3), and equate with (1) to obtain

αnm(k) =
Q

∑
q=1

ikwq(k)h
(1)
n (krq)Pnm(cosθq)E−m(φq). (5)

The loudspeaker weightswq(k) can then be obtained by eval-
uating (5) forn = 0, . . . ,N, andm = −n, . . . ,n and setting
a system of simultaneous equations [6]. Such a system of
equations could be solved using the Least Squares method.

3.2 Mode-matching on a sphere

Mode-matching is a more elegant but practically complex
method where the concept of a continuous loudspeaker aper-
ture [7] is used. In this solution for soundfield reconstruction,
a large number of loudspeakers are placed on a sphere with
radiusR̃> R. The weights of the loudspeakers are given by
a theoreticalcontinuous aperture function1 ρ(θ ,φ ;k) at the
loudspeaker position. The corresponding soundfield due to
the continuous spherical loudspeaker is given by

S̃(r,θ ,φ ;k) =

∫ 2π

0

∫ π

0
ρ(θ̃ , φ̃ ;k)

exp(k‖ỹ−x‖)
4π‖ỹ−x‖

×sinθ̃ dφ̃dθ̃ . (6)

1A continuous aperture function is a limiting case of a closely packed set
discrete loudspeakers.
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Figure 1: Circular continuous aperture located at(rq,θq) out-
side the region of interestΩ

An arbitrary spherical aperture function can be written using
spherical harmonics as

ρ(θ ,φ ;k) =
∞

∑
n=0

n

∑
m=−n

γnm(k)Pnm(cosθ )Em(φ). (7)

whereγnm(k) are the spherical harmonic coefficients of the
aperture function. By substituting (4) and (7) into (6) and
evaluating the integration, we have

S̃(r,θ ,φ ;k) =
∞

∑
n=0

n

∑
m=−n

ikγnm(k)h(1)
n (kR̃)

× jn(kr)Pnm(cosθ )Em(φ) (8)

By equating the loudspeaker soundfield (8) with the desired
field, we can obtain the unknown aperture function

αd
nm(k) = ik γnm(k)h(1)

n (kR̃). (9)

This is called mode-matching since a mode of the desired
soundfield is matched to the corresponding mode of the aper-
ture function. The continuous spherical apertureρ(θ ,φ ;k)
needs to be sampled to find an equivalent array of loudspeak-
ers. However, placing loudspeakers equidistantly on a sphere
is not straightforward. Similarly, it is hard to imagine having
a practical spherical shell loudspeaker array where the de-
sired region of interest is in the middle of the spherical array.

4. CIRCULAR MULTISPEAKER CONFIGURATION

In this section, we consider an alternative array structurefor
soundfield reconstruction.

4.1 Circular Aperture

Consider a theoretical horizontal continuous circular loud-
speaker aperture located at an elevation angle ofθq and a
distancerq from the origin of the desired region of interest as
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shown in Figure 1. Let the aperture function2 of the continu-
ous loudspeaker beρq(φ ;k). Since the aperture function is a
periodic function of azimuth angleφ , we can use the Fourier
series to write [11]

ρq(φ ;k) =
m=∞

∑
m=−∞

β (q)
m (k)Em(φ) (10)

whereβ (q)
m (k) are the frequency dependent Fourier coeffi-

cients. Let us examine the resulting soundfield within the
region of interest due to this circular loudspeaker aperture in
the following theorem.

Theorem 4.1 The spherical harmonic coefficients of the
soundfield in the region of interestΩ due to a horizontal
continuous circular loudspeaker aperture at(rq,θq) with a
aperture functionρq(φ ;k) is given by

α(q)
nm(k) = ikh(1)

n (krq)Pnm(cosθq)β
(q)
m (k) (11)

where

β (q)
m (k) =

∫ 2π

0
ρq(φ ;k)E−m(φ)dφ (12)

are the Fourier series coefficients of the aperture function.

Proof The soundfield due to the circular aperture can be
written as

Sq(r,θ ,φ ;k) =

∫ 2π

0
ρq(φ̂ ,k)

exp(ik‖yq−x‖)
4π‖yq−x‖ dφ̂ (13)

whereyq ≡ (rq,θq, φ̂ ) is a point on the circular aperture and
x ≡ (r,θ ,φ) is a point within the region of interest. By sub-
stituting (10) and (4) into (13) and integrating, we can ex-
press (13) in the spherical harmonic expansion form (1) and
obtain the coefficientsαnm(k) as in (11).

We have following comments on Theorem 4.1:

• The circular aperture function is completely described by

the Fourier coefficients{β (q)
m (k)}.

• Note from (11) that eachβ (q)
m (k) for a specificm, would

only induce soundfield coefficients of fixed degreemand
ordersn = |m|, . . . ,∞. Hence, we can control the sound-
field of a given degreem (along a row of Table 1) by

choosing appropriate values forβ (q)
m (k).

• The normalized associated Legendre functionsPnm(·)
have a number of zeros (see Figures 2 and 3). Thus, for
some values ofn,m andθq, the induced soundfield coef-
ficient αnm(k) in (11) is equal to zero irrespective of the

value ofβ (q)
m (k). We exploit this fact later in the paper to

create a new loudspeaker layout for spatial sound repro-
duction.

A single circular aperture (10) can only control the sound-
field coefficients along degreesm but not on ordersn. Thus,
we consider multiple circular continuous loudspeakers in the
next section.

2Sometimes this is referred as thedriving function.

4.2 Multiple circles

Suppose there is a set ofQ circles of horizontal continuous
loudspeakers located at(rq,θq) for q = 1, . . . ,Q, with corre-
sponding aperture functionsρq(φ ;k) given by (10). Then the
coefficients of the resulting soundfield are given by

αnm(k) =
Q

∑
q=1

ikh(1)
n (krq)Pnm(cosθq)β

(q)
m (k). (14)

Note that for a specificm, the aperture function coefficients

β (q)
m (k) from all circles contribute to the soundfield coeffi-

cients of degreem.
For a finite dimensional spherical region of interest with

radiusR, we only need to control soundfield coefficients up
to orderN = ⌈keR/2⌉. Thus, by having a sufficient number of
circular loudspeakers, we can control the required soundfield
coefficients to reconstruct a desired given soundfield with the
region of interest. In the next section, we show how to calcu-
late the aperture function coefficients when given a desired
soundfield.

4.3 Matrix Formulation

Suppose the desired soundfield is given by(N + 1)2 coeffi-

cientsαd
nm(k). To find the required aperture coefficientsβ (q)

m ,
we equate the left hand side of (14) toαd

nm(k) for a specific
m andn = |m|, |m|+ 1, · · · ,N. We write the resulting set of
simultaneous equations in matrix form, as

Am = HmBm (15)

whereAm = [αd
|m|m(k),αd

(|m|+1)m(k), . . . ,αd
Nm(k)]T ,

Hm = ik× (16)



h(1)
1 (kr|m|)Pmm(cosθ1) · · · h(1)

|m|(krQ)Pmm(cosθQ)

...
. . .

...

h(1)
N (kr1)PNm(cosθ1) · · · h(1)

N (krQ)PNm(cosθQ)


 ,

andB = [β (1)
m , . . . ,β (Q)

m ]T .
Equation (15) could be solved forB using the Least

Squares method provided thatHm is non singular. Such a
solution may or may not exist if an arbitrary set of circles are
used. In a practical set up, we need to avoid certain angles.
In the following section we develop a systematic procedure
to set up a circular loudspeaker array system.

5. IMPLEMENTATION

5.1 Location of Circles

We suggest the following procedure to determine the loca-
tion of circular apertures and further calculate the relevant
aperture coefficients.

Step 1 (m = N series): If the desired region of inter-
est is order limited toN, then the only applicable soundfield
coefficient for this series isαd

NN(k) as there are no lower
order coefficients and the higher order components will have
negligible effect on this region. Thus, we have

αNN(k) =
Q

∑
q=1

4π ikh(1)
N (krq)PNN(cosθq)β

(q)
N (k). (17)

811



0 20 40 60 80 100 120 140 160 180
−10

−8

−6

−4

−2

0

2

ANGLE θ (DEGREES)

M
A

G
N

IT
U

D
E

(2,0)

(3,1)

(1,1)

(2,2)

(0,0)

Figure 2: Magnitude of the normalized associate Leg-
endre functionsPnm(cosθ ) in dB, where the addi-
tion of order n and mode m are even: (n, |m|) =
(0,0);(2,0);(1,1);(2,2);(3,1)
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Figure 3: Magnitude of the normalized associate Legendre
functionsPnm(cosθ ) in dB, where the addition of ordern
and modem are odd:(n, |m|) = (1,0);(2,1);(3,0);(3,2)

In this case, there is only one coefficient to be controlled, and
hence, we only need a single circle. In order to chooseθq for
this circle such thatPNN(cosθq) 6= 0, we selectθq = π/2,
as alleven3 associated Legendre functions have significantly
large and stable values (see Figure 2). Thus, we choose the

x-y plane to place the first circle. We also setβ (q)
N (k) = 0

for all other circles (which we will add to the system in the
subsequent steps). Thus, (17) reduces to

αNN(k) = 4π ikh(1)
N (kr1)PNN(cosθ1)β

(1)
N (k), (18)

which can be used to determineβ (1)
N (k).

Step 2 (m = N − 1 series): For this series,n = N − 1
andn = N coefficients are applicable, and the corresponding
Legendre functions areP(N−1)(N−1)(·) and PN(N−1)(·).
Since there are two soundfield coefficients, the system of

3Evenandoddare defined when the sum ordern and degreem are even
and odd, respectively.

simultaneous equations (15) has only two equations. Thus,

β (q)
N−1(k), from two circles will suffice to realize the desired

soundfield coefficients. As one of the soundfield coefficients
is even, we can reuse the first circle (q = 1), with the
aperture coefficientβ (1)

N−1(k). The second circle needs to be
located at a particularθ2 wherePN(N−1)(θ2) 6= 0. We can
use Figure 3 to determine an appropriate value4 for θ2. We

also setβ (q)
N−1(k) = 0 for q > 2, i.e., for other circles. The

matrix equation (15) becomesAN−1 = HN−1BN−1 where
AN−1 = [αd

(N−1)(N−1)(k)α
d
N(N−1)(k)]

T , HN−1 = ik×
[

h(1)
N−1(kr1)PN−1N−1(cosθ1) h(1)

N−1(kr2)PN−1N−1(cosθ2)

h(1)
N (kr1)PNN−1(cosθ1) h(1)

N (kr2)PNN−1(cosθ2)

]
,

and BN−1 = [β (1)
N−1β (2)

N−1]
T . Therefore, we obtain

BN−1 = H−1
N−1AN−1.

Step 3 (m = N − 2 series): In this case, we
need to control three soundfield coefficients
(N − 2,N − 2),(N − 1,N − 2),(N,N − 2). To solve
this system, we reuse the first two circles and introduce a
third circle with appropriateθq whereP(N−2)(N−2)(θ3) 6= 0.

As before, we setβ (q)
N−2(k) = 0 for q > 3. Now we use (15)

to determineβ (q)
N−2(k) for q = 1,2,3.

Step N+1 (m = 0 series): There areN + 1 coefficients
in this series. Hence, we can reuse all previously established
circles together with a new circle. Since, the final circle is
needed for a single coefficient, it can be a single point at

θN+1 = 0. As before,β (q)
0 (k) for q = 1, . . . ,N + 1 can be

calculated from (15).
Note that the same set of circles could be reused for neg-

ative values ofm, i.e., starting withm = −N from the first
circle.

5.2 Discretization

For practical implementation, we need to discretize the con-
tinuous aperture functions at each circle [11]. Since there
are only a finite number of Fourier coefficients in the aper-
ture functionsρq(φ ;k) they can be implemented by a finite
number of loudspeakers.

6. SIMULATION

To illustrate the technique, we simulate a third order system
(N = 3) in this paper. For a third order system the region
of interest is a sphere of radius 3cm and frequency of opera-
tion is 3500 Hz. Hence, we can accurately reproduce a given
soundfield within this spherical region. For a larger repro-
duction region, we need a higher order system.

As outlined in Section 5, we locate four circles and deter-
mine the aperture function coefficients for each circle. The
design information is tabulated in Table 2 together with the
desired spherical harmonic coefficients for each circle and

the respectiveβ (q)
m values.

The desired soundfield for the simulation is a plane wave
arriving at an angle of(θ ,φ) = (90o,90o), which gives the

4A complete guideline to choosing elevation angles for even and odd
associated Legendre functions are given in [12].
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circle no. rq, θq αnm β (q)
m

1 1.8m, 90o α33,α22,α11,α00 β 1
3 ,β 1

2 ,β 1
1 ,β 1

0
2 1.7m, 65o α32,α21,α10 β 2

2 ,β 2
1 ,β 2

0
3 2.4m, 25o α31,α20 β 3

1 ,β 3
0

4 2.1, 0o α30 β 4
0

Table 2: Design parameters for a third order system using

four circles to determineβ (q)
m for the desiredαnm(k).
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Figure 4: Imaginary part of the desired soundfield: A plane
wave arriving at an angle of(θ ,φ) = 90o,90o at an operating
frequency of 3500 Hz
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Figure 5: Imaginary part of the reproduced soundfield with
the desired region of interest encircled at an operating fre-
quency of 3500 Hz

desired{αd
nm(k)}. Figure 4 depicts a cross section of the de-

sired plane wave soundfield along the x-y plane where the
desired region is marked by a circle. We then calculate the
required aperture function coefficients for the third ordersys-
tem. The corresponding loudspeaker weights are calculated
by sampling the aperture functions of each circle. The repro-
duce soundfield is plotted in Fig 5.

7. CONCLUSION

Practical implementation of 3D soundfield reconstruction
systems are difficult due to complex loudspeaker array con-
figurations. In this paper, we have showed a technique to
design a practically realizable and robust loudspeaker array
system by strategically placing circles of loudspeaker arrays.
A third order system using 16 loudspeakers was implemented

showing results that reconstructed field resembled the de-
sired plane wave field within the desired region of interest.
We plan to extend the simulation of a higher order system,
thus increasing the size of reproduction region, and detailed
error analysis in a future publication.
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