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ABSTRACT 2. 3D SOUNDFIELD ANALYSIS

Three dimensional (3D) spatial soundfield reconstructior2.1 Spherical Harmonic Expansion

techniques typically need multiple loudspeakers placed oR, arbitrary soundfield within a source free region can be

the surface of a sphere covering a desired region of recon; . : ;
struction. Such array geometries have certain limitattbas r?-,\xpressed [6] using spherical harmonics as

make them impractical in most of the intended applications. ® N .

In this paper, we show how to reconstruct 3D soundfields us-S(r; 6, @;k) = Zo > anm(K) jn(Kr) Znm(cos8)Em(¢) (1)
ing a set of circular arrays. The proposed method uses circu- n=0m=-n

lar harmonics alongwith the underlying theory of wavefield, hare m and n (> 0) are integersanm(k) are the spher-
propagation. Specifically, we use the properties of the@sso e\ harmonic coefficients of the soundfieki= 27tf /c is

ated Legendre functions and the sp.hericaI.HankeI fun(.:tionﬁle wavenumbett is the frequencyc is the speed of sound
for loudspeaker placement. As an illustration, we design ?n(-) are the spherical Bessel functions of ordeEm(@) =

tlhér%l?éggreas“gggncal harmonic reconstruction systemgisin (1/+v/2m)ei™® are the normalized exponential functions and

_ |
1. INTRODUCTION «@nm(COSQ)Z\/Zn; ! EL:EB;an(cose) @)

Spatial soundfield reconstruction is an important problem ) ) )

whereby a listener is able to be immersed in a realistic, yetre the normalized associated Legendre functions. Note tha

virtual, sound environment. Possible applications inelud the normalized exponential functions and the normalized as

complex supervisory control systems such as telecommunsociated Legendre functions form orthonormal basis sets in

cations and air traffic control systems, teleconferencimgy a azimuthg € [0,2m) and elevatior® € [0, 71], respectively.

telepresence applications, gaming industry, and auddisry . , .

plays. Whilst there has been a deal of progress in designing2 Desired Soundfield Coefficients

practical two dimensional (2D) spatial soundfield recanstr | et the region of interesd be a sphere of radilR Since we

tion systems, however, extending them to operate well in 3Qre interested in the limited regi@h the soundfield here can

requires unrealistic loudspeaker array configurationshi;  pe expressed by a finite set of coefficients, i.e a finite number

paper, we present a systematic way of designing a realistisf terms of (1). Thus, for a soundfield withi@, the infi-

loudspeaker array geometry and associated signal procesfite summation in (1) can be truncated [9]No= [keR/2].

ing methodology to reconstruct a desired spatial soundfielgience, giving the total number of coefficients required to de

over 3 dimensional space. scribe the desired sound field By + 1)2. Table 1 depicts the
There are three main approaches for 3D soundfield regrowth of the number of coefficients as ordegrows with

construction: (i) Wave field synthesis (WFS) approach [1-3]Jmodesmranging from—nto n.

(i) Inverse or Least squares approach where a loudspeaker Given the desired soundfield b{/arﬁ’m(k)} for n =

response of a given geometry is compared to a desired fiefl... N, m= —n,...,n, the goal of this work is to design

over a set of points [4]; and (iii) Spherical harmonic expan-a practically realizable loudspeaker array configuration t

sion based approach [5-8]. Both WFS and spherical harecreate the desired soundfield in the region of intefest
monic based approaches have provided elegant solutions for

3D soundfield reconstruction and their error analysis. How-
ever, to recreate a 3D sound environment, the loudspeakers 3. SOUNDFIELD USING MULTIPLE

generally need to be located in all directions in 3D result- LOUDSPEAKERS
ing in geometries (such as spherical) which are impractical . . ) )
in most of the intended applications. In this section, we briefly outline the theory of 3 dimen-

This paper considers 3D soundfield reconstruction usin ional spherical_harmonic based soundfield reconstruason
spherical harmonic expansion. We make use of the charafePorted in the literature.
teristics of associated Legendre functions together whiéh t .
concept of continuous aperture functions to develop nons-1 LeastSquares Solution
spherical loudspeaker array geometry for 3D soundfield reket there beQ > (N+1)? loudspeakers randomly placed out-
production. side the regiof2 at locationsyq = (rq, 6, @), d=1,...,Q.
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Table 1: Soundfield coefficients arranged with ordeand
degreem.

Then the soundfield at a poirte Q due to these loudspeak- ) )
ers is given by Figure 1: Circular continuous aperture locate¢gt6y) out-

side the region of intere€

~ Q gklly—x|

S(raevqou k) = qu(k)ﬁv (3)
a=1 iy — x| An arbitrary spherical aperture function can be writtemgsi

spherical harmonics as

wherex = (r, 8, @), andwg(k) are the loudspeaker weights.

The goal here is to determine the loudspeaker weights which ©

produce the desired soundfield. P(6.¢:K) =73 > Ym(k)Pnm(cosd)Em(@). (7)

We substitute the Jacobi-Anger expansion [10] n=0m=-n
whereynm(k) are the spherical harmonic coefficients of the

dlvax| @ on ! al .
~ ' _4mik hY (kviy) 2 (cOSBLE._ aperture function. By substituting (4) and (7) into (6) and
lyq—x|| nZo Zn " (k¥a) Fam(COSE ) E-m( 1) evaluating the integration, we have
X jn(Kr) Ppm(cos8)Em(@) 4) o "
Sr,6,0,k) = ikyam(K)hy (KR
into (3), and equate with (1) to obtain S8, ¢ik) n;)m:Zn W(K)h” (kR
0 X jn(Kr) Znm(cos)Em(@) (8)
N o (1)
Anm(k) = qulkWQ(k)h” (krq) Znm(CoS6q)E-m(@).  (5) By equating the loudspeaker soundfield (8) with the desired

field, we can obtain the unknown aperture function

The loudspeaker weightg, (k) can then be obtained by eval- q ] D) s

uating (5) forn=0,...,N, andm= —n,...,n and setting Apm(K) = ik yam(K) hs” (kR). )

a system of simultaneous equations [6]. Such a system of

equations could be solved using the Least Squares methodThis is called mode-matching since a mode of the desired
soundfield is matched to the corresponding mode of the aper-

3.2 Mode-matching on a sphere ture function. The continuous spherical apertp(é, ¢; k)

o , needs to be sampled to find an equivalent array of loudspeak-
Mode-matching is a more elegant but practically complexers. However, placing loudspeakers equidistantly on argphe
method where the concept of a continuous loudspeaker apg&-not straightforward. Similarly, it is hard to imagine fray
ture [7] is used. In this solution for soundfield reconstiurtt 5 practical spherical shell loudspeaker array where the de-
a large number of loudspeakers are placed on a sphere wisfred region of interest is in the middle of the sphericahgrr
radiusk > R. The weights of the loudspeakers are given by
a theoreticatontinuous aperture functidrp (8, ¢;k) at the
loudspeaker position. The corresponding soundfield due t9  ~|RCULAR MULTISPEAKER CONFIGURATION
the continuous spherical loudspeaker is given by '

In this section, we consider an alternative array strudire
~ expKlly —x[) soundfield reconstruction.

sro.00= [ [ ook
S(r, ,(p,)—/o '/0 p(6,9; )m

e~ 4.1 Circular Aperture

« sinBdgdd. ©) _ e | _ _
Consider a theoretical horizontal continuous circulardiou

1A continuous aperture function is a limiting case of a clpgeicked set  SPeaker aperture located at an elevation anglé;cdnd a

discrete loudspeakers. distance q from the origin of the desired region of interest as
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shown in Figure 1. Let the aperture functfasf the continu- 4.2 Multiple circles
ous loudspeaker bey(@; k). Since the aperture function is a
periodic function of azimuth anglg, we can use the Fourier
series to write [11]

Suppose there is a set Qfcircles of horizontal continuous
loudspeakers located féiy, 65) for q=1,...,Q, with corre-
sponding aperture functiomg(¢; k) given by (10). Then the
Mco coefficients of the resulting soundfield are given by
(@)= 5 B (Em(9) (10) Q. o

m== anm(K) = 3 iKhi (Krq) Zom(cosfy) B (). (14)

d=1
where B\ (k) are the frequency dependent Fourier coeffi- e : -
cients.BnI]_e(t Ls examine ?he regultinpg soundfield within the\Ote that for a specifion, the aperture function coefficients
region of interest due to this circular loudspeaker aperitur B_r(nq)(k) from all circles contribute to the soundfield coeffi-
the following theorem. cients of degreen.
For a finite dimensional spherical region of interest with

Theorem 4.1 The spherical harmonic coefficients of the radiusR, we only need to control soundfield coefficients up
soundfield in the region of intere§? due to a horizontal toordemM = [keR/2]. Thus, by having a sufficient number of
continuous circular loudspeaker aperture @, 6;) with a ~ circular loudspeakers, we can control the required souldfie
aperture functiorpg(;k) is given by coefficients to reconstruct a desired given soundfield vii¢h t
region of interest. In the next section, we show how to calcu-

) L) Q) late the aperture function coefficients when given a desired
anm () = ikhi™ (krg) Znm(cos8g)Bm” (k) (11)  soundfield.

where 4.3 Matrix Formulation
2
B (k) = npq(q;; K)E_m(@)dg (12)  Suppose the desired soundfield is given(by+ 1)2 coeffi-
0 cientsad, (k). To find the required aperture coeﬁicieﬁt&?),
are the Fourier series coefficients of the aperture function we equate the left hand side of (14)dd.,(k) for a specific
mandn= |m|,|m/+1,--- ,N. We write the resulting set of
Proof The soundfield due to the circular aperture can beimultaneous equations in matrix form, as

written as Ap—H,Br (15)
. 2 o ERKlyg —x]) - whereAm=[ad. (K),ad . (K),....ad (K]
S(r,6,9:k) = /0 Pq(@, k)m dp (13) m = 1Amm{) Ay ym{)> - ANmL
Hy=ikx (16)
whereyq = (fq, 8y, (])) is a point on the circular aperture and (1) (1)
x = (r, 8, ) is a point within the region of interest. By sub- " (K ) #mm(COS6L) i (KrQ) #mm(Costo)
stituting (10) and (4) into (13) and integrating, we can ex- : : )
press (13) in the spherical harmonic expansion form (1) and| , 1 1
obtain the coefficientanm(k) as in (11). bR (ki) Pm(cosbr) -+ hi (ki) Pum(costo)
. _1gW (Q
We have following comments on Theorem 4.1: andB = [fm BT

. . . Equation ’(157) could be solved fd8 using the Least
e The circular aperture function is completely described bySquares method provided thH, is non singular. Such a
the Fourier coef‘ficient$[3r$qq> (K)}. solution may or may not exist if an arbitrary set of circles ar

« Note from (11) that eacﬂr@(k) for a specifiom, would used. In a p_ractical set up, we need to avoid cgrtain angles.
only induce soundfield coefficients of fixed degneand In the foIIow_lng section we develop a systematic procedure
ordersn = |m,..., . Hence, we can control the sound- [0 S€t up a circular loudspeaker array system.

field of a given degreen (along a row of Table 1) by

choosing appropriate values fﬁ,‘;]q)(k). ) _
e The normalized associated Legendre functighg,(-) 9-1 Location of Circles

have a number of zeros (see Figures 2 and 3). Thus, fafe suggest the following procedure to determine the loca-

some values ofi, m and 6y, the induced soundfield coef- tion of circular apertures and further calculate the raieva
ficient anm(k) in (11) is equal to zero irrespective of the aperture coefficients.

value ofﬁéqm(k). We exploit this fact later in the paper to ) _ ) )

create a new loudspeaker layout for spatial sound reprédtep 1 (n= N series): If the desired region of inter-

duction. est is order limited tdN, then the only applicable soundfield

g.coefficient for this series imdy(K) as there are no lower
order coefficients and the higher order components will have
negligible effect on this region. Thus, we have

5. IMPLEMENTATION

A single circular aperture (10) can only control the soun
field coefficients along degreesbut not on orders. Thus,
we consider multiple circular continuous loudspeakerfh@n t
next section.

ann(k) = %4m‘kh&”(qu)%N(coseq)B,g‘”(k). 17)
d=1

2Sometimes this is referred as ttigving function.
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simultaneous equations (15) has only two equations. Thus,

B,@l(k), from two circles will suffice to realize the desired
soundfield coefficients. As one of the soundfield coefficients
of PR ] is even, we can reuse the first circlg £ 1), with the

00 aperture coeﬁicierﬁ,gljl(k). The second circle needs to be
located at a particula, where Zyn-1)(62) # 0. We can
use Figure 3 to determine an appropriate Vilioe 6,. We
also setﬁ,@l(k) =0 forqg> 2, i.e., for other circles. The
matrix equation (15) become&y_1 = Hy_1Bn_1 where
An1= [a(del)(Nfl)(k)al(\jl(Nfl)(k)]T’ Hpy 1 =ikx

2.0)

(3.1)

MAGNITUDE

@y /

(2.2)

1 1
R R hﬁli%(kfl)%—mfl(coseﬁ h(nﬁll(k@)%flwfl(coseﬂ ,
ANGLE © (DEGREES) i (krp) Pan-1(cos)  h{ (krp) Zan_1(costy)
Figure 2: Magnitude of the normalized associate Legand By ; = [B{",8%,]". Therefore, we obtain

endre functions Znym(cosf) in dB, where the addi- B —H-1 A

tion of order n and modem are even: (n,|m|) = N-1 N-1 N1

(0,0);(2,0);(1,1);(2,2);(3,1) Step 3 (= N — 2 series): In this case, we
need to control three soundfield coefficients
(N-2N—-2),(N-—1N-2),(N,N—-2). To solve
this system, we reuse the first two circles and introduce a
third circle with appropriat®, where 2 y_o)n-2)(63) # 0.

As before, we seﬁ,@z(k) =0 forg > 3. Now we use (15)

to determineﬁ,ﬁ,‘fz(k) forq=1,2,3.

Step N+1 fn = O series): There areN + 1 coefficients

in this series. Hence, we can reuse all previously estaalish
circles together with a new circle. Since, the final circle is
needed for a single coefficient, it can be a single point at

6u:1 = 0. As before,B¥(k) for g=1,...,N+1 can be

N calculated from (15).

T I Note that the same set of circles could be reused for neg-
ative values ofm, i.e., starting withm = —N from the first
circle.

Figure 3: Magnitude of the normalized associate Legendre

functions #Znm(cosf) in dB, where the addition of order 5.2 Discretization

and modemare odd:(n, |m/) = (1,0);(2,1):(3,0);(3,2) For practical implementation, we need to discretize the con
tinuous aperture functions at each circle [11]. Since there
are only a finite number of Fourier coefficients in the aper-

In this case, there is only one coefficientto be controlled, a {1 function -K) thev can be implemented by a finite
hence, we only need a single circle. In order to chadder |, mber of Iojc)iqs(p()péa?(ers.y P y

this circle such that?nn(costy) # O, we selecBy = 11/2,

as alleverf associated Legendrp functions have significantly 6. SIMULATION
large and stable values (see Figure 2). Thus, we choose the . ] ) )

) . ) To illustrate the technique, we simulate a third order syste
x-y plane to place the first circle. We also sﬁ{f (k)=0

X : ; . (N = 3) in this paper. For a third order system the region
for all other circles (which we will add to the system in the of interest is a sphere of radius 3cm and frequency of opera-
subsequent steps). Thus, (17) reduces to

tion is 3500 Hz. Hence, we can accurately reproduce a given
soundfield within this spherical region. For a larger repro-

MAGNITUDE

ann(k) = 4mikh{ (kr1) Zun(cos6r) B (K), (18)  duction region, we need a higher order system.
As outlined in Section 5, we locate four circles and deter-
which can be used to determiﬁél)(k), mine the aperture function coefficients for each circle. The

design information is tabulated in Table 2 together with the
Step 2 = N — 1 series): For this seriesn =N —1  desired spherical harmonic coefficients for each circle and
andn = N coefficients are applicable, and the correspondinghe respectiv«fz?r(#) values.
Legendre functions are?(y_1n-1)(-) and Pyn_1)(-)- The desired soundfield for the simulation is a plane wave
Since there are two soundfield coefficients, the system crriving at an angle of9, @) = (90°,90°), which gives the

SEvenandoddare defined when the sum ordeand degreen are even 4A complete guideline to choosing elevation angles for evet add
and odd, respectively. associated Legendre functions are given in [12].
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B!

circle no. rq, Oy Onm
1 1.8m, 9C | ass, 022,011,000 | B3,B3, 61,65
2 1.7m, 65 a32,021,010 Bzz, Bf, BOZ
3 2.4m, 25 asq, 020 BE,BOS
4 2.1, (03 asp 61

Table 2: Design parameters for a third order system using
four circles to determinBrgqq> for the desiredynm(k).

(2]

(3]

(4]

(5]

Figure 4: Imaginary part of the desired soundfield: A plane
wave arriving at an angle ¢, ¢) = 90°,90° at an operating
frequency of 3500 Hz

Figure 5: Imaginary part of the reproduced soundfield with

the desired region of interest encircled at an operating fred10]

guency of 3500 Hz

(11]

desired{ad.(k)}. Figure 4 depicts a cross section of the de-
sired plane wave soundfield along the x-y plane where the
desired region is marked by a circle. We then calculate the
required aperture function coefficients for the third orsies-

(6]

[7]

tem. The corresponding loudspeaker weights are calculatetgz]

by sampling the aperture functions of each circle. The repro
duce soundfield is plotted in Fig 5.

7. CONCLUSION

Practical implementation of 3D soundfield reconstruction
systems are difficult due to complex loudspeaker array con-
figurations. In this paper, we have showed a technique to
design a practically realizable and robust loudspeakawyarr
system by strategically placing circles of loudspeakeaysr
Athird order system using 16 loudspeakers was implemented
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showing results that reconstructed field resembled the de-
sired plane wave field within the desired region of interest.
We plan to extend the simulation of a higher order system,
thus increasing the size of reproduction region, and detail
error analysis in a future publication.
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