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Abstract— This paper presents a localization algorithm to
detect lung sounds using an circular array of microphones. We
use the natural basis functions of propagation waves in height
invariant wavefields to form a spatial minimum variance (MV)
problem in eigen space. We also derive a Nyquist criteria for
localizing sources within a circular. Further, the Nyquist criteria
shows that the radius of the region where sources can be localized
is inversely proportional to the frequency of sound. The modified
Nyquist criteria can be used for determining the number of
sensors required for a required resolution, frequency range, and
radius of the region for which sources need to be localized. The
results are corroborated by computer simulations.

I. INTRODUCTION

Lung disorders or injury can result in changes in the spectral
and/or spatial content of normal lung sounds. Localizing these
lung sounds as an acoustic image can provide information to
the extent and location of the disorder. Physicians have been
using the stethoscope, since its invention in 1816, to detect and
diagnose lung disorders. The use of a single stethoscope allows
diagnosis from one location only at one instance and is qual-
itative being dependent on the skill of the physician. Multiple
sensors to record data from several location simultaneously
can be used to capture more information from the audible
range of sounds produced by the lungs. However, localization
of multiple nearfield sound sources within an array of sensors
is a challenging signal processing problem, which has not been
considered in the literature.

Localization of lung sounds from multi-sensor recordings
can be classified as a problem of source localization within a
circular array of sensors. Ward et. al. [1] used an optimization
method to localize a single source in the interior of a sensor
array. However, this optimization transformation cannot be
applied when multiple sources are involved. In this paper, we
propose an algorithm to localize multiple sources within a
circular array of sensors using cylindrical harmonic functions
of the wave equation. It is advantageous to use these functions
since wave propagation through a layered cylindrical media
can be analyzed by these functions and the chest can be
modeled as cylindrical layered media.

Existing lung diagnosis methods involve ultrasound tech-
niques. However, ultrasound techniques have poor perfor-
mance with high frequency sounds [2]. Lung sound analysis
with multiple stethoscopes can be used as a first diagnosis
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tool for the lung. Well established methods such as CT and x-
rays can later be applied to confirm the results obtained form
the multiple stethoscope device. Diseases or injury can cause
alterations in the structure and function of the lungs, thus they
can cause changes in lung sound production and transmission.
Lung consolidation, pneumothorax and airway obstructions are
a some of the conditions that can cause spectral and regional
changes in lung sounds, if these changes are properly analyzed
and localized from multi-sensor recordings then the extent and
location of the trauma can be acquired [3], [4].

There are previous attempts to use multiple acoustic sensors
in lung sound diagnostics [4]–[8] One of the earliest work
on this was by Kompis et. al. who presented a solution
for acoustic imaging of the human chest [4]. His algorithm
was independent of the time of arrival of lung sounds and
used a triangulation approach to locate sound sources from
multiple sensor recordings. Others tried to either incorporate
a more accurate acoustic transmission model of the lung at
the expense of the localizing algorithm or proposed better
localizing algorithms by simplifying the acoustic transmission
model. Murphy assumed a isotropic velocity and calculated
the locations of lung sounds based on differences in arrival
times at the different sensors [7].

The aim of this paper is to propose and analyze sound
localization algorithms within a circular sensor array for appli-
cation to lung sound localization. However, the algorithms can
be applied in sensor monitoring, hands free communication
in rooms or for recording sounds in an auditorium. The
solution to the Helmholtz wave equation can be synthesized
and analyzed for a cylindrical co-ordinate system with a set
of eigen basis functions. These eigen basis functions are the
cylindrical harmonics. The lung can be modeled as a layered
cylindrical structure and propagation in such environments
can include reflection and refraction and can be analyzed
using cylindrical harmonic functions [9]–[11]. This paper
aims to develop localizing algorithms using these eigen basis
functions and investigates their performance under different
conditions. The localizing algorithms rely on the eigen basis
decomposition since this will allow extension to a layered
cylindrical model of lung sound propagation. Further, these
eigen basis function were shown to be versatile for direction-
of-arrival (DOA) estimation [12].

The main contributions of the paper are described as fol-
lows:
• Propose and derive a spectral-based source localization
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algorithm using the natural basis functions of wave
propagation in height invariant wavefields. Spectral based
methods are more accurate than triangulation. Further,
methods using differences in arrival times require higher
precision equipment than spectral based algorithms.

• Performance of the proposed algorithm in terms of reso-
lution, frequency range, number of sensors and radius of
region for which sources can be localized is investigated.

II. SYSTEM MODEL

We assume a simple height invariant radius R cylindrical
chest model where the body is assumed to have a homoge-
neous medium. Consider Q sensors uniformly placed around
the chest on a circle of radius of R. Let the sound sources are
narrowband, zero mean, stationary point cylindrical sources
with frequency f . This scenario is illustrated by Fig. 1.

Sensors

R

2D Sources

Fig. 1. The height invariant chest model.

Let Q sensors be located xq ≡ (R, θq) with respect to a
origin located at the center of the circle of radius R. We also
assume that there are V sources present within the region
enclosed by the sensors. Let yv ≡ (yv, φv) be the vector
containing the location of the vth source, where yv is the
distance from the origin and φv is the angular position of the
vth source. We use wavenumber k in this paper to represent
frequency f since k = 2πf/c where c is the speed of sound
propagation. We can write the received signal at the qth sensor
as

zq(k) =
V∑

v=1

i

4
H

(2)
0 (k||xq − yv||)sv(k) + nq(k) (1)

where H
(2)
0 (·) is the Hankel function of the second kind of

order 0, sv(k) is the signal form the vth source, and nq(k)
is the additive white Gaussian noise at the qth sensor. Note
that the factor (i/4)H(2)

0 (k||xq − yv||) is the fundamental
solution to the wave equation in height invariant cylindrical
coordinates1. Now, we can write the received signal vector at
the sensors as

z(k) =
V∑

v=1

a(yv, k)sv(k) + n(k) (2)

1In 3D the fundamental solution is
(1/4π) exp(jk||xq − yq ||)/||xq − yq ||

where z(k) = [z1(k), . . . , zQ(k)]T , n(k) is the Q×1 additive
noise vector, and

a(yv, k) =
i

4
[
H

(2)
0 (k||x1 −yv||), · · · ,H

(2)
0 (k||xQ −yv||)

]T

(3)
is termed as the array manifold vector.

In this paper, we only consider narrowband sources. This
can be extended to the broadband case since broadband
signals can be decomposed to a set of narrow band signals.
By Rewriting (2) in matrix notation and ignoring k for the
narrowband case, we have

z = A(Y)s + n (4)

where
A(Y) =

[
a(y1), . . . ,a(yv)

]
, (5)

with unknown location vector Y = [y1, . . . ,yv], and s =
[s1, . . . , sv].

The aim of the paper is, given the received sensor data z, to
estimate the source locations Y. We use the correlation matrix
of the received data to develop a localization algorithm in this
paper. Here we define the correlation matrix of the received
sensor data as

Rz = E{zzH} (6)

Substituting (4) into (6) and assuming that the noise and source
signals are uncorrelated, we obtain the correlation matrix in
terms of array manifold and source signals as

Rz = A(Y)E{ssH}A(Y) + E{nnH} (7)

III. EIGEN BASIS DECOMPOSITION

The impinging wave field can be decomposed to a set of
orthogonal basis functions dependent on the spatial coordi-
nates used. These basis sets can be useful for synthesizing
and analyzing wave field information captured by a sensor
array. For a three dimensional wave field, spherical harmonics
form the basis set and for a two dimensional wave field, as
investigated in this paper, cylindrical harmonics form the basis
set.

The two dimensional wave field investigated in this paper
can be decomposed to basis functions by using the identity
[13, page 66]

H
(2)
0 (k||xq − yv||) =

∞∑
n=−∞

H(2)
n (kxq)Jn(kyv)e−inθqeinφv

(8)
where Jn(·) is the Bessel function of order n. We substitute
(8) in (1) to write

zq(k) =
∞∑

n=−∞

[ V∑
v=1

i

4
Jn(kyv)einφvsv(k)

]
×H(2)

n (kxq)e−inθq + nq(k). (9)

The above decomposition consists of an infinite number of
terms. The decomposition can be useful if the significant
number of terms is finite.

The product of Hankel and Bessel functions approach zero
as the order n becomes large with respect to the argument.
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Therefore, for a finite region of space bounded by a circle of
radius, R and for the wave length of sound λ, the number
of significant eigen basis functions can be limited without
incurring significant errors [14] by truncating to

M =
⌈

πeR

λ

⌉
(10)

terms. In the truncated 2D wave field decomposition, the order,
n spans the set n ∈ [−M, . . . , 0, . . . , M ] in (8).

IV. SOUND LOCALIZATION

Using (8), we can separate the array manifold matrix A(Y)
in to a product of two matrices:

A(Y) = ΓΥ (11)

where

Γ =
i

4


H

(2)
−M (kR)e−iMθ1 . . . H

(2)
M (kR)eiMθ1

...
. . .

...
H

(2)
−M (kR)e−iMθQ . . . H

(2)
M (kR)eiMθQ


(12)

and

Υ(Y) =

J−M (ky1)eiMφ1 . . . J−M (kyV )eiMφV

...
. . .

...
JM (ky1)e−iMφ1 . . . JM (kyV )e−iMφV

 .

(13)
Note that Γ contains only the location information of the

sensors, which is known. The other matrix, Υ contains the
data on the source locations. Thus, we effectively separate the
source locations from the sensor locations.

Now, we write the received array signal vector (4) as

z = ΓΥ(Y)s + n. (14)

From the array vector, we can remove the contribution of
sensor locations since the sensor locations are confined to
the known matrix Γ. This can be done by multiplying the
array data vector z by the Moore-Penrose pseudo-inverse of
Γ. Thus,

βββ , Gz (15)
= Υ(Y)s + n̂ (16)

where G is the Moore-Penrose pseudo-inverse of Γ, βββ is the
transformed data, and n̂ = Gn is the modified noise. We
can view this operation as a transformation of array data into
cylindrical eigen domain, since this transformation effectively
decomposed the received data into cylindrical modes.

One way of constructing G is

G = [ΓT Γ]−1Γ. (17)

The calculation of the Moore-Penrose pseudo-inverse for Γ is
equivalent to (17) only when Γ is not close to being singular.
A robust way to calculate G is to use the Singular Value
Decomposition (SVD). The SVD of Γ ∈ CQ×(2M+1) is

Γ = UΞFT (18)

where U ∈ CQ×Q and F ∈ C(2M+1)×(2M+1) are orthogonal
matrices, and Ξ is a Q× (2M + 1) diagonal matrix

Ξ =


ξ1 0 0 . . . 0 0
0 ξ2 0 . . . 0 0
0 0 ξ3 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . ξp 0

 (19)

where ξi are the singular values of Γ with p = min[Q, 2M +
1] and ξ1 > ξ2 > . . . > ξp > 0.

From (19), G can be obtained by

G = UΞ†FT (20)

where

Ξ† =



1
ξ1

0 0 . . . 0 0
0 1

ξ2
0 . . . 0 0

0 0 1
ξ3

. . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1
ξp

0

 (21)

For more information on the Moore-Penrose pseudo-inverse,
the reader is referred to [15].

Now we can write the covariance matrix of transformed data
βββ as

R̂βββ , E{βββHβββ}. (22)

In a practical scenario the covariance matrix R̂βββ is approxi-
mated by using number of (say T ) snapshots as

R̂βββ ≈ Rβββ ,
1
T

T∑
t=1

βββ(t)Hβββ(t). (23)

In the next step of the algorithm, we use Minimum Variance
(MV) spatial spectrum estimation technique to obtain

Z(y, φ) =
1

c(y, φ)HR−1
βββ c(y, φ)

(24)

where

c(y, φ) =

J−M (ky)eiMφ

...
JM (ky)e−iMφ

 . (25)

The MV spatial spectrum Z(y, φ) can now be calculated and
plotted over the whole range of y and φ for all points interior
to the sensor array. Then we estimate the source locations by
locating the peaks in the MV spectrum.

V. THEORETICAL PERFORMANCE ANALYSIS:NYQUIST
CRITERIA

Note that the maximum angular frequency n in (9) is M =⌈
πeR̃/λ

⌉
(given by (10)), if all the sources inside a region

with radius R̃. According to Nyquist’s theorem, the sampling
frequency must be greater than twice the highest frequency of
the signal. Since we have Q sensors over 2π radians, we have

Q > 2M. (26)
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Thus, to satisfy Nyquist’s criteria, the following condition
should be met

R̃ <
λQ

2πe
. (27)

Works [16], [17] discussed spatial aliasing effects for the
case of linear arrays. Spatial aliasing in linear arrays prevented
localization of all sources. However, for localizing sources
within a circular array, aliasing can be removed by reducing
the radius of region, R̃ where sources need to be located. As
the frequency of sources increase, this radius reduces. This
scenario contains an aliased region where R̃ > λQ/(2πe) and
a non-aliased region where R̃ < λQ/(2πe).

The result from the Nyquist criteria gives an important
interpretation towards sensor position in localizing sources.
Assuming that we want to localize all sources within a radius,
R̃ then from the Nyquist criteria (27), the minimum number of
sensors, Q̃ required can be calculated. Further, these sensors
can be placed at any radius greater that R̃. Although, placing
the sensors at a large radius can diminish their sensitivity to
low power sources. In the sensor recording noise is present,
therefore increasing the number of sensors from Q̃ results in
a better resolution since (23) become more accurate.

VI. SIMULATIONS

A circular array consisting of 40 uniformly spaced sensors
on the circumference of a circle is used to record sounds from
the sources. The radius of this circle is set to 8 units. The
average chest diameter varies according to gender. The average
male and female chest diameter is approximately 30 cm and
26 cm, respectively [18]. To correspond to a male chest, 1
unit needs to represent 1.875 cm and for a female chest, 1
unit needs to represent 1.625 cm. We have used units since
this allows the simulations to be scaled for a wide range of
dimensions.

The source signals and the noise are modeled as stationary
zero-mean white Gaussian processes. Further, the noise at each
sensor is independent of the noise at any other sensor. The
noise power received by the sensors is defined from the total
signal power at the origin. For V sources, the noise power,
σ2

N received by the sensors is

σ2
N =

V∑
v=1

Pv,0

10
SNR
10

(28)

where Pv,0 is the power of the vth source at the origin.
The simulations are performed with narrowband sources and

for each trial 100 snapshots are taken. The recorded signals are
then discrete Fourier transformed within the desired frequency
band.

We follow Section IV to obtain MV spatial spectral esti-
mates. The MV spectral estimate shows peaks at locations
where sound sources are present. This paper will not in-
vestigate the effect that increasing the number of sensors
or the number of snapshots. These factors were previously
investigated in works [19], [20] for linear arrays.

The environment consists of eight uncorrelated sound
sources placed at different radii. Xs in Fig. 2a. shows the

(a) The spatial spectrum as a polar plot with angle
versus radius. Successive concentric circles represent an
increase of one unit of distance from the center.

(b) 3-D plot of the spectrum.

Fig. 2. Spectrum for multiple 2-D sources with SNR = 10 dB.

actual locations of the eight sources. The SNR is set to 10
dB and the wavelength of the sources is 4 units. Scaling
for an average male chest gives wavelength of the sound
sources to be 7.5 cm. The speed of sound in lung parenchyma
varies between 25 - 75 m/s [21]. Taking the lower speed,
the frequency of the sound sources is 333 Hz. Gavriely et
al reported spectral characteristics of normal lung sounds to
lie approximately between 50 and 1000 Hz [22], [23]. For
lung sound localization, the performance of the algorithms are
considered only within this frequency range.

The use of units for the radius and wavelength can be
considered to be a powerful representation and allows the
spectrum obtained to be flexible. The dimensions of the
chest varies from one person to another. Suppose a lung
sound localization device providing a spectral estimate for
different people represents the radius in units which can be
scaled for application to the specific chest diameter (measured
beforehand with a tape measure). Further, the speed of sound
in the lung varies. Therefore, wavelength represented in units
can be scaled and represented to frequencies for different
speeds using the relationship c = fλ.

The peaks in the MV spectral estimate in Fig. 2b. corre-
spond accurately to actual source locations. In Fig. 2a., the
peaks are represented by the light colored regions. Due to
the definition of noise at the sensors (28), peaks decrease in
height as the radius is increased. Further, the source lying on
the same radius as the sensor radius (radius = 8 units) cannot
be detected. At SNR 10 dB, the sources at radius of 5 and
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6 are detected as one source since the resolution is not high
enough to give two peaks.

Further, the following comments pertaining to the proposed
localizing algorithm can be made:
• The localizing algorithms can work without previous

estimates of source locations.
• Since the algorithm calculates the covariance matrices

for the modified sensor recordings, other spatial spectral
methods such as MUSIC or its variants can be applied
instead of MV spectrum.

• For large sensor arrays and considering the frequency
of sound, the dimension can be reduced to 2M + 1 by
converting to the eigen basis sets of a 2D wave field.
This reduces the computation expense of the proposed
algorithms.

VII. CONCLUSIONS

We have proposed an algorithm to localize sound sources
within a circular array of sensors by decomposing the wave
field into a set of eigen basis functions. The algorithm can
be applied for acoustic imaging of the chest. However, in
this paper we have assumed that the velocity of sound in the
chest is isotropic. Future work will look at extending these
algorithms for a layered cylindrical media that is characteristic
of the chest and include reflections, refractions and standing
waves. A Nyquist criteria is derived relating the number of
sensors, frequency, and the radius of the region where the
sources are located. We show that the Increase in frequency
results in a reduction in the radius of the region for which
sound sources are localized provided the number of sensors
remain the same.
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Camerena, R. and Chi-Lem, G. and Aljama-Corrales, T., “Respiratory
acoustic thoracic imaging (rathi): Assessing deterministic interpolation
techniques,” Med. Biol. Eng. Comput., vol. 42, no. 5, pp. 618–626, Sep
2004.

[6] S. Charleston-Villalobos, R. Gonzalez-Camarena, G. Chi-Lem, and
T. Aljama-Corrales, “Acoustic thoracic images for transmitted glottal
sounds,” Engineering in Medicine and Biology Society, 2007. EMBS
2007. 29th Annual International Conference of the IEEE, pp. 3481–
3484, Aug. 2007.

[7] J. Murphy, “Method and apparatus for locating the origin of intrathoracic
sounds,” U.S. patent, 729,272, Oct 1996.

[8] M. Ozer, S. Acikgoz, T. Royston, H. Mansy, and R. Sandler, “Boundary
element model for simulating sound propagation and source localization
within the lungs,” J Acoust Soc Am., vol. 122, no. 1, pp. 657–661, Jul
2007.

[9] J. Barshinger and J. Rose, “Guided wave propagation in an elastic hollow
cylinder coated with a viscoelastic material,” Ultrasonics, Ferroelectrics
and Frequency Control, IEEE Transactions on, vol. 51, no. 11, pp. 1547–
1556, Nov. 2004.

[10] C. Valle, J. Qu, and L. J. Jacobs, “Guided circumferential waves in
layered cylinders,” International Journal of Engineering Science, vol. 37,
no. 11, pp. 1369–1387, Sep. 1999.

[11] G.-J. Yao, K.-X. Wang, J. Ma, and J. E. White, “Sh wavefields
in cylindrical double-layered elastic media excited by a shear
stress source applied to a borehole wall,” Journal of Geophysics and
Engineering, vol. 2, no. 2, pp. 169–175, 2005. [Online]. Available:
http://stacks.iop.org/1742-2140/2/169

[12] T. Abhayapala and H. Bhatta, “Coherent broadband source localiza-
tion by modal space processing,” in 10th International Conference on
Telecommunications (ICT 2003), vol. 2, February 2003, pp. 1617–1623.

[13] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering
theory, 2nd ed. New York: Springer, 1998.

[14] R. Kennedy, T. Abhayapala, and H. Jones, “Bounds on the spatial rich-
ness of multipath,” in 3rd Australian Communications Theory Workshop
(AusCTW), February 2002, pp. 76–80.

[15] G. W. Stewart, “On the perturbation of pseudo-inverses, projections and
linear least squares problems,” SIAM Review, vol. 19, no. 4, pp. 634–
662, Oct 1977. [Online]. Available: http://www.jstor.org/stable/2030248

[16] D. Dudgeon, “Fundamentals of digital array processing,” Proceedings
of the IEEE, vol. 65, no. 6, pp. 898–904, June 1977.

[17] W. Kummer, “Basic array theory,” Proceedings of the IEEE, vol. 80,
no. 1, pp. 127–140, Jan 1992.

[18] G. Heinz, L. Peterson, R. Johnson, and C. Kerk, “Exploring relationships
in body dimensions,” Journal of Statistics Education, vol. 11, no. 2,
2003.

[19] Y. Bresler and A. Macovski, “On the number of signals resolvable by
a uniform linear array,” Acoustics, Speech, and Signal Processing [see
also IEEE Transactions on Signal Processing], IEEE Transactions on,
vol. 34, no. 6, pp. 1361–1375, Dec 1986.

[20] F. Li, H. Liu, and R. Vaccaro, “Performance analysis for doa estimation
algorithms: unification, simplification, and observations,” Aerospace and
Electronic Systems, IEEE Transactions on, vol. 29, no. 4, pp. 1170–1184,
Oct 1993.

[21] D. Rice, “Sound speed in pulmonary parenchyma,” Journal of Applied
Physiology, vol. 54, no. 1, pp. 304–308, 1983.

[22] N. Gavriely, Y. Palti, and G. Alroy, “Spectral characteristics of normal
breath sounds,” Journal of Applied Physiology, vol. 50, no. 2, pp. 307–
314, 1981.

[23] N. Gavriely, M. Nissan, A. Rubin, and D. Cugell, “Spectral character-
istics of chest wall breath sounds in normal subjects,” Thorax, vol. 50,
no. 12, pp. 1292–1300, Dec 1995.


