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Abstract—The classical problem of extrapolation of a bandlim-
ited signal from limited time domain data is revisited for signals
defined on the sphere. That is, given limited or incomplete mea-
surements of an isotropic low pass signal on the unit sphere, S2,
find the unique extrapolation to the complete unit sphere. Signals
defined on the unit sphere arise in a number of applications,
such as beampatterns in azimuth and elevation and head related
transfer functions. Our investigations explore the role of integral
equation operators in characterizing the extrapolation problem
which leads to an iterative algorithm analogous to that obtained
in the time-frequency case.

I. INTRODUCTION

A fundamental problem in signal processing is that of
extrapolation of bandlimited signals from incomplete time
domain data. That is, knowing a signal on a finite time interval
on the real line, the objective is to determine the signal on the
doubly infinite real line. At a conceptual mathematical level
this is a trivial task because it is merely as instance of analytic
continuation. However, the engineering challenge is to find a
robust and simple algorithm for this problem. Papoulis gave an
algorithm for this task and characterized its convergence [1].
It was show that fundamental work of Slepian et al. [2], [3]
emerged naturally in characterizing the problem.

A bandlimited signal is subject to a smoothness constraint
(usually low pass but equally well bandpass and other cases
which can be handled). In carrying over the notion of “ban-
dlimited” to the sphere the objective is to find a suitable
lowpass characterization. This is well-known and involves
truncating the spherical harmonic expansion of the signal
on the sphere retaining the lowest order terms [4], [5]. The
spherical harmonics do involve two indices and we impose the
condition that the low pass action is isotropic on the sphere and
this implies that the truncation of the spherical harmonics takes
a particular but very natural form where only one of the indices
need be limited. It can be shown that for isotropic filtering
(isotropic spherical convolution) it is sufficient to consider
purely real valued functions on the sphere. In our development
below we retain the use of complex representations so as
to, in-principle, deal with generalization to directional (non-
isotropic) smoothing on the sphere.

At an abstract level there is little difference between
the time/frequency case (“time-case”) and the sphere-
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spatial/spherical harmonic case (“sphere-case”) which guaran-
tees a set of meaningful results for the sphere-case. However,
the sphere-case is in some aspects more challenging than
the time-case but in others less so. It is helpful to flag
these aspects. Firstly, the sphere-case is multi-variate and the
analog of the “intervals” of the time-case are “regions” in the
sphere-case which can be varied in shape and not necessarily
simply connected. The theory for the sphere-case is valid for
all sufficiently regular regions, and the shape of the region
has a significant role to play in characterizing the problem
(the classical boundary value problem in partial differential
equations shows a similar very significant role of the boundary
in the formulation). In contrast, the interval in the time-case is
relatively benign. Secondly, in the sphere-case, the unit sphere
is a twice periodic and finite structure, and this means the
Fourier representation is discrete, that is, harmonic (as the
name spherical harmonics suggests). This is simpler than the
time-case where the Fourier transform is continuous. Were
the time-case signal finite in duration or periodic then this
is a better analog of the sphere-case. Finally, in the sphere-
case, when truncating the spherical harmonic expansion (low
pass) the resulting signal is finite dimensional which means
that standard linear algebra can be used to characterize the
extrapolating functions [5], [6]. However, other signal models
which would leave an infinite number of spherical harmonic
coefficients, such as a high pass isotropic filter, are not finite
dimensional. For this result in this paper we provide an
alternative formulation that covers such generalizations and
does not rely on finite dimensional linear algebra.

In motivating the consideration of signals on a sphere
we mention a few applications: i) reconstructing antenna
beampatterns from incomplete data on the sphere [7]; ii)
reconstructing reconstructing head related transfer functions
(transfer functions which are a function of the azimuth and
elevation as well as frequency) [6]; and iii) geophysical,
planetary and cosmological applications [5].

Closely related to this work, but not formally treated here,
are results for determining optimally concentrated functions
for the sphere and ball (sphere plus interior). Just like the
time/frequency case there are notions of signal concentra-
tion that can be developed for the sphere spatial case—
concentration of functions on the sphere [5] and concentration
of functions in ball shaped domain subject to a wave equation
condition [4].



II. PROBLEM FORMULATION
The problem being addressed is: Given limited or incom-

plete measurements of an isotropic low pass signal on the unit
sphere, S2, find the unique extrapolation to the complete unit
sphere. More precisely if the signal is available only on some
subregion Γ ⊂ S2 and is known to be isotropically low pass
(spatially bandlimited), determine the signal on the S2 \ Γ .

A. Fredholm Integral Equation
A general inhomogeneous Fredholm integral equation of the

first kind takes the form(
L f

)
(x) =

∫
Ω

L(x,y)f(y) dy, x ∈ Ω (1)

where Ω is the domain of interest and L(x,y) is the kernel.
The kernel will be taken as Hilbert-Schmidt unless otherwise
stated, meaning∥∥L ∥∥2 =

∫∫
Ω×Ω

∣∣L(x,y)
∣∣2 dy dx <∞, x,y ∈ Ω. (2)

The integral equation (1) has adjoint(
L ∗f

)
(x) =

∫
Ω

L(y,x)f(y) dy, x ∈ Ω. (3)

The operator in (1) is self-adjoint, L ∗ = L , whenever
L(x,y) = L(y,x). Condition (2) is sufficient to make the
integral operator compact.

In the following, we shall be considering functions on the
unit sphere, S2, or a subregion (closed bounded region) of the
unit sphere, Γ ⊂ S2.

B. Spherical Harmonics
Notation: In the following, we use the shorthand∑

m,n

,
∞∑
n=0

n∑
m=−n

and
∑

m,|n|<N

,
N∑
n=0

n∑
m=−n

(4)

The spherical harmonics, as a function of x = (θ, φ) (repre-
senting a direction in space as a vector on the unit sphere),

Y mn (x) ,

√
2n+ 1

4π
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ,

n = 0, 1, 2, . . . , m = −n, . . . , n (5)

where Pmn are the associated Legendre functions, defined for
m = 0, 1, . . . , n, which form a complete orthonormal system
with respect to the natural inner product on the 2-sphere S2 [8].
We denote this complex Hilbert Space as L2(S2). For any f ∈
L2(S2) we have the Spherical Harmonic Transform identity

f(x) =
∑
m,n

(∫
S2
f(y)Y mn (y) dy

)
Y mn (x) (6)

where the equality is understood in terms of convergence in the
mean [9]. The complex coefficients in (6) are the generalized
complex Fourier coefficients and are given by

Fmn ,
∫

S2
f(y)Y mn (y) dy,

n = 0, 1, 2, . . . , m = −n, . . . , n (7)

C. Two Projections on the Sphere

Mode Limiting Operator: Given the Spherical Harmonic
Expansion, (6), we define a mode limiting operator, BN , on
Hilbert Space L2(S2), as the truncated Spherical Harmonic
Transform (6),

(
BNf

)
(x) ,

∑
m,|n|<N

(∫
S2
f(y)Y mn (y) dy)Y mn (x) (8)

which is an isotropic low pass filter on S2. A simple manip-
ulation reveals (8) to be an integral operator of the form (1)
with hermitian symmetric kernel

BN (x,y) ,
∑

m,|n|<N

Y mn (x)Y mn (y). (9)

Using a well-known identity, this kernel can be simplified to

BN (x,y) ,
N−1∑
n=0

2n+ 1
4π

Pn(x · y) (10)

where x · y is the inner product and equals cos ζ where ζ
denotes the angle between x and y, [8]. This reveals that the
kernel is actually purely real. Operator BN is a finite rank
operator of dimension N2 and hence compact [10]. It is also
a projection, idempotent and self adjoint.

Note that a kernel on the unit sphere that can be expressed as
a function of x·y is a type of isotropic spherical convolution—
the analog on the unit sphere for a standard convolution kernel
on the real line which is a function of x− y.

Truncation Operator: The second operator is the truncation
operator, DΓ , defined as

(DΓ f)(x) =

{
f(x) x ∈ Γ
0 x ∈ Ω \ Γ

(11)

for some 2D subregion (closed bounded region) Γ ⊂ Ω. Again
this can be expressed as an integral operator of the form (1)
using generalized functions, leading to a kernel of the form

DΓ (x,y) , χΓ (y)δ(x− y). (12)

where χΓ (·) denotes the characteristic (indicator) function of
the region Γ , and δ(·) is the 2D Dirac delta function. This
kernel is real and satisfies DN (x,y) = DN (y,x) and so
the operator is self adjoint. It is idempotent and a projection
but it is not compact. Nor is it Hilbert-Schmidt (as that
would imply it were compact), that is, it does not satisfy
the sufficient condition (2). Equivalently, we can write the
truncation operator as a multiplication operator

(DΓ f)(x) = χΓ (x)f(x) (13)

using the characteristic function.



Operator Compositions: The two compact projection op-
erators, on L2(S2), BN and DΓ do not commute. This
lack of commutativity implies neither composite operator
BN ◦ DΓ nor composite operator DΓ ◦BN are self adjoint
on L2(S2) [10]. Indeed the integral equation kernel for the
composite operator

CN,Γ , BN ◦DΓ (14)

on L2(S2) takes the form

CN,Γ (x,y) , χΓ (y)
∑

m,|n|<N

Y mn (x)Y mn (y) (15)

6= CN,Γ (y,x), (16)

that is, it is not symmetric for all x,y ∈ S2, [11]. Similarly,
the composite operator

CΓ,N , DΓ ◦BN (17)

on L2(S2) has kernel

CΓ,N (x,y) , χΓ (x)
∑

m,|n|<N

Y mn (x)Y mn (y) (18)

6= CΓ,N (y,x). (19)

We also observe that DΓBN is the adjoint of BNDΓ , and
this is equivalent to

CΓ,N (x,y) = CN,Γ (y,x). (20)

Lack of self-adjointness means we cannot appeal directly to
the Spectral Theorem for compact, self adjoint operators, to
characterize them.

Spectral Characterization: By restricting the domain of
these operators and their compositions we can appeal to the
Spectral Theorem for compact, self adjoint operators. As an
operator on L2(Γ ), the composite operator CN,Γ , BNDΓ

can be shown to be self adjoint, as follows.
Consider (6) which holds for any f ∈ L2(S2) and so holds

for the truncated function (DΓ f)(x) ∈ L2(S2), that is,

(DΓ f)(x) =
∑
m,n

(∫
S2

(DΓ f)(y)Y mn (y) dy
)
Y mn (x) (21)

=
∑
m,n

(∫
S2
χΓ (y)f(y)Y mn (y) dy

)
Y mn (x) (22)

=
∑
m,n

(∫
Γ

f(y)Y mn (y) dy
)
Y mn (x) (23)

valid for all x ∈ S2. However, when x is restricted to Γ ⊂ S2,
DΓ f = f , and we have

f(x) =
∑
m,n

(∫
Γ

f(y)Y mn (y) dy
)
Y mn (x), x ∈ Γ (24)

=
∫
Γ

B(x,y)f(y) dy, x ∈ Γ (25)

where, as a functional on Γ × Γ ,

B(x,y) ,
∑
m,n

Y mn (x)Y mn (y) (26)

=
∞∑
n=0

2n+ 1
4π

Pn(x · y) (27)

= δ(x− y) (28)

which simply is the completeness relation for spherical
harmonics—operator DΓ is equivalent to the identity operator
on L2(Γ ).

Fundamental Integral Equation: Next we apply mode-
limiting operator BN to DΓ f = f in (24) to obtain our first
fundamental integral equation(

BNf
)
(x) =

∫
Γ

BN (x,y)f(y) dy, x ∈ Γ (29)

where

BN (x,y) =
N−1∑
n=0

2n+ 1
4π

Pn(x · y), x,y ∈ Γ (30)

is the kernel previously obtained in (9) but now defined on
domain Γ×Γ . Due to the symmetry of the kernel, the integral
operator (29) on L2(Γ ) is self adjoint (as well as compact).

Given the integral equation corresponding to mode-limiting
on L2(Γ ) is compact and self-adjoint, then by the Spectral
Theorem, it has a fully defined discrete spectral representation
in the form(

BNφk
)
(x) = λkφk(x), x ∈ Γ,

k = 1, 2, 3, . . . (31)

where {φk(x) : x ∈ Γ}∞k=1 are eigenfunctions1 with {λk}∞k=1

the corresponding real eigenvalues (these eigenvalues are
positive and bounded above by unity since the operator is a
projection). This eigenfunction equation, (31), can be rewritten

φk(x) =
1
λk

∫
Γ

BN (x,y)φk(y) dy, x ∈ Γ

k = 1, 2, 3, . . . (32)

By the Spectral Theorem, these eigenfunctions can be cho-
sen to form a complete orthogonal set on the Hilbert
Space L2(Γ ), [9]. Normally the orthogonal eigenfunctions
{φk(x) : x ∈ Γ}∞k=1 are scaled to make them orthonormal.
However, as in the analogous case of Prolate Spheroidal Wave
Functions [3], it is advantageous to choose the scaling in
the definition of the {φk(x) : x ∈ Γ}∞k=1 in a way that the
orthogonality relation is∫

Γ

φk(x)φ`(x)dx = λkδk` (33)

1These are unique up to a complex scaling factor and, for each repeated
eigenvalue, if any, need to be chosen to be independent.



Note that suitably normalized (orthonormal) eigenfunctions
can be obtained through

ϕk(x) ,
1√
λk
φk(x), x ∈ Γ (34)

with ∫
Γ

ϕk(x)ϕ`(x)dx = δk` (35)

Then kernel expansion, usually associated with Mercer’s The-
orem [9], can be expressed in two ways

BN (x,y) =
∞∑
k=1

λk ϕk(x)ϕk(y), x,y ∈ Γ (36)

BN (x,y) =
∞∑
k=1

φk(x)φk(y), x,y ∈ Γ (37)

and the completeness relation takes the two forms
∞∑
k=1

ϕk(x)ϕ`(y) = δ(x− y), x,y ∈ Γ (38)

∞∑
k=1

1
λk
φk(x)φ`(y) = δ(x− y), x,y ∈ Γ (39)

The expression (32) enables us to appeal to an argument
used by Slepian to extended the domain of definition of the
eigenfunctions in L2(Γ ), to functions in L2(S2) [2], [3].
Noting that φk(·) in the integrand in (32) need only be defined
on Γ ⊂ S2 for the integral to be well defined, then we can
take (32) as the definition φk(·) on the remainder S2 \Γ , i.e.,

φk(x) =
1
λk

∫
Γ

BN (x,y)φk(y) dy, x ∈ S2 \ Γ

k = 1, 2, 3, . . . (40)

That is, (40) is an extrapolation to the whole unit sphere S2

of the eigenfunctions of operator BN on L2(Γ ).
Next we show that the extrapolated eigenfunctions defined

in (32) and (40) are in fact orthogonal on S2. Rewrite (32)
and (40) using the characteristic function as

φk(x) =
1
λk

∫
S2
BN (x,y)

(
χΓ (y)φk(y)

)
dy, x ∈ S2

k = 1, 2, 3, . . . (41)

and note that the space limited function χΓ (x)φk(x) is a
well-defined function in L2(S2). So (41) is a mode-limiting
operation applied to χΓ (x)φk(x). This implies that the LHS
of (41), φk(x), is mode-limited. However, mode-limited func-
tions are invariant to the mode-limiting operator, that is, if
fN (x) ∈ L2(S2) is mode-limited then

BNfN = fN (42)

equivalently ∫
S2
BN (x,y)fN (y)dy = fN (x) (43)

Fig. 1. Papoulis Algorithm on the Unit Sphere

Whence, for the extrapolated eigenfunctions of (31), satisfy(
BNφk

)
(x) = φk(x), x ∈ S2,

k = 1, 2, 3, . . . (44)

which means they are eigenfunctions of an integral equation
(44) on L2(S2) with eigenvalue 1. This is the same operator
on L2(S2) considered in (8) which is finite rank, compact
and self-adjoint. It is elementary to show that the extrapolated
eigenfunctions are orthonormal in the L2(S2). Clearly these
extrapolated eigenfunctions are not complete in L2(S2) but are
a complete orthonormal set for the subspace of mode-limited
functions of order N .

III. PAPOULIS ALGORITHM ON THE UNIT SPHERE

Let f(x) be the mode-limited function on the unit sphere
to be determined. It satisfies

f(x) =
(
BNf

)
(x). (45)

Let g(x) be the measured function on the unit sphere which
satisfies

g(x) =
(
DΓ f

)
(x) (46)

where the support of g(x) is Γ .
The objective of the algorithm is to reconstruct f(x) for

all x ∈ S2 from g(x) which is non-zero only in Γ ⊂ S2.
Towards this goal we can develop two sets of iterations,
{fp}∞p=1 and {gp}∞p=1 which evolve towards f(x), as shown in
Fig. 1. The operator DΓ defines an orthogonal projection onto
the subspace of space-selected functions and the operator BN

defines an orthogonal projection onto the subspace of mode-
limited functions.



Thus we have

fk(x) =
(
BNgk−1

)
(x)

=
(
BNfk−1

)
(x) +

(
CN,Γ (f − fk−1)

)
(x)

= fk−1(x) +
(
BNg

)
(x)−

(
CN,Γ fk−1

)
(x). (47)

where
CN,Γ , BN ◦DΓ . (48)

The convergence analysis can be directly inferred from the
time/frequency case presented in [1].

IV. NUMERICAL EXAMPLE

We apply the proposed method to extrapolate incomplete
data on a sphere and examine the algorithm performance. The
data is artificially generated by assigning random spherical
harmonic coefficients up and excluding order N = 4.

The observations are given for 0 ≤ θ ≤ 140◦, 0 ≤ φ ≤
300◦. Fig. 2 shows the original signal, the given observations
and the estimated signal after 30 iterations. It can be seen that
the algorithm provides very accurate extrapolation results.

(a) Original signal f(θ, φ).

(b) Given Observations g(θ, φ) (c) Extrapolated signal fk(θ, φ)

Fig. 2. An example of data reconstruction on the sphere using the proposed
iterative algorithm. The observations in (b) are given for 0 ≤ θ ≤ 140◦,
0 ≤ φ ≤ 300◦ with N = 4. Extrapolation results in (c) are the estimates
after 30 iterations. The color scale shows the signal magnitude; and the pure
black means no observation made.

V. CONCLUSIONS

The classical problem of extrapolation of a bandlimited
signal from limited time domain data was revisited for signals
defined on the sphere. Our investigations explored the role of
integral equation operators in characterizing the extrapolation
problem which leads to an iterative algorithm analogous to
that obtained in the time-frequency case.
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