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ABSTRACT

Decomposition of a soundfield into spherical harmonics is a funda-
mental problem in acoustic signal processing. This paper shows how
to design non-spherical microphone array structures in 3D space to
decompose a soundfield into spherical harmonic components.We
use the mode limiting property of the Bessel functions and zeros of
the associated Legendre functions together with orthoganality of the
exponential functions over circles to construct an array ofparallel
circles of microphones. The result provides flexible designguide-
lines to construct 3D arrays than traditional spherical arrays. A sim-
ple beamforming example is given to verify the result.

Index Terms— Spherical array of microphones, spherical har-
monics, circular array, beamforming, soundfield

1. INTRODUCTION

Array of microphone structures, which are capable of processing
acoustic signals to extract useful spatial information of three dimen-
sional surroundings, are important in a plethora of applications such
as beamforming, direction of arrival estimation, and spatial sound-
field recording. The spherical harmonic analysis of the 3D acoustic
field, which is commonly known as modal analysis [1] technique,
has been shown to be a useful tool to design signal processingal-
gorithms for these applications [2–5]. The spherical arrayof micro-
phones are suited in decomposing a 3D acoustic field into spherical
harmonic components [2, 6–8], which could then be processedas
necessary to form beams in desired directions, to estimate source
locations, or to record spatial sounds. In this paper, we show an al-
ternative 3D structure consisting of circular arrays that is different
to a traditional spherical array structure, to decompose acoustic field
into spherical harmonic coefficients.

Meyer and Elko [9] proposed a method to use circular arrays of
microphones on the x-y plane together with a centre microphone at
the origin to extract spherical harmonic coefficients. Thisis a novel
use of circular arrays. Typically the use of circular arraysis to de-
compose a sound field in to cylindrical harmonics, which is more
suited for height invariant 2D soundfields. Although, Meyer’s work
gives some flexibility in controlling the vertical spatial response, fun-
damentally a 2D array on a x-y plane is not able to determine all of
the spherical harmonic coefficients. We show this fact in Section 3.
In this paper, we investigate the spherical harmonic decomposition
and propose a systematic way to build a 3D flexible array structure
consisting of circular arrays in a set of parallel planes, which are
parallel to x-y plane.

2. SOUNDFIELD ANALYSIS

2.1. Spherical harmonic expansion

A soundfield at a point(r, θ, φ) in a source free region can be ex-
pressed in terms of the spherical harmonic expansion as

S(r, θ, φ; k) =

∞
X

n=0

n
X

m=−n

αnm(k)jn(kr)Ynm(θ, φ) (1)

wherem andn (≥ 0) are integers,αnm(k) are the spherical har-
monic coefficients of the soundfield,k = 2πf/c is the wavenumber,
f is the frequency,c is the speed of sound,jn(·) are the spherical
Bessel functions of ordern, and the spherical harmonics

Ynm(θ, φ) =

s

2n + 1

4π

(n − |m|)!
(n + |m|)!Pn|m|(cos θ)ejmφ (2)

which are defined in terms of the associated Legendre functions
Pn|m|(·) and the exponential functions. Knowing the soundfield
over angles, harmonic coefficients can be calculated using

αnm(k) =
1

jn(kr)

Z 2π

0

Z π

0

S(r, θ, φ; k)Y ∗
nm(θ, φ) (3)

providedjn(kr) 6= 0. For convenience, we express (1) in terms of
the normalized associated Legendre and exponential functions as

S(r, θ, φ;k) =
∞

X

n=0

n
X

m=−n

αnm(k)jn(kr)Pn|m|(cos θ)Em(φ)

(4)
whereEm(φ) , (1/

√
2π)ejmφ and

Pn|m|(cos θ) ,

r

2n + 1

2

s

(n − |m|)!
(n + |m|)!Pn|m|(cos θ), (5)

which form orthonormal basis sets in azimuthφ ∈ [0, 2π) and ele-
vationθ ∈ [0, π].

2.2. Truncation

The representation series (4) can be safely truncated [10] to a finite
number using the properties of the Bessel function (see Fig.1) pro-
vided that all sources are located outside the region of interest (e.g.,
aperture of the array structure). LetR be the radius of a spherical
region of interest, then the soundfield inside this sphere can be rep-
resented by (4), with summation overn truncated toN = ⌈ekR/2⌉
terms [10]. We approximate this bound toN = ⌈kR⌉ to use in this
paper.
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Fig. 1: Magnitude of the spherical Bessel functions of ordern =
0, 1, 2, 3, 4, 5 in dB showing the characteristics as a function of the
argument.

2.3. Soundfield Coefficients

Suppose the soundfield is restricted to have only firstN + 1 coef-
ficients due to finite restriction of the region of interest. Then, we
can see from (4) that there are a total of(N + 1)2 coefficients to be
determined. Table 1 depicts the growth of number of coefficients to
be determined as ordern grows with modes ranging from−n to n.
The soundfield coefficients can be estimated by sampling the space

m�n 0 1 2 . . . N
N αNN

2 α22

...
1 α11 α21

m = 0 α00 α10 α20 . . . αN0

−1 α1(−1) α2(−1)

−2 α2(−2)

...
−N αN(−N)

Table 1: Soundfield coefficients arranged with ordern and modem.

using an array of sensors. Spherical microphone arrays approximate
the analysis equation (3) by a sum of signal samples taken over the
spherical surface to perform this task. However, there are known
limitation of the spherical arrays [7] such as strict orthogonality con-
dition and inflexibility with the sensor geometry. In this paper, we
develop an alternative array structure to estimate soundfield coeffi-
cients.

3. CIRCULAR APERTURE

In this section, we investigate the soundfield on a circle parallel to
the x-y plane. LetS(rq, θq, φ; k) be the the soundfield on a circle
given byθ = θq andr = rq, whereθq andrq are suitably chosen
constants. We use (4) to write

S(rq, θq, φ;k) =

N
X

n=0

n
X

m=−n

αnm(k)jn(krq)Pn|m|(cos θq)Em(φ)

(6)
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Fig. 2: Circular array structure for3rd order spherical harmonic de-
composition

whereN = ⌈krq⌉ is due to the natural truncation property (see
Section 2.2). We multiply (6) byE−m(φ) and integrate with respect
to φ over [0, 2π) to get

N
X

n=|m|

αnm(k)jn(krq)Pn|m|(cos θq)

=

Z 2π

0

S(rq , θq, φ; k)E−m(φ)dφ. (7)

We have the following comments regarding (7):

• Left hand side (LHS) of (7) is a weighted sum of soundfield
coefficients along a row for a givenm in Table 1.

• Equation (7) can be evaluated form = −N, . . . , N , where
the truncation numberN is dependent on the radiusrq of the
circle.

• For a given circle(rq, θq) some of the spherical harmonics
could be zero if eitherjn(krq) = 0 or Pn|m|(cos θq) = 0.
Thus, care needs to be taken while using (7) for coefficient
calculations. Figures 3 and 4 depict the magnitude of nor-
malized associated Legendre functionsPn|m|(cos θ) in dB.

• The main contribution of this paper is to extract spherical har-
monic coefficientsαnm(k) by exploiting (7), using a number
of carefully placed circles on different(rq, θq) together with
properties of spherical Bessel functions and associated Leg-
endre functions.

Suppose we are interested in designing aN th order microphone
array to estimate(N +1)2 spherical harmonic coefficients. Consider
there areQ ≥ (N + 1) circles of microphones located on planes
given by (rq, θq), q = 1, . . . , Q. Also chooserq such thatn =
⌈krq⌉, wheren = 0, . . . , N , i.e., eachrq corresponds to a specific
n. This condition is strictly not necessary but significantlysimplifies
the estimation ofαnm as smaller circles do not contain higher order
harmonic coefficients; e.g., a single sensor at the origin only contains
α00.

By writing (7) for a specificm for all applicable circles, we have

Jmαm = am, for m = −N, . . . , N (8)



whereJm =
2

6

4

j|m|(kr1)P|m||m|(cos θ1) · · · jN (kr1)PN|m|(cos θ1)
...

. . .
...

j|m|(krQ)P|m||m|(cos θQ) · · · jN (krQ)PN|m|(cos θQ)

3

7

5
,

(9)

αm = [α|m|m, α|m+1|m, . . . , αNm]T , andam = [a1m, . . . , aQm]T ,
with aqm =

R 2π

0
S(rq, θq; k)E−m(φ)dφ.

If (rq, θq), q = 1, . . . , Q are chosen such thatJm has a valid
Moore-Penrose inverseJ+

m, thenαm can be calculated for eachm
by solving (8) in the least squares sense as

αm = J
+
mam. (10)

However, we can be a bit more creative in placing circles to exploit
the underlying structure of the wave propagation rather than relying
on the ability of the least squares to do the job. To do this, weinspect
(8) for specific values of(rq, φq) andm:

• For a single sensor at the origin,(rq, φq) = (0, 0), the only
available mode ism = 0, thusα00 = a00(0, 0)/P0|0|(1).

• For θ = π/2, Pn|m|(cos(π/2)) = 0 if n + |m| is odd. This
can be seen in Fig. 4 which depicts the normalized associ-
ated Legendre functions up to order 3 for oddn+ |m| values.
Also note that from Fig. 3, forn + |m| even values, normal-
ized associated Legendre functions do not greatly attenuate
the corresponding harmonic coefficients atθ = π/2. In this
paper, we use this property in our design example to illustrate
the power of this technique.

• Whenm = N , (8) reduces to a single equation with one un-
knownαNN . However, if we use this equation alone to cal-
culateαNN there may be significant errors involved as there
could be contributions fromα(N+1)N in this equation. Note
that from Fig. 1, dB reduction from the first mode to the sec-
ond mode atr (with 1 = ⌈kr⌉) is 7dB, from 2 to 3 at the
circle with 2 = ⌈kr⌉ is about5dB, and so on. Thus, to im-
prove the accuracy of this calculation, we may need measure-
ments from an additional circle. However, for a set of circles
on theθ = π/2 plane, this is not a a problem since there is
no contribution from the next mode because its sum of order
and mode is odd.

• Also note that any sensor on the z-axis only containsm = 0
coefficients.

Above are some of the properties we can observe from (7) to-
gether with the characteristics of spherical Bessel functions (Figure
1 and normalized associated Legendre functions (Figures 3 and 4).
We assert that a design engineer can use these properties to construct
a 3D array structure to estimate spherical harmonic coefficients of
spatial soundfields, without relying on the spherical arraystructure
as has been done in literature [2,6–8].

Until now we showed how to calculate sound field coefficients
given the soundfield on a number of circular apertures. In practice,
we can not obtain soundfield at every point on these circles. In the
following section, we show how to use only samples of the sound-
field on these circles. This will enable us to give design guidelines
to build practical microphone arrays.

4. IMPLEMENTATION

Let the design objective be to construct an array capable of decom-
posing soundfield coefficients up toN modes. We use a set of circu-
lar arrays to calculate the spherical harmonic coefficients.
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Fig. 3: Magnitude of the normalized associate Legendre functions
Pn|m|(cos θ) in dB, where the addition of ordern and modem are
even:(n, |m|) = (0, 0); (2, 0); (1, 1); (2, 2); (3, 1); (3, 3)
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Fig. 4: Magnitude of the normalized associate Legendre functions
Pn|m|(cos θ) in dB, where the addition of ordern and modem are
even:(n, |m|) = (1, 0); (2, 1); (3, 0); (3, 2)

4.1. Sampling of circles

For the circular aperture atrq, we need to evaluate the integral in (7)
with a summation since in practice we can only have a finite number
of samples ofS(rq, θq , φ; k). For this radius, if the field is limited
to n orders (i.e. n = ⌈krq⌉), the maximum modem involved is
n. Thus,S(rq, θq , φ; k) is mode limited ton, i.e., it contains terms
with ejmφ with m = 0, . . . , n. According to Shannon’s sampling
theorem for periodic functions,S(rq, θq, φ;k) can be reconstructed
by its samples over[0, 2π] with at least2n + 1 samples. Hence we
can approximately replace the right hand side (RHS) of (7) by

RHS of (7) ≈ 2π

Vn

Vn
X

v=1

S(rq, θq, φv; k)E−m(φv), (11)

whereVn ≥ 2n + 1. Thus, to calculate coefficients of all orders and
modes up toN th order, we need at least(N +1)2 microphones over
N + 1 circles. That is, a single sensor at the origin,3 sensors on a
the next circle, followed by5 sensors, and ends with2N +1 sensors
on theN + 1th circle.



4.2. Placing circles

By following the description given in Section 2.3, we place alter-
native circles on the x-y plane (i.e.θq = pi/2) corresponding
to n = ⌈krq⌉ with n = 1, 3, 5, . . .. Then, we can write (8) as
J

e
mα

e
m = am, whereJ

e
m andα

e
m contain elements correspond-

ing to evenn + |m|. This equation could be solved to find coeffi-
cientsαnm with n + |m| even. Observe from Fig. 4 that we can
place the second set of circles corresponding ton = 2, 4, . . . at
θq ∈ {[50◦ :, 70◦], [110◦, 130◦]} to calculate the rest of the coef-
ficients. In this case, we can rewrite (8) asJ

o
mα

0
m = am − J

e
mα

e
m

whereJo
m, α0

m andJ
e
m, αe

m can be defined accordingly to represent
odd and evenn + |m| respectively.

4.3. Broadband

To make the array work for broadband without adding infinitely
many circles for each frequency, we need to reuse existing set of
circles for higher frequencies. Suppose the desired frequency band
is [kl , ku]. Let rn(kl) be the radial distance to thenth circle from
the origin corresponding to frequencykl , which we use to calculate
coefficients of ordern. Since we use the constraintn = ⌈krn⌉ to
choosern(kl), it is easy to see thatrn(kl) = rsn(s × k), wheres
is a positive integer. That is, we can use the the same circle for real-
izing higher order coefficients of the integer multiplier ofthe initial
frequency. However, we need more sensors on the circle to calculate
higher orders. This concept could be considered as similar to nested
arrays in the line array literature for broadband. We stop short of giv-
ing detail broadband design in this paper due to space constraints.

5. SIMULATIONS

To illustrate our theoretical array design, we show an example of a
3rd order (N = 3) array of circular arrays of microphones in 3D
beamforming. Let the design frequency be1.5KHz and the speed
of sound propagationc = 340ms−1. First, we place a microphone
at the origin to estimateα00. Next we have two circular arrays on
the x-y plane (θq = 0) with radii 1/k = 3.6cm and3/k = 10.8cm
respectively. Two circles have4 and8 uniformly separated micro-
phones, which are one more than the minimum required. The output
from these microphones on the x-y plane can be used to calculate,
all αnm coefficients wheren+ |m| is an even number (up ton = 3).
Finally, we place two more circles with(r3, θ3) = (1/k, 0.9) and
(r4, θ4) = (3/k, π − 0.9) with 4 and8 microphones respectively.
We use the output of the second set of microphones together with al-
ready estimated coefficients to calculate the remaing coefficient set
as outlined in Section 4.2. Figure 2 shows an example of arrayge-
ometry.

By weighting each estimated coefficient by

`

i−n/(2n + 1)
´

Pn|m|(cos θℓ)Em(φℓ)

and summing together will give a beamformer in the look direction
(θℓ, φℓ). Figure 5 depicts the response of the above array structure
steered to the look dirction of(π/3, π/3).
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