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ABSTRACT

Decomposition of a soundfield into spherical harmonics isralé-
mental problem in acoustic signal processing. This paparsimow
to design non-spherical microphone array structures inf@ize to
decompose a soundfield into spherical harmonic componéfies.
use the mode limiting property of the Bessel functions armdzef

the associated Legendre functions together with orthdiigiofthe

exponential functions over circles to construct an arrapariallel

circles of microphones. The result provides flexible degjgite-

lines to construct 3D arrays than traditional sphericadysr A sim-
ple beamforming example is given to verify the result.

Index Terms— Spherical array of microphones, spherical har-

monics, circular array, beamforming, soundfield

1. INTRODUCTION

Array of microphone structures, which are capable of prsiogs
acoustic signals to extract useful spatial informatiorhoéé dimen-
sional surroundings, are important in a plethora of appboa such
as beamforming, direction of arrival estimation, and spaound-
field recording. The spherical harmonic analysis of the 3Guatic
field, which is commonly known as modal analysis [1] techeiqu
has been shown to be a useful tool to design signal proceasing
gorithms for these applications [2-5]. The spherical aofyicro-
phones are suited in decomposing a 3D acoustic field intorigahe
harmonic components [2, 6-8], which could then be procesased
necessary to form beams in desired directions, to estintatees
locations, or to record spatial sounds. In this paper, wevsiroal-
ternative 3D structure consisting of circular arrays tisadlifferent
to a traditional spherical array structure, to decomposest field
into spherical harmonic coefficients.

2. SOUNDFIELD ANALYSIS

2.1. Spherical harmonic expansion

A soundfield at a pointr, 6, ¢) in a source free region can be ex-
pressed in terms of the spherical harmonic expansion as
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wherem andn (> 0) are integersqu.m (k) are the spherical har-
monic coefficients of the soundfield,= 2 f /c is the wavenumber,
f is the frequencye is the speed of sound,, (-) are the spherical

Bessel functions of order, and the spherical harmonics
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Yom (60, ¢) = Ppjm(cos )€™ (2)
which are defined in terms of the associated Legendre furgtio
P, m|(-) and the exponential functions. Knowing the soundfield

over angles, harmonic coefficients can be calculated using
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providedj, (kr) # 0. For convenience, we express (1) in terms of
the normalized associated Legendre and exponential tngcts
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Meyer and Elko [9] proposed a method to use circular arrays ofyhich form orthonormal basis sets in azimuythe [0, 27) and ele-

microphones on the x-y plane together with a centre microphad
the origin to extract spherical harmonic coefficients. Tiia novel
use of circular arrays. Typically the use of circular array/$ de-
compose a sound field in to cylindrical harmonics, which iseno
suited for height invariant 2D soundfields. Although, Méye&vork
gives some flexibility in controlling the vertical spatiakponse, fun-
damentally a 2D array on a x-y plane is not able to determinefal
the spherical harmonic coefficients. We show this fact irtiSe.
In this paper, we investigate the spherical harmonic decsitipn
and propose a systematic way to build a 3D flexible array strec
consisting of circular arrays in a set of parallel planesjcirare
parallel to x-y plane.

vationd € [0, ).

2.2. Truncation

The representation series (4) can be safely truncated ¢1®Finite
number using the properties of the Bessel function (seeBigro-
vided that all sources are located outside the region oféstde.g.,
aperture of the array structure). LBtbe the radius of a spherical
region of interest, then the soundfield inside this sphenebearep-
resented by (4), with summation ovettruncated taV = [ekR /2]
terms [10]. We approximate this bound 3 = [kR] to use in this
paper.
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Fig. 1: Magnitude of the spherical Bessel functions of order=

0,1,2,3,4,5 in dB showing the characteristics as a function of the

argument.

2.3. Soundfield Coefficients

Suppose the soundfield is restricted to have only fitst 1 coef-
ficients due to finite restriction of the region of interestieh, we
can see from (4) that there are a total df 4 1)? coefficients to be
determined. Table 1 depicts the growth of number of coeffisi¢o
be determined as ordergrows with modes ranging fromn to n.
The soundfield coefficients can be estimated by samplingpgaees
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Table 1. Soundfield coefficients arranged with ordeand moden.

using an array of sensors. Spherical microphone array®xzippate
the analysis equation (3) by a sum of signhal samples takentoge
spherical surface to perform this task. However, there amvk
limitation of the spherical arrays [7] such as strict ortbiaglity con-
dition and inflexibility with the sensor geometry. In thispes, we
develop an alternative array structure to estimate souddfizeffi-
cients.

3. CIRCULAR APERTURE

In this section, we investigate the soundfield on a circlalelrto
the x-y plane. LetS(rq, 64, ¢; k) be the the soundfield on a circle
given byé = 0, andr = rq, whered, andr, are suitably chosen
constants. We use (4) to write
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Fig. 2: Circular array structure fosrd order spherical harmonic de-
composition

where N = [krq] is due to the natural truncation property (see
Section 2.2). We multiply (6) by_,.(¢) and integrate with respect
to ¢ over[0, 2) to get
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We have the following comments regarding (7):

e Left hand side (LHS) of (7) is a weighted sum of soundfield
coefficients along a row for a given in Table 1.

e Equation (7) can be evaluated for = —N, ..., N, where
the truncation numbeN is dependent on the radiug of the
circle.

e For a given circle(rq, 6,) some of the spherical harmonics
could be zero if eithey, (kry) = 0 OF Py (cosby) = 0.
Thus, care needs to be taken while using (7) for coefficient
calculations. Figures 3 and 4 depict the magnitude of nor-
malized associated Legendre functighs,,,| (cos 6) in dB.

e The main contribution of this paper is to extract spherieat h
monic coefficientsy,.., (k) by exploiting (7), using a number
of carefully placed circles on differefit,, 6,) together with
properties of spherical Bessel functions and associatgd Le
endre functions.

Suppose we are interested in designingth order microphone
array to estimatéN +1)? spherical harmonic coefficients. Consider
there areQ > (IV + 1) circles of microphones located on planes
given by (rq,04), ¢ = 1,...,Q. Also chooser, such thatn =
[krq], wheren = 0,..., N, i.e., eachr, corresponds to a specific
n. This condition is strictly not necessary but significasiiyplifies
the estimation oév,.,, as smaller circles do not contain higher order
harmonic coefficients; e.g., a single sensor at the origin@mtains
Q0.
By writing (7) for a specifion for all applicable circles, we have
®
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With agm = [77 S(rq, 04; k) E—p(6)d.

If (rq,04), ¢ = 1,...,Q are chosen such that,, has a valid 6l
Moore-Penrose invers&;., thena,,, can be calculated for each
by solving (8) in the least squares sense as -8l

(10)

However, we can be a bit more creative in placing circles foak
the underlying structure of the wave propagation rathem tielying
on the ability of the least squares to do the job. To do thisnspect
(8) for specific values ofrq, ¢q) andm:

e For a single sensor at the origifr,, ¢4) = (0,0), the only
available mode isn = 0, thusaoo = a00(0,0)/Pojo) (1).

o Forf = m/2, Ppim|(cos(m/2)) = 0if n + |m| is odd. This
can be seen in Fig. 4 which depicts the normalized associ-
ated Legendre functions up to order 3 for adé |m| values.
Also note that from Fig. 3, fon + |m/| even values, normal-
ized associated Legendre functions do not greatly attenuat
the corresponding harmonic coefficientdat /2. In this
paper, we use this property in our design example to illtstra
the power of this technique.

e Whenm = N, (8) reduces to a single equation with one un-
known anxy. However, if we use this equation alone to cal-
culateay n there may be significant errors involved as there
could be contributions from 1) in this equation. Note
that from Fig. 1, dB reduction from the first mode to the sec-
ond mode at- (with 1 = [kr]) is 7dB, from 2 to 3 at the | ‘ ‘ ‘ ‘ ‘ ‘ A
circle with2 = [kr] is about5dB, and so on. Thus, to im- o 20 40 SOANGL*;"B (DElc‘;’gEEsfo 140 160 180
prove the accuracy of this calculation, we may need measure-
ments from an additional circle. However, for a set of ciscle
on thed = = /2 plane, this is not a a problem since there is Fig. 4 Magnitude of the normalized associate Legendre functions
no contribution from the next mode because its sum of orde®n|m|(cos ) in dB, where the addition of order and moden are
and mode is odd. even:(n, |m[) = (1,0);(2,1);(3,0);(3,2)

e Also note that any sensor on the z-axis only contains- 0

coefficients. 41 S i ¢ cirel
Above are some of the properties we can observe from (7) to-"" ampling ot circles
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Fig. 3: Magnitude of the normalized associate Legendre functions
Prim|(cos 8) in dB, where the addition of order and moden are
even:(n, [m|) = (0,0); (2,0); (1,1);(2,2);(3,1); (3,3)
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gether with the characteristics of spherical Bessel fonstiFigure
1 and normalized associated Legendre functions (Figuresl3tp
We assert that a design engineer can use these propert@sstouct
a 3D array structure to estimate spherical harmonic coeffisiof
spatial soundfields, without relying on the spherical astycture
as has been done in literature [2, 6-8].

For the circular aperture af, we need to evaluate the integral in (7)
with a summation since in practice we can only have a finitebrem
of samples ofS(rq, 04, ¢; k). For this radius, if the field is limited
to n orders (i.e.n = [krq]), the maximum moden involved is
n. Thus,S(rq, 04, ¢; k) is mode limited ton, i.e., it contains terms
with 2™ with m = 0,...,n. According to Shannon’s sampling

Until now we showed how to calculate sound field coefficientstheorem for periodic functions§(r,, 64, ¢; k) can be reconstructed

given the soundfield on a number of circular apertures. Iotjoe,
we can not obtain soundfield at every point on these circleshe

following section, we show how to use only samples of the deun

field on these circles. This will enable us to give design eligs
to build practical microphone arrays.

4. IMPLEMENTATION

Let the design objective be to construct an array capablecbm-

by its samples ovel0, 2] with at leas2n + 1 samples. Hence we
can approximately replace the right hand side (RHS) of (7) by

V’Vl
RHS 0f (7) & 203 5(rg, 00, 63 F)E-m(00), (1)
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whereV,, > 2n + 1. Thus, to calculate coefficients of all orders and
modes up taVth order, we need at lea&¥ + 1) microphones over
N + 1 circles. That is, a single sensor at the origirgsensors on a

posing soundfield coefficients up 8 modes. We use a set of circu- the next circle, followed by sensors, and ends wigiV + 1 sensors

lar arrays to calculate the spherical harmonic coefficients

on theN + 1th circle.



4.2. Placing circles

By following the description given in Section 2.3, we pladtea
native circles on the x-y plane (i.e, = pi/2) corresponding
ton = [krq] withn = 1,3,5,.... Then, we can write (8) as
JSal, = am, whereJt, anda?, contain elements correspond-
ing to evenn + |m|. This equation could be solved to find coeffi-
cientsann, with n + |m| even. Observe from Fig. 4 that we can
place the second set of circles correspondingite= 2,4, ... at

0, € {[50° :,70°],[110°,130°]} to calculate the rest of the coef-
ficients. In this case, we can rewrite (8).5%,a2, = am — J&,af,
whereJ?,, a2, andJ?,, a, can be defined accordingly to represent
odd and evem + |m/| respectively.

4.3. Broadband

To make the array work for broadband without adding infigitel
many circles for each frequency, we need to reuse existingfse
circles for higher frequencies. Suppose the desired fregyuband
is [k, ku]. Letr,(ki) be the radial distance to theh circle from
the origin corresponding to frequengy, which we use to calculate
coefficients of ordern. Since we use the constraint= [kr,] to
chooser,, (ki), it is easy to see that, (ki) = rsn(s x k), wheres
is a positive integer. That is, we can use the the same cocleél-
izing higher order coefficients of the integer multipliertb& initial
frequency. However, we need more sensors on the circlec¢alesd
higher orders. This concept could be considered as sinilaested
arrays in the line array literature for broadband. We staptsif giv-
ing detail broadband design in this paper due to space comstr

5. SIMULATIONS

To illustrate our theoretical array design, we show an exaropa
3rd order (V = 3) array of circular arrays of microphones in 3D
beamforming. Let the design frequency hé6KHz and the speed
of sound propagation = 340ms™'. First, we place a microphone
at the origin to estimateo. Next we have two circular arrays on
the x-y plane §, = 0) with radii 1/k = 3.6cm and3/k = 10.8cm
respectively. Two circles have and8 uniformly separated micro-
phones, which are one more than the minimum required. Thmubut
from these microphones on the x-y plane can be used to ctdcula
all anrm, coefficients where + |m/| is an even number (up to = 3).
Finally, we place two more circles witfrs, 63) = (1/k,0.9) and
(r4,01) = (3/k,m — 0.9) with 4 and8 microphones respectively.
We use the output of the second set of microphones togetkieaivi
ready estimated coefficients to calculate the remaing cisffi set
as outlined in Section 4.2. Figure 2 shows an example of ayeay
ometry.

By weighting each estimated coefficient by

(i7" /(20 + 1)) Py (€05 00) B ()

and summing together will give a beamformer in the look dicec

(0¢, ). Figure 5 depicts the response of the above array structure

steered to the look dirction dfr /3, w/3).
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