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ABSTRACT
Given limited or incomplete measurement data on a sphere, a

new iterative algorithm is proposed on how to extrapolate signal
over the whole sphere. The algorithm is based on a priori assump-
tion that the Fourier decomposition of the signal on the sphere has
finite degree of spherical harmonic coefficients, that is, the signal
is modelimited. The algorithm is a simple iteration involving only
the spherical harmonic decomposition. It is proven that the algo-
rithm converges to the original signal over observation region and
the convergence rate is lower bounded by the largest eigenvalue of
an associated Fredholm integral equation.

Index Terms— Extrapolation, Spherical Harmonics, Modelim-
ited.

1. INTRODUCTION

Signal extrapolation is the problem of finding an estimate of a sig-
nal outside its observation interval. Researches have proposed algo-
rithms for bandlimited signal extrapolation over finite time interval
[1, 2, 3]. Some of them have also been used on image signal pro-
cessing due to the natural extension of the Fourier Transform to the
2-D case. In this paper, the extrapolation algorithm is proposed for
signal reconstruction on a sphere. The algorithm is of great practi-
cal significance to experimental data reconstruction over the whole
sphere from limited or incomplete measurements, such as Head-
Related-Transfer-Function (HRTF) measurements for sound repro-
duction systems, the radiation field of antenna systems and earth
surface data acquisition.

Let S2 denote the unit sphere in three dimensions. It is well
known that the spherical harmonics, Y m

n (θ, φ), for m = −n, · · · , n,
n = 0, 1, 2, · · · , form a complete orthogonal basis in L2(S2) with
the natural inner product [4]. Here, the angle 0◦ ≤ θ ≤ 180◦ is
the polar angle, or colatitude and 0◦ ≤ φ ≤ 360◦ is the azimuthal
angle. The expansion of a function f ∈ L2(S2) can be written as

f(θ, φ) =

∞∑

n=0

n∑

m=−n

FnmY m
n (θ, φ). (1)

Fnm are the spherical harmonic coefficients of degree n and order
m obtained by projecting f onto Y m

n , i.e.,

Fnm =

∫

S2
f(θ, φ)Y m

n (θ, φ)∗dΩ, (2)

where Ω is the solid angle defined by
∫

dΩ =
∫ 2π

0
dφ

∫ π

0
sin θdθ,

and the (·)∗ stands for complex conjugate.

Analogous to the classical bandlimited signal extrapolation, the
Extrapolation Problem solved in this paper is: find a class of func-
tions f(θ, φ) on a sphere from incomplete measurements g(θ, φ)
over an observation region (Γ ⊂ S2, (θ, φ) ∈ Γ) based on the as-
sumption that the function is modelimited, that is its energy is finite
and its spherical harmonics coefficients Fnm are zero above a certain
degree N , i.e.,

Fnm = 0, for |n| ≥ N. (3)

Analogous to bandlimited property of temporal signals, the assump-
tion states that we expect the original signal f(θ, φ) to be smooth
and can be represented with a finite number of spherical harmonics.
The proposed extrapolation algorithm is an iterative algorithm (ex-
tension of Papoulis algorithm [3] for bandlimited extrapolation) of
reducing the mean-square error between the estimated and the origi-
nal signal at successive iterations. Using this error energy reduction
procedure, we will show that the algorithm converges to the original
signal.

2. ITERATIVE ALGORITHM

The proposed method is based on an iterative algorithm involving
only the spherical harmonics expansion of functions on the sphere.
To determine the modelimited function f(θ, φ) from limited mea-
surements g(θ, φ) over the observation region Γ, the iterative algo-
rithm starts from computing spherical harmonic coefficients

F (1)
nm =

{ ∫
Γ

g(θ, φ)Y m
n (θ, φ)∗dΩ |n| < N

0 |n| ≥ N
(4)

where dΩ = sin θdθdφ. From (4) we can compute a modelimited
function

f1(θ, φ) =

N−1∑

n=0

n∑

m=−n

F (1)
nmY m

n (θ, φ). (5)

Next, we replace the segment of f1(θ, φ) over the observation region
Γ by the known data g(θ, φ)

g1(θ, φ) =

{
g(θ, φ) (θ, φ) ∈ Γ
f1(θ, φ) elsewhere.

(6)

Following the same procedure, at the kth iteration, we have

F (k)
nm =

{ ∫
S2 gk−1(θ, φ)Y m

n (θ, φ)∗dΩ |n| < N
0 |n| ≥ N

(7)

and

fk(θ, φ) =

N−1∑

n=0

n∑

m=−n

F (k)
nmY m

n (θ, φ). (8)
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Thus,

gk(θ, φ) =

{
g(θ, φ) (θ, φ) ∈ Γ
fk(θ, φ) elsewhere

= fk(θ, φ) +
(
DΓ[f − fk]

)
(θ, φ), (9)

where DΓ is defined as a space selecting operator

(
DΓf

)
(θ, φ) =

{
f(θ, φ) (θ, φ) ∈ Γ
0 elsewhere.

(10)

Note that in the algorithm, the computed function fk(θ, φ) after
each iteration is modelimited. Thus, we could form that

F (k)
nm = G(k−1)

nm βN
n , (11)

where G
(k−1)
nm are the spherical harmonic coefficients of gk−1(θ, φ),

and βN
n is defined as

βN
n =

{
1 |n| < N
0 |n| ≥ N

(12)

and corresponds to a modelimited operator BN on the sphere. That
is,

fk(θ, φ) =
(
BNgk−1

)
(θ, φ). (13)

The operator BN can be regarded as a low-pass spatial filtering op-
erator, it truncates the spherical harmonics of a function to a certain
degree N .

Therefore, this algorithm states that we start by low-pass filter-
ing the zero extended observations. At step k, the low-pass filter
output fk(θ, φ) is substituted by the observations g(θ, φ) over the
region Γ and the result is low-pass filtered again to yield fk+1(θ, φ).
It will be shown in the next section that f(θ, φ) and fk(θ, φ) are in
the same modelimited subspace. And it will be proven that fk(θ, φ)
tend to f(θ, φ) over measurement region Γ as k →∞, and the con-
vergence properties will be determined.

3. ILLUSTRATION OF THE ALGORITHM

Given the modelimited property of f(θ, φ), we have

f(θ, φ) =
(
BNf

)
(θ, φ), (14)

and the space selected function is given by

g(θ, φ) =
(
DΓf

)
(θ, φ). (15)

The collection of modelimited functions forms a complete linear
subspace B (modelimited subspace) of L2(S2) so that all functions
having the same finite degree spherical harmonic coefficients are in
the same subspace. Analogously, the space selected functions form
another complete linear subspace D (space selection subspace) of
L2(S2). Then the iterative algorithm can be regarded as an affine
projection involving DΓ, given in (10) and an orthogonal projection
using BN given in (13). Thus, we have

fk(θ, φ) =
(
BNfk−1

)
(θ, φ) +

(
BNDΓ[f − fk−1]

)
(θ, φ)

= fk−1(θ, φ) +
(
BNDΓ[f − fk−1]

)
(θ, φ). (16)

Here fk(θ, φ) =
(
BNfk

)
(θ, φ) because fk is in the modelimited

subspace. The algorithm is in essence an iterative descent algorithm.
Here by descent, we mean that in the modelimited subspace, each
new point fk generated by the algorithm corresponds to reducing
the value of some error function (f − fk). Intuitively, the sequence

of points generated by such algorithm converges to the original func-
tion.

In characterizing the geometry of the convergence, we seek the
expression for the cascade operator BNDΓ on any general function
f(θ, φ) and the following eigen-decomposition is central.

Theorem 1. The cascade operator BNDΓ is a self-adjoint compact
Fredholm integral operator [5] on L2(Γ) defined by

(
BNDΓf

)
(θ, φ) =

∫

Γ

K(θ, φ; θ0, φ0)f(θ0, φ0)dΩ0, (17)

with kernel

K(θ, φ; θ0, φ0) =

N−1∑

n=0

n∑

m=−n

Y m
n (θ, φ)Y m

n (θ0, φ0)
∗. (18)

Proof. As stated before, spherical harmonics Y m
n (θ, φ) are com-

plete orthogonal basis on the sphere S2. From (1) and (2), we have

f(θ, φ) =

∞∑

n=0

n∑

m=−n

( ∫

S2
f(θ0, φ0)Y

m
n (θ0, φ0)

∗dΩ0
)
Y m

n (θ, φ).

(19)
The above equation holds for any function f(θ, φ) (f ∈ L2(S2))
and so holds for

(
DΓf

)
(θ, φ) ∈ L2(Γ), i.e.,

(
DΓf

)
(θ, φ)

=

∞∑

n=0

n∑

m=−n

( ∫

S2

(
DΓf

)
(θ0, φ0)Y

m
n (θ0, φ0)

∗dΩ0
)
Y m

n (θ, φ)

=

∞∑

n=0

n∑

m=−n

( ∫

Γ

f(θ0, φ0)Y
m

n (θ0, φ0)
∗dΩ0

)
Y m

n (θ, φ). (20)

The modelimited operator BN truncates the spherical harmonics to
a certain degree N ; and we have

(
BNDΓf

)
(θ, φ) =

N−1∑

n=0

n∑

m=−n

( ∫

Γ

f(θ0, φ0)Y
m

n (θ0, φ0)
∗dΩ0

)
Y m

n (θ, φ). (21)

This is equivalent to (17) and (18). Since the kernel satisfies

K(θ, φ; θ0, φ0) = K(θ0, φ0; θ, φ)∗, (22)

the operator in (17) is self-adjoint. Further the operator is compact
and positive.

Over the observation region (θ, φ) ∈ Γ, (17) has a set of real
positive eigenvalues λi (λi < 1) 1 and orthogonal eigenvectors
ϕi(θ, φ) (corresponding to distinct eigenvalues). That is,

∫

Γ

ϕi(θ0, φ0)

N−1∑

n=0

n∑

m=−n

Y m
n (θ, φ)Y m

n (θ0, φ0)
∗dΩ0

= λiϕi(θ, φ), (23)

where ∫

Γ

ϕi(θ, φ)ϕj(θ, φ)∗dΩ = δij . (24)

1Note the function total energy is reduced after the BND operation; and
eigenvalues show the fractional function energy passed under such a trans-
form.
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Notation used in (23) reveals that eigenvectors and eigenvalues
are functions of the observation region Γ, and the given value of
the spherical harmonic coefficients degree N . Fig. 1 gives an ex-
ample of the first two dominant eigenvectors for Γ = (0 ≤ θ ≤
120◦, 0 ≤ φ ≤ 200◦) with N = 4. And as we see from Fig. 2, λ0
(the largest eigenvalue corresponds to the eigenfunction with small-
est energy loss) increases with the area of observation region Γwhen
the value of N is fixed. In the next section, we will use the derived
orthogonal eigenvectors to prove the convergence of the algorithm.

(a) ϕ0(θ, φ) (b) ϕ1(θ, φ)

Fig. 1. An example of the dominant two eigenvectors for observation
region Γ = (0 ≤ θ ≤ 120◦, 0 ≤ φ ≤ 200◦) and spherical harmonic
coefficients degree N = 4.

Fig. 2. An example of λ0 increasing with the observation region,
where the colatitude observations increase from 0◦ to 180◦ and the
full range of azimuthal observation is assumed. The observation re-
gion is represented by fractional area (

∫
Γ

dΩ/4π), the solid angles
in fractions of the sphere.

4. CONVERGENCE

To prove the convergence of the iteration, by the Spectral Theorem
for self-adjoint compact operators [6], we use ϕi(θ, φ) as orthogonal
basis to expand the function f(θ, φ) over the region Γ

f(θ, φ) =

∞∑

i=0

αiϕi(θ, φ), (θ, φ) ∈ Γ. (25)

Similar results as in [3] are obtained.

Theorem 2. The kth iteration of the algorithm is given by

fk(θ, φ) =

∞∑

i=0

αi[1− (1− λi)
k]ϕi(θ, φ), (θ, φ) ∈ Γ (26)

where λi and ϕi are introduced after Theorem 1, and αi are the
function expansion coefficients.

Proof. At the first step

f1(θ, φ) =
(
BNDΓf

)
(θ, φ) =

∞∑

i=0

αiλiϕi(θ, φ), (θ, φ) ∈ Γ.

(27)
Suppose at the kth step

fk(θ, φ) =

∞∑

i=0

αiA
(i)
k ϕi(θ, φ), (θ, φ) ∈ Γ. (28)

From (16)

fk(θ, φ) = fk−1(θ, φ) +
(
BNDΓ[f − fk−1]

)
(θ, φ)

=

∞∑

i=0

αi(A
(i)
k−1 + (1−A

(i)
k−1)λi)ϕi(θ, φ), (θ, φ) ∈ Γ.

(29)

Thus

A
(i)
k = A

(i)
k−1 + (1−A

(i)
k−1)λi. (30)

Solving the recursion with the initial condition A
(i)
1 = λi, we con-

clude that

fk(θ, φ) =

∞∑

i=0

αi[1− (1− λi)
k]ϕi(θ, φ), (θ, φ) ∈ Γ. (31)

Theorem 3. Over measurement region Γ,

fk(θ, φ)→ f(θ, φ), as k →∞. (32)

Proof. From (25) and Theorem 2, the error

ek(θ, φ) = f(θ, φ)− fk(θ, φ) (33)

is given by

ek(θ, φ) =

∞∑

i=0

αi(1− λi)
kϕi(θ, φ), (θ, φ) ∈ Γ. (34)

The mean-square value Ek is written as

Ek =

∫

Γ

ek(θ, φ)2dΩ =

∞∑

i=0

α2i (1− λi)
2k. (35)

As signal energy E =
∑∞

i=1 |αi|2 is finite; hence, there is an integer
P that ∑

i>P

|αi|2 < ε1, (36)

where ε1 is an arbitrary small value and ε1 > 0. Eigenvalues 0 <
λi < 1 and tend to zero as i →∞, we have 1− λi < 1 and

(1− λi) ≤ (1− λP ), for i ≤ P. (37)

Then

Ek =

P∑

i=0

|αi|2(1− λi)
2k +

∞∑

i>P

|αi|2(1− λi)
2k

< (1− λP )
2k

P∑

i=0

|αi|2 +
∞∑

i>P

|αi|2 < (1− λP )
2kE + ε1.

(38)
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As k → ∞, (1 − λP )
2k → 0. Thus Ek is always less than an

arbitrary small value ε = ε1 + ε2 where (1 − λP )
2kE < ε2. The

mean-square error value between the estimated and original signal
at successive iterations is reduced, that is, ek(θ, φ)→ 0 in the mean
as k →∞. The estimates fk and original function f are in the same
modelimited subspace; thus Theorem 3 actually means the estimated
signal tending to the original function over the whole sphere .

Notation used in (34) reveals that the estimation error is a func-
tion of eigenvalues of the integral equation (23). Considering the
eigenvalue properties stated in section 3, two remarks about the iter-
ative algorithm are:

1. The convergence of the iteration algorithm is lower bounded
by the largest eigenvalue λ0, as from (34), the minimum esti-
mation error after each iteration is

∑∞
i=0 αi(1−λ0)

kϕi(θ, φ).

2. As shown in Fig. 2, λ0 increases with the area of observation
region Γ, which means that measurements of larger obser-
vation region have faster initial convergence and thus would
tend to require a smaller number of iterations.

5. NUMERICAL SIMULATION RESULTS

In this section, we apply the proposed method to extrapolate incom-
plete data on a sphere and examine the algorithm performance. The
data is artificially generated by assigning specific spherical harmonic
coefficients to degree N and then computed from functional spheri-
cal harmonics decomposition formula (1). In the following example,
the signal is assumed to be mode limited to N = 4 and random
values are assigned to the spherical harmonic coefficients. The ob-
servations are given for 0 ≤ θ ≤ 140◦, 0 ≤ φ ≤ 300◦. Fig. 3 shows
the original signal, the given observations and the estimated signal
after 30 iterations. It can be seen that the algorithm provides very
accurate extrapolation results.

(a) Original signal f(θ, φ).

(b) Given Observations g(θ, φ) (c) Extrapolated signal fk(θ, φ)

Fig. 3. An example of data reconstruction on the sphere using the
proposed iterative algorithm. The observations in (b) are given for
0 ≤ θ ≤ 140◦, 0 ≤ φ ≤ 300◦ with N = 4. Extrapolation results
in (c) are the estimates after 30 iterations. The color scale shows the
signal magnitude; and the pure black means no observation made.

Fig. 4. Mean square error between the estimated and original signal
for different data observation regions. FA stands for fractional area
of the observation region.

The mean-square estimation error between the estimated and
original signal after each iteration for different observation regions
are shown in Fig. 4. Several observations are: firstly, the estimation
error is exponentially decaying with the iteration step, demonstrating
that the convergence of F k

nm to the unknown modelimited spherical
harmonic coefficients Fnm is remarkably rapid. The smaller error
and faster convergence associated with the measurements of larger
observation region support the remarks of the algorithm in Section
4.

6. CONCLUSION

This paper has presented an iterative algorithm for signal extrapola-
tion over the whole sphere from limited or incomplete measurements
based on the priori knowledge that the signal spherical harmonic ex-
pansion is finite dimensional. The algorithm can be regarded as pro-
jections involving two subspaces, the modelimited subspace and the
space selection subspace, corresponding to the modelimited signal
and given measurements. The iterative algorithm reduces the mean-
square error between the estimated and original signal at successive
iterations. Numerical simulation results demonstrate the fast conver-
gence of the algorithm to the original function.
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