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Compensation Decoding of Space Time Frequency Block Codes
Min Zhang, A.D.S. Jayalath, Thushara D. Abhayapala, David Smith, and Chandra Athaudage

Abstract— A novel compensation decoding scheme for a given
space time frequency linear block code is presented, exploiting
the simplicity of zero forcing equalization, and special char-
acteristics of the precoding matrix. The proposed decoding
procedure is relatively simple and straightforward in comparison
to maximum likelihood decoding (MLD) and sphere decoding
(SD). The bit-error-rate performance of the proposed scheme is
better than zero forcing decoding and close to MLD and SD for
low to medium signal-to-noise ratio range.

Index Terms— STF coding, MIMO-OFDM, STF decoding.

I. INTRODUCTION

W IRELESS communication system with multiple input
multiple output (MIMO) and orthogonal frequency

division multiplexing (OFDM) is an attractive candidate for
next generation wireless networks. In order to achieve full
space-time-frequency (STF) diversity of MIMO-OFDM sys-
tems, subcarrier grouping or frequency grouping [1]–[3] is
usually used to reduce the system complexity and reuse well-
developed space-time (ST) coding schemes. Moreover, STF
coding schemes proposed in [1]–[5] are capable of achiev-
ing full STF diversities using maximum-likelihood decoding
(MLD) or sphere decoding (SD). The complexity of SD and
MLD increases dramatically with employing more subcarriers.
On the other hand, zero forcing decoding (ZFD) [6] has much
simpler decoding procedure at the expense of performance
compared with MLD and SD, alternatively requires redundant
subcarriers and a complex matrix inversion. Hence there is a
trade-off between system performance and complexity, which
we propose to address by a new method simplifying the
decoding procedure into element by element decoding for a
slightly modified STF coding scheme presented in [1].

II. CHANNEL MODEL AND CODING

Here we consider a frequency selective MIMO-OFDM
system with Nt transmitters, Nr receivers, F subcarriers and
K symbol intervals of time where Nt = K = 2. The channel
is assumed to be quasi-static over K symbol intervals. Each
pair of transmitter and receiver has L + 1 resolvable delay
paths. By subcarrier grouping we assume that P uniformly
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separated subcarriers are employed for the precoding scheme
in each group.

It has been proved that the full space frequency diversities
of NtP and rate one can be achieved only if P ≤ (L + 1)
and Nt = 2 for the precoding scheme in [1]. In this paper we
adopt a part of the precoding procedure in [1] to develop a
simpler, element by element decoding method for the case of
two transmitters. Applying Alamouti coding for ST domains,
the MIMO-OFDM channel equation at the pth subcarrier is
given by{

Y1p =
√

ρ
2 (s1pH1p + s2pH2p) + n1p ;

Y2p =
√

ρ
2

(−s∗2pH1p + s∗1pH2p

)
+ n2p .

(1)

where Ykp for k ∈ [1, 2] and p ∈ [1, · · · , P ] is 1 × Nr

received signal vector by Nr receivers during the kth symbol
interval at the pth subcarrier where ∗ is the complex conju-
gation operation. Complex scalars s1p and s2p are symbols
transmitted through the pth subcarrier, where p ∈ [1, · · · , P ].
Htp where t ∈ [1, 2] and p ∈ [1, · · · , P ] is 1 × Nr channel
frequency response vector of wireless propagation from the
tth transmitter to Nr receivers at the pth subcarrier. We
assume that there is perfect channel state information (CSI)
of Htp at the receiver, but no CSI at the transmitter. ρ
is the average signal-to-noise ratio (SNR) at each receiver
with same transmission power, independent of the number of
transmitters, receivers and subcarriers. nkp is 1 × Nr noise
vector during the kth symbol interval at the pth subcarrier.
Each entry of nkp is the independent complex additive white
Gaussian noise (AWGN) with zero mean and unit variance.

The optimal coding gain and full diversity can be achieved
with a Vandermonde matrix [1], [2], [7]. However in this
paper we propose to employ a real matrix Φ in [8] with
full frequency diversity and potentially suboptimal coding
gain. The real matrix Φ will simplify the decoding procedure
specified in the next section. Hence we have

[s11, · · · , s1P ] = C1Φ, [s21, · · · , s2P ] = C2Φ (2)

where Φ is P × P real matrix and Φp is defined as the pth
column vector of Φ. Each entry of the codeword vectors C1

and C2 is a complex scalar chosen from a given constellation
A. They are defined as C1 = [c1, · · · , cP ] and C2 =
[cP+1, · · · , c2P ] so that symbol transmission rate equals to
unity for this STF block coding scheme. The real matrix Φ
is restricted by: ΦΦT = I and ΦT Φ = I where T is the
transpose operation of matrix and I is defined as an identity
matrix. From (2), transmitted symbol skp for k ∈ [1, 2] and
p ∈ [1, · · · , P ] can be expressed as skp = CkΦp which
is substituted into (1). After applying a conjugate operation
and combining equations for different subcarriers, we have an
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equivalent channel equation to (1) given by the following

Ỹ = [C1,C2]H̃ + Ñ (3)

where

Ỹ =
[
Y11 Y∗

21 · · · Y1P Y∗
2P

]
H̃ =

[
Φ1H11 Φ1H∗

21 · · · ΦP H1P ΦP H∗
2P

Φ1H21 −Φ1H∗
11 · · · ΦP H2P −ΦP H∗

1P

]
Ñ =

[
n11 n∗

21 · · · n1P n∗
2P

]
and Ñ is complex AWGN.

III. MIMO-OFDM DECODING

Starting from (3), we propose a decoding scheme, compen-
sation decoding (CD), for this particular STF block coding
scheme. Multiplying both sides of (3) by H̃† and using the
properties of Φ, we have

ỸH̃† = ÑH̃† + [C1,C2]

×
⎡
⎣∑P

p=1

(
H1pH

†
1p + H2pH

†
2p

)
ΦpΦT

p ,0P×P

0P×P ,
∑P

p=1

(
H1pH

†
1p + H2pH

†
2p

)
ΦpΦT

p

⎤
⎦ (4)

where † is complex transpose conjugate and 0P×P is the
P × P dimensional zero matrix.

(
H1pH

†
1p + H2pH

†
2p

)
for

any p ∈ [1, · · · , P ] is a scalar and defined as h̃p. We also
define the matrix

∑P
p=1 h̃pΦpΦT

p in (4) as Ĥ. Hence Ĥ =
ΦD[h̃1, · · · , h̃P ]ΦT where D constitutes a diagonal matrix
with entries [h̃1, · · · , h̃P ]. Using the properties of Φ, we have{

Ĥ1/2 = ΦD[h̃1/2
1 , · · · , h̃

1/2
P ]ΦT ;

Ĥ−1/2 = ΦD[h̃−1/2
1 , · · · , h̃

−1/2
P ]ΦT .

(5)

Note that ÑH̃† in (4) is colored Gaussian noise, hence
multiplying (H̃H̃†)−1/2 by both sides of (4), we have

ỸH̃†
[
Ĥ−1/2 0P×P

0P×P Ĥ−1/2

]
= [C1,C2]

[
Ĥ1/2 0P×P

0P×P Ĥ1/2

]
+ Ñ

(6)
Because H̃†(H̃H̃†)−1/2 is a unitary matrix, Ñ in (6) is still
complex AWGN.

Both ỸH̃† and Ñ are then split up into two vectors equally,
so ỸH̃† = [Ŷ1, Ŷ2] and Ñ = [N1,N2]. Hence (6) can be
rewritten as {

Ŷ1Ĥ−1/2 = C1Ĥ1/2 + N1 ;
Ŷ2Ĥ−1/2 = C2Ĥ1/2 + N2 .

(7)

where N1 and N2 are complex AWGN.
Note that both Ĥ−1/2 and Ĥ1/2 are real matrices. Therefore

above equation can be split up further into real and imaginary
parts easily:⎧⎪⎪⎨

⎪⎪⎩
Re(Ŷ1)Ĥ−1/2 = Re(C1)Ĥ1/2 + Re(N1) ;
Im(Ŷ1)Ĥ−1/2 = Im(C1)Ĥ1/2 + Im(N1) ;
Re(Ŷ2)Ĥ−1/2 = Re(C2)Ĥ1/2 + Re(N2) ;
Im(Ŷ2)Ĥ−1/2 = Im(C2)Ĥ1/2 + Im(N2) .

(8)

In (8) we have split up (3) into four independent sub-
equations. Hence we only use the first equation of (8) as an
example and decode the real component of C1. The decoding
of rest of sub-equations will follow the exact same procedure.

For simplicity, we denote that Y = Re(Ŷ1), C = Re(C1)
and N = Re(N1) which is independent real AWGN with
zero mean and 0.5 variance. Thus the first equation of (8) is
represented by

YĤ−1/2 = CĤ1/2 + N (9)

Multiplying Ĥ−1/2 by both sides of (9), we have

YΦD[h̃−1
1 ...h̃−1

P ]ΦT = C + NĤ−1/2 (10)

Then we are able to use the left side of (10) to get the first
estimation C̃ of C by hard decision on real domain of the
constellation A.

C̃ might not be a good estimation because NĤ−1/2 in (10)
is colored Gaussian noise and the decoding of C̃ is simply
based on ZFD. Hence if there exists a better estimation, then
the estimation can be expressed as (C̃+∆C). ∆C is denoted
as the compensation vector respective to C̃. Then our new
target is to search the non-zero compensation vector ∆C so
that we could get a better estimation (C̃ + ∆C). ∆C needs
to satisfy

‖YĤ−1/2−(C̃+∆C)Ĥ1/2‖2 < ‖YĤ−1/2−C̃Ĥ1/2‖2 (11)

which satisfies the condition of MLD of (9). If C̃ is the
decoding result from MLD, there is clearly no non-zero ∆C
satisfying (11). C̃ + ∆C should be limited by the values of
constellation A.

We can simplify (11) as

∆CΦD[h̃1, · · · , h̃P ]ΦT ∆CT <

2∆C
(
YT − ΦD[h̃1, · · · , h̃P ]ΦT C̃T

) (12)

Define P × 1 vector Λ as

Λ = 2
(
YT − ΦD[h̃1, · · · , h̃P ]ΦT C̃T

)
· /

(
Φ·2[h̃1, · · · , h̃P ]T

) (13)

where ·2 and ·/ are element by element matrix multiplication
and division respectively.

Supposed that the compensation vector ∆C contains only
one non-zero entry. It means there is only one error in the de-
coded C̃ assuming that the solution of MLD is correct. Hence
we define ∆C = [0, ...,∆ci, ..., 0] where i ∈ [1, · · · , P ]. The
scalar ∆ci is defined as the ith compensation entry of ∆C.
Hence if C̃ has one decoding error, (12) can be simplified
further as

0 < ∆ci < Λi or 0 > ∆ci > Λi (14)

where Λi is the ith entry of Λ. Therefore if we are able to
find a ∆ci satisfying (14), we can use ∆ci to compensate
and correct the ith entry of C̃ denoted as c̃i. The possible
values of ∆ci are related to the constellation A and also
limited. For example, ∆ci = ±√

2 for QPSK and ∆ci =
±2/

√
10,±4/

√
10, or ± 6/

√
10 for 16QAM. Therefore the

decoding of ∆ci becomes another kind of hard decision based
on a new constellation. For example, if QPSK is employed,
(14) gives us ∆ci =

√
2 if Λi >

√
2 and ∆ci = −√

2
if Λi < −√

2. Note that the position i is chosen as the
position with the largest absolute value of the vector Λ so
that corrected result is closed with the result from MLD as
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Fig. 1. Performance of MIMO-OFDM system with two or four subcarriers.

much as possible. (c̃i + ∆ci) should be also bounded within
the given constellation A, otherwise (c̃i+∆ci) is out of range.

The advantage of CD is that the calculation of channel
matrix inverse of (3) is simplified as a direct real matrix
product in (10), which is similar with ZFD. The real precoding
matrices Φ, ΦT and Φ·2 can be stored at the receiver
in advance. Only real calculations are involved during the
decoding of each subequation in (8). Moreover the decoding
of C̃ and ∆C requires two hard decisions in real domain. And
the complexity of CD does not depend on the constellation size
of A except for two hard decisions. The disadvantage of CD
is the lack of full frequency diversity, so that the performance
of decoding is worse than MLD and SD. Hence we slightly
sacrifice the decoding gain for a faster decoding procedure.

IV. SIMULATIONS AND COMPARISONS

In this section we present simulations to investigate the
decoding ability of proposed method. We will compare SD in
[9], MLD, ZFD, and the proposed CD. ZFD is the decoding
procedure without compensation ∆C. Hence only (10) is
required for ZFD. SD and MLD are based on the equivalent
channel equation (3). The constellation of QPSK is employed
in every simulation. Fig. 1 is the bit-error-rate (BER) over
large number of channel realizations. The random channel
is assumed to be a multiray channel. It has uniform power
delay profile composed of L + 1 independent identically
distributed complex Gaussian paths with zero mean and equal
variance ( 1

L+1 ). We choose F = 128, Nr = 1 and L = 3.
The second order characteristics of such MIMO-OFDM is
presented in [10]. Considering higher frequency correlation if
more subcarriers are employed and practical low and medium
SNR scenarios, we focus on the cases of P = 2 and P = 4
at SNR ≤ 15 dB.

The performances of ZFD are much worse than CD, MLD
and SD in Fig.1. ZFD can not achieve full frequency diversity.
However, ZFD can achieve a little improvement in the perfor-
mance by increasing the number of subcarrriers. Simulations

in Fig.1 also show that the proposed CD approaches MLD
more than ZFD. It proves that the compensation vector ∆C
improves the decoding result of ZFD to a certain degree.
However full frequency diversity can not be achieved by
CD, just as to ZFD. MLD (same as SD) has about 0.5dB
and 2.5dB gains compared with CD and ZFD respectively
at BER of 10−3 when P = 2. Moreover MLD (or SD)
has about 1.5dB and 3.3dB gains compared with CD and
ZFD respectively at BER of 10−3 when P = 4. Hence for
given BER, the difference between CD and MLD gets larger
if more subcarriers are employed. The reason is that most
of the decoded C̃s with two subcarriers are either error-free
or one error. Such situations are suited with the decoding
ability of proposed CD. Hence, after taking advantage of
characteristics of the precoding scheme, CD presents a trade-
off between system performance and complexity. Therefore it
becomes a good candidate for decoding STF codes because
of its lowest complexity and relatively good performance for
MIMO-OFDM systems at low and medium SNR.

V. CONCLUSIONS

In this paper, we present a novel decoding method for a
given space-time-frequency coding scheme. Taking advantage
of the simplicity of ZFD, we develop a method to calculate a
compensation vector for the output of ZFD. After modification
by the compensation vector, the BER performance can be
improved significantly. The decoding procedure is relatively
simple and independent of the constellation size. Moreover
the performance of the proposed decoding method is close to
MLD for low to medium SNR range. A trade-off between the
system performance and complexity is demonstrated for the
implementation of CD.
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