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Abstract— We bound the number of electromagnetic signals
which may be observed over a frequency range [F −W, F + W ]
a time interval [0, T ] within a sphere of radius R. We show
that the such constrained signals may be represented by a
series expansion whose terms are bounded exponentially to zero
beyond a threshold. Our result implies there is a finite amount
of information which may be extracted from a region of space
via electromagnetic radiation.

I. INTRODUCTION

Wireless communication is fundamentally limited by the
physics of the medium. Electromagnetic wave propagation has
been given [1, 2] as a motivation for developing such limits:
information is ultimately carried on electromagnetic waves.
Narrowband degrees of freedom (dimensionality) results have
been given for dense multipath [3–5] and subsequently ex-
tended to sparse systems. Here, the signal bandwidth is neg-
ligible: dimensionality results are defined in wavelengths.

Narrow-band wavefields were shown to have limited con-
centrations [6]. The limit was based upon the free-space
Helmholtz (wave) equation – a time independent variation of
the electromagnetic wave [7]. Such waves may be represented
by a functional series, whose terms are bounded exponentially
toward zero beyond some limit. This limit was used to describe
a random MIMO channel in dense [8] multipath and provide
capacity results.

More recent work – including wide-band MIMO motivates
analysis of the capability of spatially diverse signals to support
multiplexing over significant bandwidths.

Given a region, bounded by radius R, centre-
frequency F , bandwidth 2W and observation time
T , what is the number D of wireless (electromag-
netic) signals which may be observed?

In [9] an approximate dimensionality result was given. This
bound was excessively complex — resulting in a loose over-
bound. In this work we provide exponential error bounds —
reflecting [3], and provide a tighter bound on the dimension-
ality of 3D-spatial broadband signals.

The remainder of this paper is arranged as follows: We pro-
vide a truncation point and bound the error for electromagnetic
signals in space in Section II. This gives our main result in
Theorem 1. Section III gives plots of the degrees of freedom,
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while Section IV provides an to MIMO mutual information.
We draw conclusions in Section V. Proofs are in the Appendix.

II. DIMENSIONALITY

Existing dimensionality results for signals 3D space, with
non-trivial bandwidth are limited by

DWT = 2WT + 1 (1)

Dspace =
(⌈

eπRF

c

⌉
+ 1
)2

(2)

where (1) is from [10], formalised in [11] and (2) is from [12].
Fundamentally, we seek to develop a result which combines
both (1) and (2): broadband, spatially diverse signals.

Source-free (propagating) electric fields Ψ(r, t), are solu-
tions of the free-space Maxwell wave equation [7]:(

4− 1
c2

∂2

∂t2

)
·Ψ(r, t) = 0 (3)

where 4 = (∂2/∂x2, ∂2/∂y2, ∂2/∂z2) and c = 3× 108ms−1

is the speed of light. The vector r = (r, θ, φ) with 0 ≤ θ < π,
0 ≤ φ < 2π denotes position. We now formally pose:

Problem 1: Given a function in space-time x(r, t) which
is non-zero for |r| ≤ R and t ∈ [0, T ] and has a frequency
component in [F −W,F +W ] and satisfies (3); what number
D of signals ϕ(r, t) are required to parameterize x(r, t)?

Observe that we may represent any signal which is con-
strained to [0, T ]× [0, R] and satisfying (3) by [13]:

Ψk(r, t) = exp (−ι|k|ct− ιk · r) (4)

where k is the vector wave-number and ι =
√
−1. The

magnitude |k| = 2πf/c is scalar wave-number.
We may then express any radio signal as (an infinite) series

expansion (24). The series itself is not important: simply that
it exists, and we may truncate the series at some point.

This series may be truncated at a point N (r, t; f) which is
an increasing function of frequency, time and space. Our first
step is to define the truncation point at which the majority of
the signal energy is captured – this will then provide us with
our degrees-of-freedom result.

ISIT2007, Nice, France, June 24 – June 29, 2007

1-4244-1429-6/07/$25.00 c©2007 IEEE 701



Lemma 1 (Truncation Point): The critical threshold (a
function of |r|, t) at frequency f is

N (r, t; f) = NT (t; f) +NS(r; f) (5)
NT (t; f) = deπ∆f te (6)

NS(r; f) =
⌈
eπf

|r|
c

⌉
(7)

Once we have chosen an appropriate threshold, increasing N
reduces the truncation error exponentially.

Lemma 2 (Truncation Error): The truncation error is

εN ≤ 2/e ≈ 0.74 (8)

and for any α, δ ≥ 1

εN+δ+α < εN · e2−δ−α (9)

Lemma 1 allows us to approximate any broadband radio
signal with a finite number of terms. Since this bound is
exponentially tight (from Lemma 2) we may apply Lemma 1
to give a dimensionality result:

Theorem 1 (3D dimensionality D3D): The number of or-
thogonal electromagnetic waves which may be observed in
a three-dimensional spatial region bounded by radius R, over
frequency range F ±W and time interval [0, T ] is

D3D ≈ (eπ2WT + 1)
(

eπR(F −W )
c

+ 1
)2

(10a)

+eπ2WT

(
eπR

c

)2 [
2FW − 2

3
W 2

]
(10b)

+
(

eπR

c

)2

4FW + eπ2WT

[(
eπR

c

)
F +

1
6

]
(10c)

Since F ≥ W (by definition), so all terms in (10) are non-
negative.

The term (10b) gives an estimate of the effect of signal
bandwidth on the degrees of freedom in space. For practical
applications we expect R � c and TW to be small (TW <
10). Thus, for (10b) to be non-negligible

√
FW ≈ c. In

general (10c) will be dominated by (10a) and (10b)

A. Asymptotic Results

For R → 0 (10) reduces to 7eπTW/3 + 1 which over-
bounds (1). For T,W → 0, (10) reduces to (2) while for
W 6= 0, T → 0 (10) reduces to (2) with centre frequency F +
W . For extreme broadband signals F = W , and

D3D ∝ 2eπTW

(
eπR

c

)2 4
3
W 2 (11)

and when all parameters are non-trivial

D3D ∝ 2eπTW

(
eπR

c

)2(
F 2 +

W 2

3

)
(12)
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Fig. 1. Number of degrees of freedom for moderate W and T = 0.5ms,
F = 2.4GHz, λ = 0.125m: Curvature toward bottom of Fig. 1(b) denotes
saturation wrt. radius.

III. PLOTS

We have considered two common spatially diverse scenar-
ios. In Figure 1 we have used a centre frequency F = 2.4GHz,
1kHz bandwidth and R < 2λ. Figure 1(a) shows a mesh of
the degrees of freedom, while Figure 1(b) gives a contour plot.
The super-linear growth in DoF can be seen as both R and
W increase.

Figure 2 shows the DoF for a broadband signal W ≤ F
with centre frequency F = 2.4MHz. In this case the centre
wave-length is 125m (and at F + W , λmin = 62.5m) so
R � λ/2. In this case at R → 0 we see the usual 2WT linear
growth in DoF, at R ≈ λmin/4 we see a knee-point in the DoF
surface, corresponding to spatial degrees of freedom becoming
effective. This can be seen by the curvature of the contours
near R = 5m in Figure 2(b). This suggests that standard
MIMO designs may be worthwhile for much denser array
spacings: at 2.4GHz some MIMO-like capacity improvement
(over a 2WT result) may be seen at 3cm antenna separation
for sufficient
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Fig. 2. Number of degrees of freedom for large W , small R and T = 1µs,
F=2.4MHz, λ = 125m

IV. EXAMPLE: MUTUAL INFORMATION I
We assume all channel eigenvalues are equal magnitude

in space and frequency, up to NT and NS respectively. The
transmitter uses (4) as matched filters for the channel and sends
uniform power ρ on the subset of modes with non-neglible
magnitude. This is a reasonable capacity approximation [14].

A naı̈ve application of (10) to mutual information would be
I = D log(1 + ρ/D) ≤ ρ. This ignores the random nature
of the MIMO channel: spatial signals are mixed through a
random scattering channel, while frequency signals are not.
Assume both transmitter and receiver have identical geome-
tries and are situated in dense scatter.

Consider Figure 3, every horizontal dashed line may be con-
sidered as an input element with each element operating at 2W
different frequency taps (eg. through OFDM). At frequency
F − W ≤ f ≤ F + W there are Nt = (eπRf/c + 1)2,
independent input signals from (2). Then there are

N =
∑

f

Nt(f) =
F+W∑

f=F−W

(eπRf/c + 1)2 (13)

parallel input channels and mutual information at f is If

If = log det
(
INt

+
ρ

N
XX∗

)
→ Nt log

(
1 + P

Nt

N

)
Where X is a Gaussian random matrix of dimension Nt(f),
see for example [6]. Since each frequency channel is indepen-
dent, the total mutual information is found by combining (13)
and

I =
F+W∑

f=F−W

Nt(f) log
(

1 + ρ
Nt(f)

N

)
(14)

which may be calculated numerically. Note, in the case of
Nt(f) = const we return to the classic parallel channel result
I = ρNt. For Nt(f) an increasing function of f , the sum (14)
is increased, thus

I ≥ ρ

(
eπR(F −W )

c
+ 1
)2

(15)

Due to random scattering, spatial modes provide a linear
increase in capacity, while frequency modes provide parallel
channels.

V. CONCLUSION

We have shown that the degrees of freedom for a spherically
restricted broadband wireless signal is proportional to the
surface area of the spatial region, the square of the frequency
and bandwidth and the DoF of the broadband signal itself.
We have shown that the error associated with truncating such
a signal at N terms decreases exponentially as N increases.

As an example we have shown that broadband spatial
communication systems may have a capacity beyond that ex-
pected by combining MIMO capacity results by with parallel
frequency channels.

APPENDIX I
OPERATOR MATERIAL

Definition 1 (Truncation Projection D): Given the spatial
interval S and time interval [0, T ], the truncation operator
D sets a field f(r, t) to zero outside the time- and space-
intervals.

Df(r, t) =

{
f(r, t) r ∈ S and t ∈ [0, T ]
0 else

(16)

Definition 2 (Wavefield Projection W ): The wavefield pro-
jection W projects a field f(r, t) onto solutions Ψ(r, t) of (3).

Wf(r, t) =
∑

l,m,n

fl,m,nΨl,m,n(r, t) (17)

fl,m,n =
∫∫

f(r, t)Ψl,m,n(r, t) dt dr

k is the wave vector in three dimensions k = (kx, ky, kz)
with scalar wave number k = |k| = (k2

x + k2
y + k2

z)1/2 [13,
eqn.6.94 p.759]. Ψl,m,n is given by (4) with the values of k
chosen discretely:

k =
2π

cT
p kx =

2π

L
l ky =

2π

L
m kz =

2π

L
m (18)
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Using (16) and (17) we may write the signal observed in
S× T as:

g(r, t) = WDf(r, t) (19)

Lemma 3: WD is a compact operator.
Lemma 3 emphasizes that although there are infinitely many
independent electromagnetic waves, only a finite number of
electromagnetic signals may be resolved within the region
S× T . The implication of this is that any approximation for
a given signal has a bounded error.

APPENDIX II
PROOFS

Proof: [Lemma 1]
From (4)

Ψk(r, t) = exp(−ιkminct) exp
(
−ιḱct− ιk · r

)
(20)

= exp(−ιkminct)Ψ̂k(r, t) (21)

where k·r denotes the vector dot product and 0 ≤ ḱ ≤ 4πW/c.
We wish to bound the number of terms required to approxi-
mate this function. Note exp(−ιkminct) has exactly one degree
of freedom, so we may equivalently calculate the DoF for Ψ̂.
Using the Jacobi-Anger expansion [15, eqn2.45, pp.32] and
summation theorem [15, eqn2.29, pp.27]

e−ιk·r = 4π
∞∑

n=0

ιnjn(k‖r‖)
n∑

m=−n

Y m
n (r̂)Y m

n (k̂) (22)

where jn(z) =
√

π
2z Jn+ 1

2
(z) is a spherical Bessel function.

From [13, 8.534.1]

e−ιcḱt =
∞∑

p=0

ιp(2p + 1)jp(cḱt) (23)

Combining (22) and (23)

Ψ(P,N)(r, t) = 4π
P∑
p

ιp(2p + 1)jp(cḱt)

×
N∑

n,m

ιnjn(k‖r‖)Y m
n (r̂)Y m

n (k̂) (24)

We may truncate Ψ(r, t) and bound the error as in [3]:

ε(P,N) =
∣∣∣Ψ(r, t)−Ψ(P,N)(r, t)

∣∣∣
= 4π

∣∣∣∣∣∣
∞∑

p>N

ιp(2p + 1)jp(cḱt)

×
∞∑

n>N

ιnjn(k‖r‖)
n∑

m=−n

Y m
n (r̂)Y m

n (k̂)

∣∣∣∣∣
Taking the absolute values inside the summation and using∣∣∣∑n

m=−n Y m
n (r̂)Y m

n (k̂)
∣∣∣ ≤ (2n + 1)/(2π) [15, pp.27] gives

εP,N ≤ 2
∞∑

p>N

(2p + 1)
∣∣∣jp(cḱt)

∣∣∣ ∞∑
n>N

(2n + 1)|jn(k|r|)| (25)

From [3, 12]

|jn(x)| ≤
√

π

2
1

Γ(n + 3/2)

(x

2

)n

(26)

Using the identity (2n + 1)/Γ(n + 3/2) = 1/Γ(n + 1/2)
and [16, pp.257] Γ(n + 1/2) > e−n−1/2(n + 1/2)n(2π)1/2

εP,N <
e

2

∑
p>P

[
(cḱt)e

2(p + 1/2)

]p ∑
n>N

[
(k|r|)e

2(n + 1/2)

]n

(27)

<
e

2

∑
p>P

[
(cḱt)e

2(P + 1)

]p ∑
n>N

[
(k|r|)e

2(N + 1)

]n

(28)

Both sums (28) converge if P + 1 > ecḱt/2 and
N + 1 > ek|r|/2.

εP,N <
e(N + 1)(P + 1)

(
ecḱt
P+1

)P (
ek|r|/c
N+1

)N

(2N + 2− x)(2P + 2− y)2N+P−1
(29)

< 2e

(
eπf́t

P + 1

)P (
eπf |r|/c

N + 1

)N

(30)

0 ≤ f́ ≤ 2W and F −W ≤ f ≤ F + W
Proof: [Lemma 2] Define x = eckt and y = ekR then

using (30)

εN+α,P+δ

εN,P
=
(

P + 1
P + 1 + δ

)P+δ (
N + 1

N + 1 + δ

)N+α

×
(

x

P + 1

)δ (
y

N + 1

)α

Now α, δ ≥ 1, P + 1 > x and N + 1 > y by definition

εN+α,P+δ

εN,P
≤
(

P + 1
P + δ

)P+δ (
N + 1
N + δ

)N+α

≤ e1−δe1−α

Using the identity (1 + a/N)N < ea

Proof: [Theorem 1] From (30) P may found directly by
using the maximum values of t and ḱ:

P = eπ2WT (31)

Truncating (30) at P gives DT = 2eπWT +1 terms. The same
technique cannot be used for N , since the bound becomes
excessively loose. Instead we use a geometric argument:

Consider Figure 3. The dotted vertical lines give the fre-
quency constraints, while the top line n = eπRf/c gives
the spatial constraint of (7). The constraint set defines a
trapezium in the space-frequency plane (or trapezoid when
time is included). The heights of the trapezium are found from
(7) with f = F±W . Note that the figure is not drawn to scale:
for any reasonable value of R, the slope of the line eπR/c is
almost zero.

Each horizontal dashed line represents a collection of time-
frequency signals which may be observed at a point in space.
Spatial diversity allows observation of multiple collections.
Each collection has an intrinsic dimensionality of eπ2∆W T
where ∆W is the effective (frequency) bandwidth of the spatial
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F −W F + W
f

R

n =
eπ

R
c

f

n = 1

Fig. 3. Geometry for spatial functions. F − W ≤ f ≤ F + W and
0 ≤ |r| ≤ R. Time forms a third dimension (into the page).

observation. The dimensionality result is obtained by counting
each collection, with appropriate dimensionality for each.

The collections are enumerated by the spatial degrees of
freedom n. Each collection is scaled by the spherical Bessel
function jn(k|r|) from (22). These functions have a natural
high-pass characteristic: for k|r| < n then jn(k|r|) → 0. At
low values of n,

0 ≤ n ≤ eπR(F −W )/c = N0 (32)

each Bessel function is already active and thus each collection
has the full eπ2∆W T = eπ2WT degrees of freedom. For
higher values of n,

N0 = eπR(F −W )/c < n ≤ eπR(F + W )/c = N1 (33)

each collection has a reduced DoF, since the Bessel functions
are only activated part-way through the frequency band.

NTW (n) =

{
2eπWT + 1 0 ≤ n < N0

eπ
(
F + W − c

eπRn
)+

T + 1 N0 ≤ n ≤ N1

For each value of n in Figure 3, there are 2n+1 independent
spatial modes. Thus the total degrees of freedom is given by

D =
N1∑

n=0

NTW (n)(2n + 1) ≤ D1 +D2 (34)

D1 = (2eπWT + 1)
N0∑

n=0

(2n + 1) (35)

D2 =
N1∑

n=N0

[
eπ(F + W )T − cT

R
n + 1

]
(2n + 1) (36)

We may solve (35):

D1 = (2eπWT + 1)
(

eπR

c
(F −W ) + 1

)2

, (37)

Evaluating (36) and combining with (37) gives the result.
Proof: [Lemma 3] We are considering bandlimited elec-

tromagnetic signals, in this case W may be decomposed into
a band-limiting projection B [11] and a spatial wavefield (or
Helmholtz) projection G [8].

Bf(r, t) =
1
2π

∫ F+W

F−W

dω eιωt

∫ ∞

−∞
dt e−ιωtf(r, t) (38)

Gf(r, t) =
∑
k

fk exp (ιk · r) (39)

Write (19) as:
g(r, t) = GBDf(r, t) (40)

We know [11] the operator BD is compact, since it maps
a unit ball in L2 (finite energy signals) to an essentially
finite dimensional ball (of approximate dimension 2WT + 1).
From [4] G is a projection and thus bounded so [17, Lem.8.3-2
p.422] the product G ·BD is compact.
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