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Abstract— Clarke’s model of the received signal statistics in
a mobile isotropic scattering environment assumes a constant
mobile velocity, a consequence of which is that the autocorrelation
function of the received signal and the Power Spectral Density
(PSD) are independent of the absolute time. In this contribution
we relax the assumption of constant mobile velocity and analyze
the statistics of the channel when the mobile receiver has a
constant acceleration. First, we derive expressions for a general
scattering environment and, then, specialize them to the case of
isotropic scattering environment. The autocorrelation and PSD of
the channel are not only a function of the lag,τ , but the absolute
time index, n as well. There are now two kinds of PSDs: The
conventional PSD , based on the well-known Wiener-Khintchine
theorem, gives the spectrum in theτ domain. The second PSD is
concerned with the variation of the channel with time and gives
the spectrum in the n domain. The simulation results suggest
that the two PSDs show a pattern of periodicity which can be
explained by considering asymptotic approximation of the Bessel
function. Moreover, the magnitudes of the PSDs diminish with
increasing τ or n such that the conventional PSD approaches
uniform distribution over 0 to2π when timen is large whereas the
PSD of channel variation with time approaches zero for largeτ .
We give results on the basis of simulations and justify analytically,
or heuristically. We also discuss different implications of these
results.

I. INTRODUCTION

The performance of a communication system is strongly in-
fluenced by the underlying communication medium. In case of
mobile wireless communication systems, the communication
medium is a multipath radio channel in which the transmitted
signal reaches the receiver by more than one path due to
reflection, refraction and scattering of radio waves. In this
paper we consider a narrow-band transmission model where
this multipath phenomenon causes fluctuations in the received
signal envelope and phase [1].

A typical narrow-band mobile radio situation is considered
in [2] in which the transmitter is fixed while the receiver is
moving in such a way that there is no direct line between the
transmitter and the mobile receiver, and, therefore, the mode
of propagation of electromagnetic energy from transmitter to
receiver is largely by way of scattering. It is assumed that a
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sufficient number of scattered waves with phases independent
of each other (and the Angles of Arrival, AOA), and uniformly
distributed throughout 0 to2π are impinging at the receive
antenna. As a consequence of the Central Limit Theorem, the
envelope of the resultant signal is Rayleigh distributed and the
phase is uniformly distributed in[0, 2π]. In other words, the
channel process is zero-mean complex Gaussian process with
equal-variance independent real and imaginary parts.

Assuming that the mobile receiver equipped with omni-
directional antenna is moving with constant velocity and the
AOA of waves are uniformly distributed over[0, 2π], it is
shown that the envelope of the received signal has strictly real-
valued time-independent autocorrelation given by the Bessel
function of order zero and PSD is bowl-shaped symmetric. In
other words, the complex channel fading process is wide-sense
stationary (WSS) and, hence, stationary. Since its introduction,
this so-called Clarke’s model has found widespread adoption,
mainly due to its simplicity.

A communication scenario in which the transmitter and the
receiver are stationary but the scatterers are moving has been
considered in [3]. Unlike the bowl-shaped Doppler spectrum of
the Clarke’s model, the Doppler spectrum of the propagation
channel is shown to be peaky centered around the carrier
frequency. The user’s (transmitter and/or receiver) acceleration
has been modelled by a correlated Gaussian process in the
context of adaptive handoff in CDMA networks in [4] and,
tracking and prediction in wireless ATM networks in [5].

In this contribution we extend the Clarke’s model to the
case when the mobile receiver is moving with some constant
acceleration which has not yet been analyzed and corresponds
better to the physical reality because a mobile user may
experience changes in velocity caused by traffic lights or
road conditions. Due to constant acceleration, the mobile
velocity changes continuously. The statistics of the channel,
therefore, are time varying and hence non-stationary. Our
main assumption in this contribution is that the scattering
distribution remains fixed i.e., the number and the strengths of
the scattered waves do not change with time and the channel
is homogeneous which implies that gains corresponding to
different AOA are zero-mean uncorrelated.

Throughout the paper, the following notation will be used:
Bold lower (upper) letters denote vectors (matrices).∗ denotes
the conjugate transpose. The

∮

denotes the integration over
unit circle. The ceiling operator is denoted by⌈.⌉. The notation
E {·} denotes the mathematical ensemble expectation.
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II. CHANNEL MODEL

We consider a mobile communications scenario in which the
transmitter is stationary while, at timet, the receiver equipped
with an omni-directional antenna is moving with velocityv
and constant acceleration1 α at angleψ with respect to x-
axis in a 2D scattering environment (Fig. 1). We assume that
the scatterers are distributed in the far-field from the mobile
receiver so that the electromagnetic waves impinging on the
receive antenna can well be approximated as plane waves. We
also assume that the channel between the transmitter and the
mobile receiver always remains a strictly bandlimited process.
In other words, we implicitly assume that the mobile velocity
remains bounded2.

For a fixed carrier frequencyfc, the Doppler spectrum of
the channel fading process depends directly on the mobile
velocity. In fact, we have the following relationship between
a particular mobile velocityv and a particular Doppler fre-
quencyfd present in the Doppler spectrum

fd =
|v|
λ

cos γ , (1)

where λ = c/fc is the carrier wavelength (c is the speed
of light), and γ is the angle between the angle of arrival
(AOA) of a particular electromagnetic wave and the unit vector
v̂ (pointing in the direction of mobile movement). Since in
our case, the mobile receiver has constant accelerationα, the
velocity of the mobile changes continuously with time. If, for
example,v′ denotes the mobile velocity at some timet′, the
velocity of the mobile at timet > t′ is given by

v(t) = v′ + α (t − t′). (2)

The time-varying velocity implies that for the sameγ in
(1), the corresponding Doppler frequency is also time-varying.
In other words, the whole Doppler spectrum would be time-
varying. Since, for a fixed time, the Doppler spectrum and
the channel autocorrelation function are the Fourier trans-
form pair, a time-varying Doppler spectrum implies a time-
varying Autocorrelation function. Thus, unlike [2], the channel
statistics vary over time and are, hence, non-stationary. It is
important to note that as long as the mode of propagation
of the electromagnetic energy is by way of scattering, the
Central Limit Theorem ensures that the assumption of zero-
mean complex fading process{h(t)} is valid.

Let s(t) be the channel input at timet. Then the continuous-
time complex baseband received signaly(t) at timet, assum-
ing the channel to be flat-fading, is

y(t) = h(t)s(t) + w(t), (3)

where s(t) is the complex channel input,{w(t)} is a zero-
mean circularly symmetric complex additive white Gaussian
noise (AWGN) process with variance1/2ρ per dimension (ρ

1We assume the acceleration to be aligned with velocity. The term ’accel-
eration’ may, therefore, be interpreted as the magnitude of the acceleration.

2This assumption is necessary, and reasonable due to the physical limita-
tions, because we will be considering a discrete time model so that we can
analyze the impact of acceleration in terms of some practical parameters like
symbol rate, normalized Doppler spread (and normalized Doppler frequency.
The analysis given in this paper can be carried out in the continuous time
domain.

denotes the average received signal-to-noise ratio (SNR)) and
{h(t)} is a zero-mean unit variance circularly symmetric com-
plex Gaussian process with independent real and imaginary
parts having equal variance. The equation (3) is normalized in
such a way thatE

{

|s(t)|2
}

= 1.
If we assume that the channel output in (3) is processed

through a unit-energy matched3 filter, then the output y[n] at
symbol timen in complex baseband equivalent form can be
written as

y[n] = h[n]s[n] + w[n], (4)

wheres[n] is the complex channel input symbol at signaling
interval n. Assuming that the symbol rate is kept fixed at a
value that corresponds to the worst channel conditions i.e., the
maximum Doppler frequency, the other parameters in (3) and
(4) are related in the following way:

y[n] =
1√
Ts

∫ (n+1)Ts

nTs

y(t)dt,

w[n] =
1√
Ts

∫ (n+1)Ts

nTs

w(t)dt,

h[n] = K

∫ (n+1)Ts

nTs

h(t)dt,

where K in the last expression is a normalization constant
to make variance of{h[n]} equal to unity. As a result of
discretization, the output, noise and channel spectra are scaled
and2π periodic4 versions of the original spectra (see e.g., [6]).
Since we are interested in the complex baseband equivalent
model of (4), all replicas of the spectrum are discarded
except in the fundamental period of[−π, π]. The discrete-time
sequencesy[n], w[n] andh[n] retain, however, the stochastic
properties of their continuous time counterparts. This point
will further be discussed later in this Section.

We consider a mobile moving with velocityv0 and accel-
eration α be at the origin0 at the signaling instant 0 (Fig.
1). Thus, at the signaling intervaln, the mobile will be at the
point (Λ1, ψ) with respect to 0, whereψ is the direction of the
mobile with respect to x-axis and, using the fact that velocity
and the acceleration are aligned,Λ1 = v0nTs + 1

2α(nTs)
2 in

the direction ofv̂. The channel gain atnth symbol interval
will be given by

h[n] =

∮

g(φ)e−iκΛ1v̂·φ̂dφ, (5)

whereκ = 2π/λ is the free space phase constant dependent
on the carrier wave length,λ, g(φ) is the effective random
scattering gain of the received signal from an angleφ, φ̂

represents the unit vector in the direction ofφ.

3Since the spectrum of the channel is now time-varying due to the
acceleration of the mobile receiver, it must be ensured that the symbol rate is
greater than or equal to the Nyquist rate corresponding to the instantaneous
channel spectrum. It can be done either by adapting the symbol rate to the
current Doppler spectrum or transmitting at a fixed symbol rate that is greater
than or equal to the Nyquist sampling rate corresponding to the worst case
scenario.)

4The white noisew(t) is an obvious exception because it is wideband
with all frequencies present with equal strength. The discretization, therefore,
results in the scaling of the spectrum only.
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Fig. 1. The mobile is moving at an angleψ with respect to x-axis with
initial velocity v0 at the origin and constant accelerationα in the direction
of movement. A plane wave is shown incident on the receive antenna at
an angleφ with respect to x-axis.Λ, given in (10), equals the difference
of the distances covered by the mobile atn+ τ andn signaling intervals
with respect to the signaling instant 0.

Using (5), the normalized complex correlation between the
channel gain at the signaling intervalsn andn+τ (τ represents
the lag in number of symbols) is given as

Γ(n, τ) = E {h[n + τ ]h∗[n]} ,

=

∮ ∮

E {g(φ′)g∗(φ)} e−iκΛ1v̂·φ̂eiκΛ2v̂·φ̂
′

dφdφ′,

(6)

whereE {·} stands for ensemble averaging over all possible
situations implied by the assumed statistics ofφ , ∗ represents
the complex conjugate,̂v is the unit vector in the direction of
mobile direction of travel and

Λ2 = v0(n + τ)Ts +
1

2
α ((n + τ)Ts)

2
, (7)

is the distance covered by the mobile, with respect to the sig-
naling instant0, at signaling instantn+τ . If we assume that the
scattering gains from two distinct directions are uncorrelated
and are zero mean i.e., the channel is homogeneous, then [7]

E {g(φ)g∗(φ′} = E
{

|g(φ)|2
}

δ(φ − φ′). (8)

Using (8), we can write (6) as

Γ(n, τ) =

∮

G(φ)e−iκΛv̂·φ̂dφ, (9)

whereG(φ) = E
{

|g(φ)|2
}

is the angular power distribution
[8] of the received signal and

Λ = Λ2 − Λ1,

= v0τTs +
1

2
α(τTs)

2 + α(τTs)(nTs). (10)

It can be observed that the complex channel autocorrelation
in (9) not only depends on the time differenceτ between
samples but the absolute timen as well. It can also be observed
that if the mobile were moving with constant velocity (α = 0),
Λ in (10) would reduce toτTsv0 implying that the channel
autocorrelation is only a function of the lag variableτ and

the channel process would have been wide sense stationary
(WSS).

Notice that G(φ) is periodic in φ. It can, therefore, be
expanded using a Fourier series with orthogonal circular
harmonics as the basis set. Let us define

βm =

∮

G(φ) e−imφ dφ, (11a)

G(φ) =
1

2π

∞
∑

m=−∞

βm eimφ, (11b)

whereβm are the coefficients of the Fourier series expansion
of G(φ).

The factor e−iκΛv̂·φ̂ in (9) can be expanded using the
Jacobi-Anger expansion [9] as

e−iκΛv̂·φ̂ =
∞
∑

m=−∞

im Jm(κΛ)eim(φ−ψ), (12)

whereφ andψ both are measured with respect to x-axis (Fig.
1) andJm(·) is the Bessel function of integer orderm. Let us
define the following:

ωd,0 = ηv0, (13a)

ωτ
d = η α τ Ts , (13b)

whereωd,0 is the maximum angular Doppler spread at signal-
ing instant0, andωτ

d is the maximum Doppler spread at lag
τ from the current time indexn. Combining equations (9),
(11a), (12), (13a) and (13b), after some simplification, we get

Γ(n, τ) =

∞
∑

m=−∞

i
m

βmJm(τTsωd,0 + τTs2ω
τ
d + nTsω

τ
d ) e

−imψ
.

(14)

Equation (14) is the average instantaneous5 complex au-
tocorrelation function of the channel fading process as a
function of lag τ and the absolute time indexn. In fact, it
represents the sum of contributions from all harmonics of the
scattering distribution. We have assumed that the scattering
environment remains fixed and, therefore, independent of the
absolute timen so that the Fourier coefficientsβm depend
only on a particular pdf of AOA and are independent of time,
n. As can be observed from (14), the autocorrelation of the
fading process, in general, not only depends on the distribution
of AOA throughβm but also on the direction of mobile travel.

We make use of the following addition theorem for Bessel
functions [10] twice

Jm(x1 + x2) =
∞
∑

k=−∞

Jk(x1)Jm−k(x2), (15)

to rewrite (14) as

Γ(n, τ) =
∞
∑

m=−∞

∞
∑

k=−∞

∞
∑

p=−∞

imβmJp(τTsωd,0)

Jk−p(τTsω
τ
d,1/2) Jm−k(nTsω

τ
d,1)e

−imψ, (16)

5The autocorrelation is average in the sense that expectation is taken over
all possible situations implied by the assumed statistics of the AOA ((6)), and
instantaneous in the sense that it is dependent on the absolute time indexn
((14)).
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Γ(ν, ω) =
∑

∞

m=−∞

∑

∞

p=−∞

∑

∞

k=−∞

∑

∞

τ=−∞

∑

∞

n=−∞
imβme−imψJp(τTsωd,0)Jp−k(τTs2ωτ

d
)Jm−k(nTsωτ

d
) e−iTs(ωτ+νn)

· · · · · (A)

Γiso(ν, ω) =
∑

∞

p=−∞

∑

∞

k=−∞

∑

∞

τ=−∞

∑

∞

n=−∞
Jp(τTsωd,0)Jp−k(τTs2ωτ

d
)J

−k(nTsωτ
d
) e−iTs(ωτ+νn)

· · · · · (B)

whereJp(·) does not contain the acceleration factor,Jk−p(·)
shows the effect of acceleration withτ only and Jm−k(·)
contains the absolute time indexn andτ .

The discrete-time Fourier transform (DTFT) of (16) with
respect toτ gives the instantaneous PSD of the process in the
conventional sense (Wiener-Khintchine theorem [11])

Γ(n, ω) =

∞
∑

m=−∞

∞
∑

k=−∞

∞
∑

p=−∞

∞
∑

τ=−∞

imβme−imψJp(τTsωd,0)

Jk−p(τTs2ωτ
d ) Jm−k(nTsω

τ
d )e−iωτTs, (17)

and Fourier transformation with respectn gives the spectrum
of the time variation

Γ(ν, τ) =
∞
∑

m=−∞

∞
∑

k=−∞

∞
∑

p=−∞

∞
∑

n=−∞

imβme−imψJp(τTsωd,0)

Jk−p(τTs2ωτ
d ) Jm−k(nTsω

τ
d )e−iνnTs. (18)

The 2-D DTFT [6] of (16) given by the equation (A) at
the top of this page gives the joint spectrum ofτ and n
domains. Since the underlying channel fading process has
been assumed to be zero-mean proper complex Gaussian,
equations (16) and (A) completely characterize the statistics
of the channel under general 2D (isotropic and non-isotropic)
scattering environments with a valid pdf of AOA.

The Bessel function of ordern, Jn(x), starts small and
reaches to its maximum at argumentsx ≈ O(n) before starts
decaying slowly. It was shown in [13] thatJn(x) ≈ 0 for |n| >
2⌈x/2⌉+1 with e = 2.7183 . . .. Therefore, for finiteτ andn,
(14) and (16) always reduce to finite summations so as to give
the exact autocorrelation in the closed form. PSDs in (17), (18)
and (A), on the other hand, rely on some kind of numerical
approximation because, even if one of the variables is kept
constant, we have to perform infinite summation over the other
to transform it to Fourier domain which is not possible.

As an application, we specialize (16) and (A), for the case
of isotropic scattering environment for which [12]βm = 0 for
m 6= 0 andβ0 = 1 implying that the autocorrelation and PSD
are no more dependent on the mobile direction of movement.
We can write (16) as

Γiso(n, τ) =
∞
∑

k=−∞

∞
∑

p=−∞

Jp(τTsωd,0)

× Jk−p(τTs2ωτ
d ) J−k(nTsω

τ
d ) (19)

and equation (A) as (B) given at the top of the page. If we
do not apply the addition theorem of (15), the autocorrelation
would simply be given by

Γiso(n, τ) = J0(τTsωd,0 + τTs2ωτ
d + nTsω

τ
d ), (20)
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Fig. 2. The autocorrelation function as a function of the lagτ and timen.
Increasingτ andn have the effect of reducing the autocorrelation faster.

and the conventional PSD would be given as

Γiso(n, ω) =
∞
∑

τ=−∞

J0(τTsωd,0 + τTs2ωτ
d + nTsω

τ
d )e−iTsτω,

(21)

and PSD of time variation would be

Γiso(ν, τ) =
∞
∑

n=−∞

J0(τTsωd,0 + τTs2ωτ
d + nTsω

τ
d )e−iTsnν

(22)

Equations (19) and (20) give the autocorrelation, and equa-
tions (21), (22) and (B) give different PSDs of the channel
fading process for the case of isotropic scattering environment.
It can easily be verified that with acceleration equal to zero
(α = 0), the above two equations collapse to the well-known
Clarke’s model.

The multiplication in the time domain implies convolution
in the frequency domain [6]. Equation (B) can therefore be
written as

Γiso(ν, ω) =
∞
∑

p=−∞

∞
∑

k=−∞

{Fp ⊗Fp−k ⊗Fν , } , (23)

where ⊗ represents the periodic convolution6, Fp is the
Fourier transform ofJp(·), Fp−k is the Fourier transformation
of Jk−p(·) and Fν represents the double Fourier transform
of J−k(nTsω

τ
d,1), first, with respect ton and , then, with

respect toτ . The difficulty in finding a closed form solution
to different equations for PSD is obvious. In section III
we will resort to some numerical means to describe the
autocorrelations and the PSD of the channel fading process.

6All Fourier transforms are DTFT. The periodic convolution of these DTFTs
would result in a 2D2π periodic DTFT.
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Fig. 3. The effect of the mobile acceleration on the PSD of the fading
process. Figure (a) shows that the effect of acceleration on the maximum
Doppler spread and Figure (b) shows the convergence of PSD to a uniform
distribution in the limit of largen.

III. NUMERICAL RESULTS AND DISCUSSION

In order to gain insight into different phenomena due to
the mobile moving with constant acceleration in an isotropic
scattering environment, we use the simulation parameters
given in the following table:

Carrier frequency,fc 2 GHz
Carrier wavelength,λ 0.15 m
Free Space phase constant,η 0.94 rad/m
Symbol Time,Ts 2.65×10−3 sec
Initial Velocity, v0 20 m/s
Acceleration,α 10 m/s/s

The effect of acceleration in the sense of conventional PSD
(Wiener-Khintchine theorem) is shown in Fig. 3. Notice that
the maximum normalized Doppler spread is increasing linearly
with the time indexn unlike the classical Clarke’s case of
constant mobile velocity where the maximum Doppler spread
(and, more precisely, the whole PSD) is constant over time. We
emphasize that this is an estimate of the PSD given in (17)

for the case of isotropic scattering environment. Only finite
number of terms of infinite summation overτ were considered
(Blackman-Tukey algorithm) using Hamming window. For
fixed n, increasing the number of terms in the summation
over τ has the effect of increasing the resolution of theω
axis. Since the statistics of the channel under consideration are
non-stationary, the terms at large lag,τ , are of little interest.
The PSD shown in 3a can well, therefore, be thought of as
instantaneous PSD.

Fig. 3b shows the effect of increasingn for a fixed max-
imum τ . It can be observed that the PSD tends to be ap-
proximately uniform over[−π, π] on ω (Normalized Doppler
Spread) axis for largen. This is because as the time index
increases, the mobile instantaneous velocity also increases due
to the acceleration of the mobile. Since the instantaneous au-
tocorrelation is inversely proportional to the instantaneous ve-
locity ((14)), the autocorrelation becomes increasingly smaller.
This trend of decrease in the autocorrelation continues till
the time when the channel becomes uncorrelated with every
other symbol and, thus, Bessel function becomes aδ (τ)
function in (21). All summation terms overτ would be zero
except the zeroth term. Fourier transformation ofδ(τ) with
respect toτ is equal to1. This explains the result in Fig.
3b for largen. One may be tempted to think that this result
is independent ofn. The autocorrelation becomes a delta
function only at some large (perhaps infinite) value ofn.
The factorn is therefore included indirectly in the foregoing
reasoning. This is in contrast to the stationary case of Clarke
[2] where the correlation is independent of time and, therefore,
the foregoing reasoning does not apply. It is interesting to note
that uniform PSD is obtained in an isotropic environment in
3D [14–16] when the scattered power is uniformly distributed
over a sphere. The convergence of the PSD in Fig. 3b to
a uniform distribution, therefore, implies that the long term
effect of acceleration in a 2D scattering environment is to
make it look like 3D environment. It is somewhat similar to
the effect observed in [3] for the case of stationary transmitter
and receiver with moving scatterers.

The spectral density alongν axis that corresponds to the
spectrum of the variation of the channel autocorrelation with
time is given in Fig. 4a. The linear increase in the maximum
normalized Doppler spread can be observed which is similar
to what is observed in Fig. 3a. The effect of increasing the
lag τ on the spectrum alongν axis is shown in Fig. 4b. Two
observations can be made from Fig. 4b. Firstly, there is some
periodicity in the PSD pattern alongτ axis (similar behavior
is present, though not shown, in case of conventional PSD).
Secondly, there is a gradual decrease in the strengths of the
maximum normalized Doppler spread peaks alongτ axis. In
the limit of largeτ , the PSD onν axis approaches zero (it has
been verified by the authors). This behavior can be explained
if we consider (20) for the case of isotropic scattering. The
argument of the Bessel function of order zero is

x = τTsωd,0 +
η

2
α(τTs)

2 + ηα(nTs)(τTs). (24)

The following relationships for Bessel function of order zero

1-4244-0741-9/07/$20.00 © 2007 IEEE 126 AusCTW'07



6

with argumentx exist [17]:

J0(x) ≈

{

1, x ≪ 1
√

2
πx

cos(x − π
4 ), x ≫ 1,

(25)

For values ofτ and n such thatx ≪ 1 keeping other
parameters fixed, the autocorrelation in (20) would, therefore,
essentially be one. Fourier transform of 1 with respect either
to τ or n (or both) is aδ (·) function at the origin. This
approximation is valid for short distances over which the effect
of acceleration can almost be ignored. This approximation de-
termines the extent of validity of quasi-stationarity assumption
usually employed while evaluating the performance of differ-
ent communication systems through non-stationary channels
[18], and depends on the carrier frequency and symbol interval.

For the case ofx ≫ 1, the bessel function turns into a
cos (·) function with “dying” amplitude as in (25). Now the
Fourier transform of thecos (·) is a pair of impulses7 located
symmetrically around the origin at a distance equal to its
frequency [6]. The spikes appearing in different figures are
just due to this fact. Consistent with the approximation (25),
the PSDs (though not shown for the purpose of brevity) start
with impulses at the origin, split into decaying impulses at
some time along bothτ and n suggesting the emergence of
some sinusoidal behavior. The periodic pattern occurs only
along n when range ofτ is fixed ((21)), and alongτ axis
whenn is fixed ((22)). For fixedτ , changingn only changes
the argument of the Bessel function, and a change ofτ for
fixed n again changes the argument of the Bessel function.
Mathematically, therefore, this periodicity seems to be due to
the periodic functions involved.

Apart from periodicities that require the help from mathe-
matics to be explained, the gradual decrease in the magnitude
of PSD along ν axis to zero alongτ can be explained
intuitively. First, it is important to point out that a window of
finite length was used on then axis. For increasingly larger
lag τ , the autocorrelation becomes increasingly smaller. In
other words, at largerτ , the information provided by current
time index n becomes increasingly less important. We can
therefore move around the current indexn (to an extent that
depends obviously on current time indexn and the lagτ )
without observing any noticeable changes in the correlation
values at large lag,τ . The more away we are from the
current time index, the less the changes we would observe
in correlation due to a shift of the time index. In the light of
these arguments, the result shown in Fig. 4b is justified: For
the same observation window, larger lags will be less sensitive
to the channel variations alongn axis.

7The frequency is the first derivative of the phase. It is not hard to see from
(24) that the frequency is a linear function ofτ for fixed n and is constant
for all n with τ fixed. Therefore, forx ≫ 1, (21) would involve summation
of cos functions of different frequencies because frequency is different for
different τ . On the other hand, equation (22) would involve the summation
of cos functions of the same frequency. This different behavior forτ andn
may be apparent from comparison of 3a and 4a where somewhat bowl-shaped
behavior in the former is different from the later. The presence of well-defined
impulses in 4a is suggestive of the fact that there is some sinusoidal function
only.
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(a) The spectrum of time variation of the channel versus lag,τ
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Fig. 4. The PSD of the channel variation with time. Figure (a) gives an idea
of the effect of acceleration on the spectrum of variation of channel in the
time domain versusτ . Figure (b) shows the spectrum for largeτ . Even though
there is periodicity of the spectrum along theτ axis, a gradual decrease in
the strengths of spikes (impulses) is evident suggesting that larger lags are
more insensitive to the time variation of the channel.

IV. CONCLUSIONS

The effect of mobile acceleration on the statistics of the
complex Gaussian fading process was analyzed. We showed
that, under certain assumptions, the classical Clarke’s model
that assumes constant mobile velocity (zero acceleration)
extends naturally to the case of mobile moving with some
constant acceleration. It turned out that the autocorrelation
of the channel now becomes time and lag dependent. The
PSD of the channel process in the conventional sense i.e.,
the Fourier transformation of the autocorrelation with respect
to the lag variableτ and the PSD of the channel variation
with time n are affected due to the mobile acceleration in
somewhat similar manner: The maximum Doppler spread in
both domains,ω corresponding toτ and ν corresponding to
the timen, increases and decreases withn andτ , respectively,
in a periodic manner. However, the strength of the Doppler
spectrum diminishes withn andτ . The conventional Doppler
spectrum converges to the uniform distribution over 0 to
2π whereas the Doppler spectrum due to the time variation
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approaches zero. The results were given using simulations and
justified analytically, where ever possible.
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