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Abstract— Clarke’s model of the received signal statistics in sufficient number of scattered waves with phases independent
a mobile isotropic scattering environment assumes a constant of each other (and the Angles of Arrival, AOA), and uniformly
mobile velocity, a consequence of which is that the autocorrelation yistributed throughout 0 t@r are impinging at the receive

function of the received signal and the Power Spectral Density L
(PSD) are independent of the absolute time. In this contribution antenna. As a consequence of the Central Limit Theorem, the

we relax the assumption of constant mobile velocity and analyze €nvelope of the resultant signal is Rayleigh distributed and the
the statistics of the channel when the mobile receiver has a phase is uniformly distributed if0, 27]. In other words, the
constant acceleration. First, we derive expressions for a general channel process is zero-mean complex Gaussian process with
scattering environment and, then, specialize ther_n to the case of equal-variance independent real and imaginary parts.

isotropic scattering environment. The autocorrelation and PSD of A . that th bil . . d with .
the channel are not only a function of the lag,r, but the absolute sgummg a ? mo !e ref:elver equippe YV' omni-
time index, n as well. There are now two kinds of PSDs: The directional antenna is moving with constant velocity and the
conventional PSD , based on the well-known Wiener-Khintchine AOA of waves are uniformly distributed ovep, 2x], it is
theorem, gives the spectrum in ther domain. The second PSD is shown that the envelope of the received signal has strictly real-
concerned with the variation of the channel with time and gives  5/,ed time-independent autocorrelation given by the Bessel

the spectrum in the n domain. The simulation results suggest . . .
that the two PSDs show a pattern of periodicity which can be function of order zero and PSD is bowl-shaped symmetric. In

explained by considering asymptotic approximation of the Bessel Other words, the complex channel fading process is wide-sense
function. Moreover, the magnitudes of the PSDs diminish with stationary (WSS) and, hence, stationary. Since its introduction,
increasing T or n such that the conventional PSD approaches this so-called Clarke’s model has found widespread adoption,
uniform distribution over 0 to 2 when timen is large whereas the mainly due to its simplicity.

PSD of channel variation with time approaches zero for larger. A communication scenario in which the transmitter and the
We give results on the basis of simulations and justify analytically, ) . .
or heuristically. We also discuss different implications of these receiver are stationary but the scatterers are moving has been
results. considered in [3]. Unlike the bowl-shaped Doppler spectrum of
the Clarke’s model, the Doppler spectrum of the propagation
channel is shown to be peaky centered around the carrier
l. INTRODUCTION frequency. The user’s (transmitter and/or receiver) acceleration
The performance of a communication system is strongly ifas been modelled by a correlated Gaussian process in the
fluenced by the underlying communication medium. In case @fntext of adaptive handoff in CDMA networks in [4] and,
mobile wireless communication systems, the communicatigf@cking and prediction in wireless ATM networks in [5].
medium is a multipath radio channel in which the transmitted |n this contribution we extend the Clarke’s model to the
signal reaches the receiver by more than one path duectse when the mobile receiver is moving with some constant
reflection, refraction and scattering of radio waves. In thigcceleration which has not yet been analyzed and corresponds
paper we consider a narrow-band transmission model whexgter to the physical reality because a mobile user may
this multipath phenomenon causes fluctuations in the receiwg¢perience changes in velocity caused by traffic lights or
signal envelope and phase [1]. road conditions. Due to constant acceleration, the mobile
A typical narrow-band mobile radio situation is consideregelocity changes continuously. The statistics of the channel,
in [2] in which the transmitter is fixed while the receiver isherefore, are time varying and hence non-stationary. Our
moving in such a way that there is no direct line between thgain assumption in this contribution is that the scattering
transmitter and the mobile receiver, and, therefore, the mogigtribution remains fixed i.e., the number and the strengths of
of propagation of electromagnetic energy from transmitter the scattered waves do not change with time and the channel
receiver is largely by way of scattering. It is assumed thati&@ homogeneous which implies that gains corresponding to

) _ L different AOA are zero-mean uncorrelated.
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. CHANNEL MODEL denotes the average received signal-to-noise ratio (SNR)) and

We consider a mobile communications scenario in which t&(%)} is a zero-mean unit variance circularly symmetric com-
transmitter is stationary while, at tintethe receiver equipped PIex Gaussian process with independent real and imaginary
with an omni-directional antenna is moving with velocity parts having equal variance. The equation (3) is normalized in
and constant acceleratibmv at angles with respect to x- Such a way that? {|s(t)*} = 1.
axis in a 2D scattering environment (Fig. 1). We assume that!f we assume that the channel output in (3) is processed
the scatterers are distributed in the far-field from the mobiflBrough a unit-energy matchedilter, then the output y[n] at
receiver so that the electromagnetic waves impinging on tR§mbol timen in complex baseband equivalent form can be
receive antenna can well be approximated as plane waves. ‘WHten as
also assume that the channel between the transmitter and the .

: . . . L y[n] = h[n]s[n] + win], (4)
mobile receiver always remains a strictly bandlimited process.
In other words, we implicitly assume that the mobile velocitwhere s[n] is the complex channel input symbol at signaling
remains bounded interval n. Assuming that the symbol rate is kept fixed at a

For a fixed carrier frequency.., the Doppler spectrum of value that corresponds to the worst channel conditions i.e., the
the channel fading process depends directly on the mobiteaximum Doppler frequency, the other parameters in (3) and
velocity. In fact, we have the following relationship betwee) are related in the following way:

a particular mobile velocityw and a particular Doppler fre-

qguency fq present in the Doppler spectrum yln] = 1 (et y(t)dt,
‘v| \/i nTs
fa=Seosy @) 1 [T
wln] = — w(t)dt,
where A\ = ¢/f. is the carrier wavelengthc(is the speed VT Jur,

of light), and v is the angle between the angle of arrival
(AOA) of a particular electromagnetic wave and the unit vector

v (pointing in the direction of mobile movement). Since in here K in the last L lizati tant
our case, the mobile receiver has constant acceleratighe where i1 in the 1ast expression IS a normalization constan

velocity of the mobile changes continuously with time. If, foFO. maI§e variance O h{n]} gqual to unity. As a result of
example,v’ denotes the mobile velocity at some tirtie the dlscret|zat!onZ the ogtput, noise apt_:i channel spectra are scaled
velocity of the mobile at time > ¢ is given by and2r periodi¢ versions of the original spectra (see e.g., [6]).
Since we are interested in the complex baseband equivalent

v(t)=v +a(t-1t). (2) model of (4), all replicas of the spectrum are discarded
The time-varying velocity implies that for the samein exceptin th[e }fun?a]mental[p]eriod pfr, 71]. The discrete-time

. . . . sequenceg(n|, w[n] and h[n| retain, however, the stochastic
(1), the corresponding Doppler frequency is also time-varyin foperties of their continuous time counterparts. This point

In other words, the whole Doppler spectrum would be time-. : L .

. ) ) ) ill further be discussed later in this Section.
varying. Since, for a fixed time, the Doppler spectrum an . ) . . )

: . . We consider a mobile moving with velocity, and accel-

the channel autocorrelation function are the Fourier trans-

form pair, a time-varying Doppler spectrum implies a time(_aranona be at the origin0 at the signaling instant 0 (Fig.

varying Autocorrelation function. Thus, unlike [2], the channejf)'. Thus, at th.e signaling interval the.moblle_wnl .be at the
L X . point (A1, ¢) with respect to 0, where is the direction of the
statistics vary over time and are, hence, non-stationary. It . % =’ . : .
important to note that as lona as the mode of proba ati(r)ThOb'Ie with respect to x-axis and, using the fact that velocity
P g Propagatigilg the acceleration are alignetl, = vonTy + sa(nTy)? in

of the electromagnetic energy is by way of scattering, ﬂ%ﬁe direction ofd. The channel gain at*® symbol interval
Central Limit Theorem ensures that the assumption of zero: '

mean complex fading proceg&(t)} is valid. will be given by

Let s(t) be the channel input at timte Then the continuous- hin] = 7{ (qﬁ)ﬁ,mmf,.@dd)
time complex baseband received sigpél) at time¢, assum- = pawe ’
ing the channel to be flat-fading, is

(n+1)T,
h[n] = K/ h(t)dt,
nTs

(®)

wherex = 27/ is the free space phase constant dependent
y(t) = h(t)s(t) + w(t), (3) on the carrier wave length), g(¢) is the effective random

h is th | h i . scattering gain of the received signal from an angle¢
where s(t) is the complex channel inputuw(t)} is a zero- oy esents the unit vector in the directiongof
mean circularly symmetric complex additive white Gaussian

noise (AWGN) process with variande'2p per dimension 4 3Since the spectrum of the channel is now time-varying due to the
acceleration of the mobile receiver, it must be ensured that the symbol rate is
1We assume the acceleration to be aligned with velocity. The term accgreater than or equal to the Nyquist rate corresponding to the instantaneous
eration’ may, therefore, be interpreted as the magnitude of the acceleratia@hannel spectrum. It can be done either by adapting the symbol rate to the
2This assumption is necessary, and reasonable due to the physical limitarent Doppler spectrum or transmitting at a fixed symbol rate that is greater
tions, because we will be considering a discrete time model so that we ¢han or equal to the Nyquist sampling rate corresponding to the worst case
analyze the impact of acceleration in terms of some practical parameters Kenario.)
symbol rate, normalized Doppler spread (and normalized Doppler frequency?The white noisew(t) is an obvious exception because it is wideband
The analysis given in this paper can be carried out in the continuous timéh all frequencies present with equal strength. The discretization, therefore,
domain. results in the scaling of the spectrum only.
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y-axis the channel process would have been wide sense stationary

(WSS).
Notice that G(¢) is periodic in ¢. It can, therefore, be
expanded using a Fourier series with orthogonal circular
b harmonics as the basis set. Let us define
- 8, — 7{ G(¢) e dg, (11a)
l' n !
/! ! 1 ) R .
S A G(p) = — o € 11b
. o (#) =5 m;mﬁ e (11b)
,"“¢ > » ) where 3, are the coefficients of the Fourier series expansion
. A LY X-axIS of G((b)

The factor e~i<A%¢ in (9) can be expanded using the

Fig. 1. The mobile is moving at an angle with respect to x-axis with Jacobi-Anger expansion [9] as
initial velocity v at the origin and constant acceleratioiin the direction

of movement. A plane wave is shown incident on the receive antenna at —ikADd > m im(6—b)
an anglep with respect to x-axisA, given in (10), equals the difference e = Z 1" I (kA )e , (12)
of the distances covered by the mobilenat = andn signaling intervals m——oco

with respect to the signaling instant 0. . . .
where¢ and both are measured with respect to x-axis (Fig.

1) andJ,,(-) is the Bessel function of integer order. Let us

Using (5), the normalized complex correlation between trffine the following:
channel gain at the signaling intervals&indn+ (7 represents Wa.0 = 1o, (13a)
the lag in number of symbols) is given as W =narTy, (13b)

. wherew, o is the maximum angular Doppler spread at signal-
[(n,7) = E{hln+7]0"[n ]} ing instant0, andw is the maximum Doppler spread at lag
]{]{E{g 6)} e—inhiidindsod qsqs 7 from the current time index.. Combining equations (9),
(11a), (12), (13a) and (13b), after some simplification, we get

(6)
where E {-} stands for ensemble averaging over all possible;, 1) = i " B o (TTswa 0 + TTs2w] + nTow) e ™Y
situations implied by the assumed statisticg)qf* represents me—co
the complex conjugate; is the unit vector in the direction of (14)

mobile direction of travel and . : .
Equation (14) is the average instantan@oasmplex au-

Ay = vo(n+7)Ts + la((n+T)Ts)2, (7) ‘tocorrelation function of the channel fading process as a
2 function of lag T and the absolute time index. In fact, it
is the distance covered by the mobile, with respect to the sigpresents the sum of contributions from all harmonics of the
naling instanb, at signaling instant+7. If we assume that the scattering distribution. We have assumed that the scattering
scattering gains from two distinct directions are uncorrelateghvironment remains fixed and, therefore, independent of the
and are zero mean i.e., the channel is homogeneous, thenaf#dolute timen so that the Fourier coefficients,, depend
only on a particular pdf of AOA and are independent of time,

* (I 2 /
E{9(6)g"(¢'} = E{lg(8)["} 3(¢ — ¢). (8) .. As can be observed from (14), the autocorrelation of the
Using (8), we can write (6) as fading process, in general, not only depends on the distribution
of AOA through g, but also on the direction of mobile travel.
T(n,7) = fG(¢)e—mAi»&>d¢7 9) We make use of the following addition theorem for Bessel
functions [10] twice
whereG(¢) = E {|g(¢)|?} is the angular power distribution >
[8] of the received signal and I (@1 + @2) = Z T (@1) Tm—r(22), (15)
k=—oc0
A=Ay — Ay, to rewrite (14) as
1
= vorTs + —a(1Ts)? + a(7Ty) (nTy). (10)
2 ) ( Z Z Z " By Ty (TTswa,0)
It can be observed that the complex channel autocorrelatlon mM=—00 k=—00 p=—00
in (9) not only depends on the time differeneebetween Ji—p(TTswg1/2) Jm—r(nTswg q)e —imY - (16)
samples but the absolute timeas well. It can also be observed
that if the mobile were moving with constant velocity £ 0), 5The autocorrelation is average in the sense that expectation is taken over

. . . all possible situations implied by the assumed statistics of the AOA ((6)), and
A in (10) would reduce tarT,vo implying that the channel instantaneous in the sense that it is dependent on the absolute timenindex

autocorrelation is only a function of the lag variahteand ((14)).
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T(,w) = o e e e e I T i Bme MY I (TTswa,0) Jp—k (TT52w] ) I — g (nTsw])) e Ts(wrhvm) (A)

1—‘iso( ) E;Oyo_foo Zk_foo Zio_foc Zzo—foo

p(TTswa,0)Jp—1 (TTs2w]) J 1 (nTsw]) e~ iTs(wrdvn) ... (B)

where J,(-) does not contain the acceleration factdy, ,(-)
shows the effect of acceleration with only and J,,—x(-)

contains the absolute time indexand 7.

The discrete-time Fourier transform (DTFT) of (16) with
respect tor gives the instantaneous PSD of the process in the
conventional sense (Wiener-Khintchine theorem [11])

Z Z Z ZZﬁne Y g (rTawao)

m=—00 k=—00 pP=—00 T=—00

Je—p(TT52w7) Jm_k(nTsti)e*ist,

and Fourier transformation with respetctgives the spectrum

of the time variation

ST > D i Bme ™ T, (rTuway)

Mm=—00 k=—00 pP=—00 n=—00

Ji—p(TT52w7) Tk (nTsw])e™nTs,

Rl
m“ ““"\\‘\\“‘\\\\\\\\\\\

& \‘ 0 \%\\\\\ A
1 ’.Wmé’“\w\ \\ \\“‘\\\ !
T2 % ".f.w. 1- \\\\\\\\\
—400 \\\&\\ ;t\‘\\\\ AV S
—200 L\~ \\.,Z”‘\i\\\\i? ~200

Fig. 2. The autocorrelation function as a function of the tagnd timen.
Increasingr andn have the effect of reducing the autocorrelation faster.

and the conventional PSD would be given as

The 2-D DTFT [6] of (16) given by the equation (A) at

the top of this page gives the joint spectrum ofand n
domains. Since the underlying channel fading process hal§®

(n,w) = Z Jo(TTawa o + 7T.2w5 4+ nTaw])e 17,

T=—00

been assumed to be zero-mean proper complex Gaussian, (21)
equations (16) and (A) completely characterize the statistics
of the channel under general 2D (isotropic and non-isotropiefid PSD of time variation would be

scattering environments with a valid pdf of AOA.

The Bessel function of orden, J,(z), starts small and Diso (v,
reaches to its maximum at arguments: O(n) before starts
decaying slowly. It was shown in [13] thd}, (z) ~ 0 for |n| >
2[x/2] 41 with e = 2.7183.. . .. Therefore, for finiter andn,

Z Jo(tTswao + TTs2w] + nTsw])e =
n=-—oo

(22)

Equations (19) and (20) give the autocorrelation, and equa-

(14) and (16) always reduce to finite summations so as to giiens (21), (22) and (B) give different PSDs of the channel

the exact autocorrelation in the closed form. PSDs in (17), (18ding process for the case of isotropic scattering environment.
and (A), on the other hand, rely on some kind of numeric#l can easily be verified that with acceleration equal to zero
approximation because, even if one of the variables is kdpt = 0), the above two equations collapse to the well-known

constant, we have to perform infinite summation over the oth@farke’s model.

to transform it to Fourier domain which is not possible.

The multiplication in the time domain implies convolution

As an application, we specialize (16) and (A), for the cade the frequency domain [6]. Equation (B) can therefore be

of isotropic scattering environment for which [12}, = 0 for

written as

m # 0 and 5y = 1 implying that the autocorrelation and PSD 0
are no more dependent on the mobile direction of movement. Tio(v,w)= > Y {FOF x®F,}, (23)

We can write (16) as

1so Z Z J Tde()

k=—o00 p=—00

X Jp—p(TTs2w7) J_i(nTsw})

p=—00 k=—00

where ®@ represents the periodic convolutfonF, is the
Fourier transform of/,(-), F,_ is the Fourier transformation
of Jx_,(-) and F, represents the double Fourier transform
of J_x(nTsw] ), first, with respect ton and , then, with
respect tor. The difficulty in finding a closed form solution

do not apply the addition theorem of (15), the autocorrelatighe Will resort to some numerical means 1o describe the

would simply be given by

1_\iso(nv T) =Jo (TTSWd,O + TTeszi— + nTsW:i—)a

1-4244-0741-9/07/$20.00 © 2007 IEEE

autocorrelations and the PSD of the channel fading process.

6All Fourier transforms are DTFT. The periodic convolution of these DTFTs
would result in a 2027 periodic DTFT.
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for the case of isotropic scattering environment. Only finite
number of terms of infinite summation ovemwere considered
(Blackman-Tukey algorithm) using Hamming window. For
fixed n, increasing the number of terms in the summation
over 7 has the effect of increasing the resolution of the
axis. Since the statistics of the channel under consideration are
non-stationary, the terms at large lag,are of little interest.
The PSD shown in 3a can well, therefore, be thought of as
instantaneous PSD.

Fig. 3b shows the effect of increasingfor a fixed max-
imum 7. It can be observed that the PSD tends to be ap-
proximately uniform ovef—, 7] on w (Normalized Doppler
Spread) axis for large.. This is because as the time index
increases, the mobile instantaneous velocity also increases due
to the acceleration of the mobile. Since the instantaneous au-
tocorrelation is inversely proportional to the instantaneous ve-
locity ((14)), the autocorrelation becomes increasingly smaller.
This trend of decrease in the autocorrelation continues till
the time when the channel becomes uncorrelated with every
other symbol and, thus, Bessel function becomes (&)
function in (21). All summation terms over would be zero
except the zeroth term. Fourier transformationd¢f) with
respect tor is equal tol. This explains the result in Fig.
3b for largen. One may be tempted to think that this result
is independent ofn. The autocorrelation becomes a delta
function only at some large (perhaps infinite) value rof
The factorn is therefore included indirectly in the foregoing
reasoning. This is in contrast to the stationary case of Clarke
[2] where the correlation is independent of time and, therefore,
the foregoing reasoning does not apply. It is interesting to note

(b) The PSD for largex that uniform PSD is obtained in an isotropic environment in
3D [14-16] when the scattered power is uniformly distributed
Fig. 3. The effect of the mobile acceleration on the PSD of the fadingyer g sphere. The convergence of the PSD in Fig. 3b to
process. Figure (a) shows that the effect of acceleration on the maximum . L . . .
Doppler spread and Figure (b) shows the convergence of PSD to a unifoﬂnumform distribution, therefore, |mpI|es that the Iong term
distribution in the limit of largen. effect of acceleration in a 2D scattering environment is to
make it look like 3D environment. It is somewhat similar to
the effect observed in [3] for the case of stationary transmitter
I1l. NUMERICAL RESULTS AND DISCUSSION and receiver with moving scatterers.

In order to gain insight into different phenomena due to The spectral density along axis that corresponds to the
the mobile moving with constant acceleration in an isotrop&pectrum of the variation of the channel autocorrelation with
scattering environment, we use the simulation parametdirse is given in Fig. 4a. The linear increase in the maximum

(a) The effect of constant acceleration on PSD

given in the following table: normalized Doppler spread can be observed which is similar
to what is observed in Fig. 3a. The effect of increasing the

Carrier frequencyfc 2 GHz lag 7 on the spectrum along axis is shown in Fig. 4b. Two
Carrier wavelengtha 0.15m observations can be made from Fig. 4b. Firstly, there is some
Free Space phase constapt,  0.94 rad/m periodicity in the PSD pattern along axis (similar behavior
Symbol Time, T} 2.65 x10~° sec is present, though not shown, in case of conventional PSD).
Initial Velocity, vo 20 m/s Secondly, there is a gradual decrease in the strengths of the
Acceleration,a 10 m/s/s maximum normalized Doppler spread peaks alenaxis. In

the limit of larger, the PSD onv axis approaches zero (it has
been verified by the authors). This behavior can be explained

The effect of acceleration in the sense of conventional P§Dye consider (20) for the case of isotropic scattering. The
(Wiener-Khintchine theorem) is shown in Fig. 3. Notice thaf;qument of the Bessel function of order zero is

the maximum normalized Doppler spread is increasing linearly
with the time indexn unlike the classical Clarke’s case of

constant mobile velocity where the maximum Doppler spread
(and, more precisely, the whole PSD) is constant over time. We
emphasize that this is an estimate of the PSD given in (17)The following relationships for Bessel function of order zero

x = TTswq0 + ga(TTS)2 + na(nT,)(tTs).  (24)
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with argumentz exist [17]:

1, <1

Jo(w) = { \/gcos(x - %) z>1, (25)

For values ofr and n such thatx <« 1 keeping other
parameters fixed, the autocorrelation in (20) would, therefore,
essentially be one. Fourier transform of 1 with respect either
to 7 or n (or both) is a¢d (-) function at the origin. This
approximation is valid for short distances over which the effect
of acceleration can almost be ignored. This approximation de-
termines the extent of validity of quasi-stationarity assumption
usually employed while evaluating the performance of differ-
ent communication systems through non-stationary channels
[18], and depends on the carrier frequency and symbol interval. (&) The spectrum of time variation of the channel versus fag,

For the case ofc > 1, the bessel function turns into a
cos (+) function with “dying” amplitude as in (25). Now the
Fourier transform of theos (-) is a pair of impulseslocated
symmetrically around the origin at a distance equal to its
frequency [6]. The spikes appearing in different figures are

just due to this fact. Consistent with the approximation (25), 0.05

i 0.04 S B R T RERE I,
th_e RSDS (though not shqwn fo_r the purpose of _breV|ty) start A . ﬁ#ﬁﬁ%ﬁéﬁggﬁi : %ﬁiﬁ{'i
with impulses at the origin, split into decaying impulses at 0.02 R R RSP 400000

K, Z7 >
IR 2] [ %%
I HIRT RIS £

22

AL ATLS
REZLRL

: : S B L SRR L LI AIREIL;
some time along both andn suggesting the emergence of 0.0 "ffﬂ!?it?}ﬁia%}éﬁ'?!ﬂm%};{:
e . " R R AR Lo 20
some sinusoidal behavior. The periodic pattern occurs only ‘4@;;;32!.};;‘?;@%%%:5{:%:::@‘?%5.:}’ 300000
. . . 2 TN L
along n when range ofr is fixed ((21)), and along- axis -2 ”~%{{%7;{Z.{.§g§:{t!i}’
. ) . . LA TR
whenn is fixed ((22)). For fixedr, c_:hanglngn only changes ) "l.l,.'bii‘::r;.;::::::: 200000
the argument of the Bessel function, and a change &ér 2 X

fixed n again changes the argument of the Bessel function.
Mathematically, therefore, this periodicity seems to be due to
the periodic functions involved. (b) The spectrum of time variation for large

Apart from periodicities that require the help from matherig. 4. The PSD of the channel variation with time. Figure (a) gives an idea

matics to be explained, the gradual decrease in the magnit&ﬂ@e effe_ct of accele_ration on the spectrum of variation of channel in the
. . time domain versus. Figure (b) shows the spectrum for largeEven though
of PSD alongr axis to zero alongr can be explained yere i periodicity of the spectrum along theaxis, a gradual decrease in
intuitively. First, it is important to point out that a window oOfthe strengths of spikes (impulses) is evident suggesting that larger lags are
finite length was used on the axis. For increasingly larger more insensitive to the time variation of the channel.
lag 7, the autocorrelation becomes increasingly smaller. In
other words, at larger, the information provided by current
time indexn becomes increasingly less important. We can
therefore move around the current indexto an extent that The effect of mobile acceleration on the statistics of the
depends obviously on current time indexand the lagr) complex Gaussian fading process was analyzed. We showed
without observing any noticeable changes in the correlatigifat, under certain assumptions, the classical Clarke’s model
values at large lags. The more away we are from thethat assumes constant mobile velocity (zero acceleration)
current time index, the less the changes we would obsergends naturally to the case of mobile moving with some
in correlation due to a shift of the time index. In the light otonstant acceleration. It turned out that the autocorrelation
these arguments, the result shown in Fig. 4b is justified: Fef the channel now becomes time and lag dependent. The
the same observation window, larger lags will be less sensitiPSD of the channel process in the conventional sense i.e.,
to the channel variations along axis. the Fourier transformation of the autocorrelation with respect
to the lag variabler and the PSD of the channel variation

"The frequency is the first derivative of the phase. It is not hard to see fr(Wlith time n are affected due to the mobile acceleration in

(24) that the frequency is a linear function offor fixed n and is constant somewhat similar manner: The maximum Doppler spread in

for all n with 7 fixed. Therefore, forr > 1, (21) would involve summation both domalnSw Correspondlng ta- and v Correspondlng to
of cos functions of different frequencies because frequency is different fi

different 7. On the other hand, equation (22) would involve the summatio(_ﬂ;Ie tlme@, 'ncreases and decreases witandr, respectively,
of cos functions of the same frequency. This different behaviorfandn in a periodic manner. However, the strength of the Doppler

may be apparent from comparison of 3a and 4a where somewhat bOWI'Sha§CP@Ctrum diminishes with and+. The conventional Doppler
behavior in the former is different from the later. The presence of well-define

impulses in 4a is suggestive of the fact that there is some sinusoidal functRRECtrum converges to the uniform dIS'[I’IbU'[IOf_1 over _O _tO
only. 2m whereas the Doppler spectrum due to the time variation

IV. CONCLUSIONS
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approaches zero. The results were given using simulations and

justified analytically, where ever possible.
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