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Abstract: The capacity of discrete time uncorrelated Rayleigh fading multiple input multiple
output (MIMO) channels was investigated without channel state information (CSI) at either the
transmitter or the receiver. To achieve the capacity, the amplitude of the multiple input needs to
have a discrete distribution with a finite number of mass points with one of them located at the
origin. It is shown how to compute the capacity numerically in multi-antenna configuration at any
signal-to-noise ratio (SNR), with the discrete input using the Kuhn–Tucker condition for
optimality. Furthermore, it is shown that at low SNR, the capacity with two mass points is
optimal. As the number of receiver antennas increases, the maximum SNR at which two mass
points are optimal decreases. Using this result it is argued that on–off keying is optimal in non-
coherent Rayleigh fading MIMO channels at low SNR.
1 Introduction

In wireless communications, the knowledge of channel state
information (CSI) at either the receiver or at the transmitter,
or at both, is considered to be a vital part in information
transfer across the channel. It appears from the results of [1]
that it is possible to obtain accurate CSI using pilots in
slowly changing channels. It is also beneficial if the statistics
of the channels are known. However, the statistics of wireless
channels are highly invariant and finding a general model
which holds in all scenarios seems to be a very difficult, if not
impossible, task. Therefore, there are scenarios or applica-
tions where coherent detection is not plausible.

Consider the case of a mobile receiver, with channel
variation due to the surroundings and movement of the
receiver. Here, the time between the independent fades may
be too short to permit reliable estimation of the fading
coefficient. In such a situation, the channel becomes non-
coherent with no knowledge of channel.

The capacity achieving input distribution of non-coherent
Rayleigh fading MIMO channels has been an open
problem for some time. Early work of [2] using a block
fading model gave some insights into the characteristics of
the optimal input, with explicit calculations for the special
case of single input and single output at high SNR. It is
shown in [2] that in a non-coherent Rayleigh fading MIMO
channel, no capacity gain is achieved by increasing the
number of transmitter antennas beyond the channel
coherence time. The general structure of the input signal
matrix that achieves the capacity was given, along with the
capacity asymptotically in channel coherence time for a
single input single output (SISO) system and the signal
density that achieves it.
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The work in [2] was extended in [3] by taking the channel
coherence time into account, and showed that the norm of
the transmitted signal on each antenna must be higher than
the noise level for high SNR. The asymptotic capacity is
computed at high SNR in terms of the channel coherence
time, and the number of transmit and receive antennas. The
non-coherent channel capacity is compared to the promised
capacity increase using MIMO in coherent Rayleigh fading
channels [4, 5]. Also it is shown that the non-coherent and
coherent capacities are asymptotically equal at low SNR.
Hence, indicating that in the low SNR regime, to a first
order, there is no capacity penalty for not knowing the
channel at the receiver, unlike in the high SNR.

In [6], the maximum capacity loss due to lack of
receiver CSI for a wideband MIMO channel in Rayleigh
fading is considered. The maximum penalty to be paid in
terms of capacity not having the CSI at the receiver is
shown. Furthermore, it is conjectured that on–off
signalling is optimal. However, no proof was given. The
SISO non-coherent Rayleigh fading channel is extensively
studied in [7] showing the optimal input is discrete with a
finite number of mass points; (defined as distinct points with
nonzero values). Capacity is computed numerically choos-
ing the optimal number of mass points, their probabilities
and locations.

In this paper, we prove for the first time, that the capacity
achieving input distribution (i.e. the amplitude of the
multiple inputs) of a non-coherent Rayleigh fading MIMO
channel is discrete with a finite number of mass points, one
necessarily located at the origin. The numerical simulation
work in optimising the channel capacity is described in
detail, extending the work presented in [7] for a single ant-
enna system to multiple antennas. Furthermore, we show
that at low SNR, on–off keying is optimal and the input
power at which it is optimal decreases with the increase
of receiver diversity.

2 Channel model

We consider the following time-varying non-coherent
Rayleigh fading MIMO channel model

Y ¼ HX þN ð1Þ
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where the output Y is nr� 1 and the channel gain matrix H
is nr� nt. The input X is nt� 1 and the noise N, which is
assumed to be zero mean complex Gaussian, is nr� 1. Each
element of H, hij, i¼ 1,y,nr, j¼ 1,y,nt is assumed to be
zero mean circular complex Gaussian random variables
with a unit variance in each dimension, where nt and nr

denote the number of transmit and receive antennas,
respectively. We use X¼ 7X7 and Y¼ 7Y7 to denote scalar
random variables whilst x2X and y2Y represent the
instantaneous realisations of X and Y.

The Euclidean norm is denoted by 7 � 7. It is assumed that
the input is average power limited with constraintR

x2pX ðxÞdx � Pav. Furthermore, we use G( � ) and Cð�Þ ¼
G0ð�Þ=Gð�Þ to indicate the Gamma and Psi functions. The
differential entropy of x2X is denoted by h(X ) and the
mutual information between x and y2Y is designated by
I(X; Y). All the differential entropies and the mutual
information are defined to the base ‘e’, and the results are
expressed in ‘nats’.

It is assumed that neither the receiver nor the transmitter
has the knowledge of perfect CSI except the fading
statistics.

3 Channel capacity

The conditional output probability density function (pdf) of
the non-coherent Rayleigh fading MIMO channel with nr

uncorrelated receivers is given by

pY jX ðyjxÞ ¼
y2nr�1 exp � y2

2ð1þ x2Þ

� �
2nr�1GðnrÞð1þ x2Þnr

ð2Þ

and represents the distribution of the magnitudes when
Jacobian co-ordinate transformation is applied on 2nr

dimensions [8].

3.1 Mutual information
Using the pdf of the channel output given input (2), the
mutual information between the input and output of the
channel model (1) can be written as

IðX; YÞ ¼ hðYÞ � hðY jXÞ

¼ �
Z 1
0

PY ðy; GX Þ logpY ðy; GX Þdy

� 1

2

Z 1
0

logð1þ x2ÞdGX ðxÞ þ V ðnrÞ ð3Þ

where

V ðnrÞ ¼ � log
GðnrÞffiffiffi

2
p

� �
þ nr �

1

2

� �
CðnrÞ � nr ð4Þ

and GX ðxÞ9
R

pX ðxÞdx is the cumulative input distribution
function [8]. The channel capacity is the supremum of (3)
over the set of all input distributions satisfying the input
power constraint

R
x2pX ðxÞdx � pav

C ¼ sup
GX ð�Þ

Efjxjg2�Pav

IðGX Þ ð5Þ

where IðGX Þ ¼9IðX ;YÞ and pY ðy; GX Þ ¼
R1
0 pY jX j�

ðyjxÞ dGÞX ðxÞ is the marginal probability density induced
by the input distribution GX. The existence of an optimal
amplitude distribution achieving the supremum in (5) can
be shown proving

(i) mutual information is continuous and concave in the
input distribution function; and
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(ii) the set of input distribution functions that meet the
constraint is compact [7].

The following lemma gives a necessary and sufficient
condition for an amplitude distribution G02GX to be
optimal.

Lemma 1: For the uncorrelated Rayleigh fading MIMO
channel with the input average power constraint Pav, G0 is
the capacity achieving input amplitude distribution if and
only if there exist, l such that the following is satisfied
8x � 0Z 1

0

pY jX ðyjxÞ logpY ðy; G0Þdy þ 1

2
logð1þ x2Þ

þ C � V ðnrÞ þ lðx2 � PavÞ � 0 ð6Þ
with equality if x2E0, where E0 is the set of points of
increase of G0.

The condition (6) is known as the Kuhn–Tucker
condition for the optimal input distribution which can be
used to characterise its behaviour.

Proof: See the Appendix.

3.2 Input distribution
We adopt the same principle in proving the discrete
character of the optimal input X � given in [7] for a single
antenna system. Therefore, X � should possess one of
the following properties:

(i) the support set contains an interval

(ii) it is discrete, with an infinite number of mass points on
some bounded interval

(iii) it is discrete and infinite, but with only a finite number
of mass points on any bounded interval, or

(iv) it is discrete with a finite number of mass points.

However, the proof is not a straightforward extension from
a single antenna to multiantenna systems.

Let us assume (1) and (2) hold, and define u¼ (1+x2),
z¼ y2/2. The support set UX has an infinite number of
distinct points and the Kuhn–Tucker condition holds with
equality for all real u2 (0, 1] [7]. In this case, using the
equality in (6) we write

unr

2nrGðnrÞ

Z 1
0

y2nr�1 exp � uy2

2

� �
log½pY ðyÞ�dy

¼ �l 1

u
� 1� Pav

� �
� cþ 1

2
log uþ vðnrÞ ð7Þ

With the pdf of the new variable z;pZðzÞ ¼ ð1=
ffiffiffiffiffi
2z
p
Þ�

pY ðyÞjy¼ ffiffiffi2z
p , we getZ 1

0

e�uzfznr�1 log½
ffiffiffiffiffi
2z
p

pZðzÞ�gdz ¼ GðnrÞ
unr

� �l 1

u
� 1� Pav

� �
� C þ 1

2
log uþ V ðnrÞ

� �
ð8Þ

where the left-hand side (LHS) of (8) is the Laplace

transformation of the function znr�1 log½
ffiffiffi
2
p

zpZðzÞ�. Taking
the inverse Laplace transformation with the solutions
[9, pp. 1020–1030]

L�1
n!

snþ1

� �
¼ tn

and

L�1
log s

sn

� �
¼ tn�1

GðnÞ ðCðnÞ � log tÞ n40 ð9Þ
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we obtain the output pdf

pY ðyÞ ¼
ffiffiffi
2
p

y
Me
�ly2

2nr ð10Þ

where

M ¼ exp lð1þ PavÞ � C þ V ðnrÞ þ
CðnrÞ
2

� �

However, for any l=2nr, the integral over ð0;1Þ is infinite
and hence the pY (y) in (10) cannot be a valid pdf, negating
our original assumptions (1) and (2).

Assume case (3) holds for X �, then the support set U�

can be written as a sequence fuig converging to 0. With
Pr[U¼ ui]¼ pia0, we obtain

pY ðyÞ ¼
X1
i¼0

pi
y2nr�1unr

i exp � uiy2

2

� �
2nr�1GðnrÞ

8<
:

9=
;

4piðyÞ ¼ pi
y2nr�1unr

i exp � uiy2

2

� �
2nr�1GðnrÞ

8<
:

9=
;;

8y � 0; i ¼ 1; 2; . . . ð11Þ

Using the property of logarithmic function log t14 log t2,
for all t14 t240, we can pose the following inequality:Z 1

0

pY jU ðyjuÞ log½pY ðyÞ�4
Z 1
0

pY jU ðyjuÞ

� log
y2nr�1unr

i

y2nr�1GðnrÞ
exp � uiy2

2

� �� �
dy ð12Þ

With the integral solutions [10, pp. 260–265]Z 1
0

x2n�1e�kx2dx ¼ ðn� 1Þ!
2kn

andZ 1
0

xte�u1x2 log½v1xt�dx ¼ 1

2
u
�1þt

2

1 log v1G
1þ t
2

� �

þ u
�1

2

1 t
4
ffiffiffiffiffi
u1
p G

1þ t
2

� �
C

1þ t
2

� �
� log u1

� �
ð13Þ

(12) can be simplified toZ 1
0

pY jU ðyjuÞ log½pY ðyÞ�4 nr �
1

2

� �
CðnrÞ � nr

þ log

ffiffiffi
2
p

piu
nr
i

unr�1
2GðnrÞ

" #
� nr

ui

u

� 	
ð14Þ

The result in (14) can be used to derive the following bound
on LHS of (6):

LHS �ðl� nruiÞ
u

� lð1þ PavÞ þ C � V ðnrÞ

þ nr �
1

2

� �
CðnrÞ � nr þ log

ffiffiffi
2
p

pi

GðnrÞ
ui

u

� 	nr

" #
ð15Þ

¼ ðl� nruiÞ
u

þ O
1

u

� �
ð16Þ

This lower bound diverges to N for l4nrui when u-0,
but the LHS of (6) is zero on the support set, U�. Hence, by
contradiction lrnrui, where l � 0 when u! 0. Therefore,
the only possibility is that l ¼ 0 if the input X � is discrete
with infinite mass points. However, the Kuhn–Tucker
theorem [11] for convex functions (the mutual information
978
and hence the channel capacity is concave [7]) states that the
Lagrangian multiplier l � 0 on the support set, which
optimises the objective function, negating the original
assumption.

Since X � does not possess any of the properties (1)–(3),
the only possibility for the optimal input amplitude
distribution that maximises (5) is discrete with a finite set
of mass points. A question arises, where the mass points are
located and their probabilities. Locating the mass points
analytically would be very difficult and even hard using
numerical methods. The existence of a mass point at zero is
proven for a single-antenna system, as well as for a diversity
receiver [7].

3.3 Mass point locations
We begin with the following lemma.

Lemma 2: The optimal input distribution X � of a non-
coherent uncorrelated Rayleigh fading MIMO channel
contains necessarily a mass point located at the origin.

Proof: Since the optimal input X � is discrete with a finite
number of mass points, we use the distribution function

G�X ðxÞ ¼
XN

i¼1
pidðx� xiÞ ð17Þ

Where 0 � x0 � x1o � � �oxN . The mutual information for
this input distribution is given by

IðX ; YÞ ¼
XN

i¼0
pi

Z 1
0

pY jX ðyjxiÞ log
pY jX ðxjxiÞPN

j¼1
pjpY jX ðxjxjÞ

2
64

3
75dy

ð18Þ
Using z ¼ y2=2, and differentiating with respect to x0 � 0,
we get

@IðX ; ZÞ
@x0

¼ p0

Z 1
0

@

@x0
pZjX ðzjx0Þ log

pZjX ðzjx0ÞPN
j¼1

pjpZjX ðzjxjÞ

2
64

3
75dz

ð19Þ
where

@

@x0
pZjX ðzjx0Þ ¼

2x0
ð1þ x20Þ

2
½z� nrð1þ x20Þ�pZjX ðzjx0Þ ð20Þ

Let us define

JðzÞ9 log
pZjX ðzjx0ÞP

j
pjpZjX ðzjxjÞ

2
4

3
5 ð21Þ

then (19) becomes

@IðX ; jZÞ
@x0

¼ 2x0p0

ð1þ x20Þ

Z 1
0

½z� nrð1þ x20Þ�pZjX ðzjx0ÞJðzÞdz

ð22Þ
where nrð1þ x20Þ is the mean value of pZjX ðzjxÞ.

Corollary 1: The function J(z) in (21) is a decreasing
function for 0 � x0ox1o � � � xN .

Proof: The ratio

pZðzÞ
pZjX ðzjx0Þ

¼ p0 þ
XN

i¼1

ð1þ x20Þ
nr

ð1þ x2i Þ
nr
exp z

1

1þ x20
� 1

1þ x2i

� �� �

ð23Þ
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is an increasing function since

ð1þ x20Þ
�1
4ð1þ x21Þ

�1
4 � � �4ð1þ x2N Þ

�1

for 0 � x0ox1o � � �oxN . Therefore, J(z) in (21) is a
decreasing function due to logarithm of the reciprocal of
ratio given in (23).

Using Corollary 1 with Lemma 1 in [7], we conclude that
the derivative is negative with respect to x0 for
0 � x0ox1o � � �oxN . Therefore, the X � with x0 � 0
cannot produce a local maximum, and hence the input
distribution G�X ðxÞ necessarily has a mass point located at
the origin.

4 Numerical results and simulation

4.1 Numerical results
The optimal amplitude input, discrete with a finite number
mass points can be used to compute the MIMO channel
capacity numerically. The capacity is achievable once the
optimal number of mass points, their probabilities and
locations are found satisfying the Kuhn–Tucker condition
stated in Lemma 1.

Figure 1 depicts the channel capacity as a function of
input power for nr¼ {1, 2, 3, 5}. The capacity results
obtained for both two and three mass points are shown.
It is clear that at low input power, there is no difference in
capacity in either case. Also, it is evident that as the number
of receivers increases, the maximum input power at which
two mass points are inadequate decreases. Figure 2 shows
the difference in simulated capacity in both cases. In this
analysis we conclude that at very low SNR, the optimal
input distribution has two mass points, one located at the
origin. Hence, the on–off keying is optimal at low SNR in
non-coherent Rayleigh fading MIMO channels. The same
is shown in [7] for SISO Rayleigh fading channels.

The probability distribution which optimises the channel
capacity with three mass points is shown in Fig. 3 with five
receive antennas. Similar to nr¼ 1, probability of the third
mass point is zero at low input power. Also, at low SNR,
a zero mass point dominates with a high probability.
Figures 4 and 5 depict the Kuhn–Tucker condition (6) for
Pav¼ {1.4, 2.2} with a single receiver. As claimed in Lemma
1, it is above zero except for the optimal mass point
locations where the Kuhn–Tucker condition equals zero.
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Fig. 1 Capacity of noncoherent Rayleigh fading MIMO channel
against input power using two and three mass points for a different
number of receiver antennas nr¼ {1, 2, 3, 5}
The dashed lines show the capacity having two mass points for each
receiver configuration
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Fig. 2 Loss in channel capacity with two mass points against three
against input power for nr¼ {1, 2, 3, 5}
High values shown at very low SNR are due to oscillation of optimal
mass points and should be ignored
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Fig. 3 Probability distribution of optimal mass points against input
power for nr¼ 5
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Fig. 4 Kuhn–Tucker condition (6) for Pav¼ 1.4, l¼
0.08819532394409 and pX(x)¼ 0.79549244782344d(x)+
0.20444300113415d(x� 2.6160) + 0.0000645510564d(x� 4.1451)
Channel capacity C¼ 0.23549289482526
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4.2 Simulation

4.2.1 Capacity curve: Having analytically derived
the mutual information for the MIMO case, we can
numerically compute the capacity of a Raleigh fading
MIMO channel as a function of input power. In [7], the
results are given only for the single-antenna case. In this
paper, we extend the computation for MIMO systems using
the theory derived.

We introduce the Lagrange multiplier and find the
optimum solution for the function f¼ I(GX )� lf (GX ) over
the whole range of input X � where f ( � ) represents the
input power constraint. We apply the Gauss–Laguerre
quadrature method to estimate all necessary integrals in f.
To maximise it over the whole range of X, we used steepest
descent method [11] to find the minimum solution for
function � f. To guarantee the convergence, we limit the
range between zero and C 0(0), which equals one if the input
noise variance is normalised to unity, ensuring that the
algorithm will not try to increase indefinitely. Since the
optimal input is discrete with a finite number of mass
points, to find a solution we start the program with a
random vector [x1, x2,y,xN,p1,p2,y,pN]

T subject to the

constraints x1ox2o � � �oxN ; 0opi for all i,
PN�1

i¼1 pi ¼ 1,
and keep l fixed. For each value of power constraint Pav,
l1 2 l is calculated using the quadrant division method. A
projected gradient method was implemented to ensure the
input probability is positive and all the boundary con-
straints are satisfied.

The order of the Gauss–Laguerre quadrature method is
critical to achieve the specified accuracy for any given
integral approximation. In our simulation, the program
was able to converge when the order was set to 85,
which provided sufficient accuracy for the exiting condition
in the projected gradient method to be satisfied. Note
that the program failed to compute if the order was set
higher than 150.

4.2.2 Kuhn–Tucker condition: The Kuhn–Tucker
condition given in Lemma 1 is a necessary and sufficient
condition for optimality (refer to the Appendix for more
details).
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Fig. 5 The Kuhn–Tucker condition (6) for Pav¼ 2.6, l¼ 0.0158
and pX(x)¼ 0.7294457069010d(x) + 0.24599313181750d(x�
2.9278) + 0.0245611664924d(x� 4.4728)
Channel capacity C¼ 0.29355664132426
980
This condition is used to determine if the local maximum
obtained from the steepest decent method is actually the
global maximum. To illustrate the optimality condition,
the LHS of (6) should be plotted as a function of x. If the
condition holds, the graph obtained must be non-negative
and must touch zero at the atoms of X �.

The order of Gauss–Laguerre has a significant effect on
the accuracy of Kuhn–Tucker analysis. Figure 6 shows the
Kuhn–Tucker test for Pav¼ 1.4 with sensitivity to the order
of Gauss–Laguerre quadrature. The results show that
depending on the Gauss–Laguerre order, the function
crosses over the horizontal axis with varying degrees of
magnitude. As the order increases, the third ‘ditch’ goes
below the zero boundary and vice versa. The third ‘ditch’ of
the function converges to the point on the horizontal axis
that corresponds to the third mass point when the order
equals 38.

It is worth mentioning that the integrity of the Kuhn–
Tucker test also depends very much on the magnitude and
the corresponding probability of the third mass point. As the
probability drops below 10� 4, the Kuhn–Tucker condition
tends to be unstable. It is claimed in [7] that the dashed lines
(projected capacity, probability and locations) are due to the
instability of the Kuhn–Tucker condition. We have increased
the accuracy of simulation by setting the order of Gauss–
Laguerre quadrature to be 120. The results obtained are then
tested using the Kuhn–Tucker condition. We claim that the
capacity in the dashed line range [7] is actually achievable.

For the MIMO case, in some occasions, the Kuhn–
Tucker condition seems to be unstable. The inaccuracy
incurred in using the built in G( � ) and C( � ) functions in
Matlab may have accounted for this problem. In these cases,
the Kuhn–Tucker condition for the MIMO case is always
non-negative, but the ditches of the Kuhn–Tucker functions
do not converge to the horizontal axis at which the mass
points are positioned. The converging of the Kuhn–Tucker
condition for the MIMO case requires further analysis.

For example, Figs. 7 and 8 show that the optimum input
random variable with discrete distribution function can
achieve the capacity of an average power-limited channel in
the dashed line regions. This is because the resulting Kuhn–
Tucker test graphs are non-negative and touch zero at the
atoms of X �. Verifying that the optimum input satisfies the
Kuhn–Tucker condition for various values of input power
in the dashed line ranges, we conclude that the capacity is
actually achievable.
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Fig. 6 Kuhn–Tucker condition (6) with sensitivity to Gauss–
Laguerre order {36, 38, 39, 42, 45}
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5 Conclusions

In this paper, we have shown that the capacity achieving
input distribution of a non-coherent uncorrelated Rayleigh
fading MIMO channel is discrete with a finite number of
mass points, one necessarily located at the origin. The
channel capacity is computed numerically finding the
optimal number of mass points, their probabilities and
locations. The optimality is guaranteed when the optimal
input distribution satisfies the Kuhn–Tucker condition.

The simulation work is briefly highlighted with the
improvements made in the single-antenna case compared to
the work of Abou-Faycal et al. [7]. The conjectured
capacities in [7] are actually achieved. Furthermore, the
simulation is extended to MIMO systems and the capacities
are presented against the input power for multiple receivers.

Although the capacity is shown numerically at any SNR
for any antenna configuration, there is a necessity for a
simple and easy way to determine the optimal input and
hence the capacity, for instance, results in tabulated form in
which the optimal mass point properties and the capacity
are readily available for a given input power constraint.
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Fig. 7 Kuhn–Tucker condition (6) for Pav¼ 0.8, l¼ 0.131734
and pX(x)¼ 0.85118882d(x)þ 0.1488111d(x� 2.3186)
Channel capacity C¼ 0.171
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Fig. 8 Kuhn–Tucker condition (6) for Pav¼ 4, l¼ 0.03433
and pX(x)¼ 0.68347d(x) + 0.253523d(x� 3.07943) + 0.063d
(x� 5.03258)
Channel capacity C¼ 0.3746
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8 Appendix: Proof of Lemma 1

The necessary and sufficient condition for an input
distribution to be optimal is derived here proving
Lemma 1 stated with the Kuhn–Tucker condition. The
following definition is given in [12] for the weak differentia-
bility on a convex space.

Definition 1: Let S be a convex space, L a functional from S
into the real line R, x0 a fixed element of S and y a number
in [0, 1]. Suppose there exists a map L0x0 :! R such that

L0x0ðxÞ9 lim
y!0

L½ð1� yÞx0 þ yx� � Lðx0Þ
y

ð24Þ

for all x in S. Then L is said to be weakly differentiable in S
at x0 and L0x0 is the weak derivative in S at x0. If L is weakly

differentiable in S at x0 for all x0 in S, L is said to be weakly
differentiable in S or simply weakly differentiable.

The following theorem [11, p. 139] shows the necessary
and sufficient condition for a weakly differentiable convex
function to have an optimum.

Theorem 1: Suppose Q is weakly differentiable, so that for
all x0, y in its domain S

QðyÞ � Qðx0Þ þ Q0ðx0Þðy � x0Þ ð25Þ
Let X denote the feasible set, i.e.

X ¼ fxjQiðxÞ � 0; i ¼ 1; . . . ;m; hiðxÞ ¼ 0; i ¼ 1; . . . ;pg
ð26Þ

then x0 is optimal if and only if x02X and

Q0ðx0Þðy � x0Þ � 0 for all y 2 X ð27Þ
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Geometrically, if Q00 (x0)a0 it means that �Q0ðx0) defines
a supporting hyperplane to the feasible set at x0.

Using Theorem 1 on a weakly differentiable concave
functional, we get the following.

Corollary 2: Assume L is a weakly differentiable, concave
functional on a convex set S. If L achieves its maximum on
S at x0, then a necessary and sufficient condition for
Lðx0Þ ¼ maxx2S LðxÞ is that L0x0 � 0 for all x in S.

The following shows the Lagrangian theorem [11,
pp. 215–218] commonly being used to find optimal
solutions in both convex and nonconvex functions. The
Lagrangian theorem is valuable since it always provides a
lower bound, and in most cases the optimal solution in the
absence of a duality gap.

Theorem 2: Let X be a linear vector space, Z a normed
space, O a convex subset of X and P the positive cone in Z.
Assume that P contains an interior point. Let f be a real
valued concave functional on O and G a convex mapping
from O into Z. Assume the existence of a point x12O for
which G(x1)o0. Let

m0 ¼ sup
x2O

GðxÞo0

f ðxÞ ð28Þ

and assume m0 is finite. Then there is an element Z�040 in Z
(the dual space of Z) such that

m0 ¼ sup
x2O
ff ðxÞ GðxÞ; Z�0


 �
g ð29Þ

Furthermore, if the supremum is achieved in (28) by an
x2O, G(x0)r0, it is achieved by x0 in (29) and
GðxÞ; Z�0

 �

¼ 0.
Using Theorem 2, we can pose the optimisation problem

for channel capacity with l � 0.

C ¼ sup
Gx2G

Efjxjg2�Pav

IðGxÞ ð30Þ

¼ sup
GX2G

IðGX Þ � lfðGX Þ ð31Þ

¼ sup
GX2G

IðGX Þ � l
Z 1
0

x2dGX ðxÞ � Pav

� �
ð32Þ

Note in here that all the conditions of the Lagrangian
theorem are satisfied. The set of input distributions of
non-negative random variables forms a convex set, the
mutual information is a concave function of the input
distribution [7, Appendix I-B], and input power constraint is
convex since it is a linear functional of the input
distribution. Next we will show that both mutual informa-
tion I( � ) and the input constraint f ( � ) are weakly
differentiable functions.

Lemma 3: The mutual information I( � ) defined in (3) and
f ( � ) defined in (32) are weakly differentiable functionals on
G with weak derivatives

I 0G0
ðGX Þ ¼ �

Z 1
0

pY ðy; GX Þ logpY ðy; G0Þdy

� 1

2

Z 1
0

logðþx2ÞdGX ðxÞ � IðG0Þ þ V ðnrÞ

ð33Þ
and

f0G0
ðGX Þ ¼ fðGX Þ � fðG0Þ ð34Þ
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Proof: We define

Gy ¼ ð1� yÞG0 þ yGX ; y 2 ð0; 1Þ ð35Þ
where G0 is the optimal input distribution. The difference in
mutual information obtained with two distributions Gy, G0

is given by

IðGyÞ � IðG0Þ ¼
Z 1
0

pY ðy; G0Þ logpY ðy; G0Þdy

�
Z 1
0

0pY ðy; GyÞ logpY ðy; GyÞdy

þ 1

2

Z 1
0

logð1þ x2ÞdG0ðxÞ �
Z 1
0

logð1þ x2ÞdGyðxÞ
� �

ð36Þ
Using

pY ¼ ðy; GyÞ ¼ ð1� yÞpY ðy; G0Þ þ ypY ðy; GX Þ
and dGy ¼ ð1� yÞdG0 þ ydGX , we get

lim
y!1

IðGyÞ � IðG0Þ
y

� �
¼
Z 1
0

pY ðy; GX Þ logpY ðy; G0Þdy

�
Z 1
0

pY ðy; GX Þ logpY ðy; GX Þdy

þ1
2

Z 1
0

logð1þ x2ÞdG0ðxÞ
�

�
Z 1
0

logð1þ x2ÞdGX ðxÞ
�

ð37Þ
Also note that

IðG0Þ ¼ �
Z 1
0

pY ðy; G0Þ logpY ðy; G0Þdy

� 1

2

Z 1
0

logð1þ x2ÞdG0ðxÞ þ V ðnrÞ ð38Þ

Substituting I(G0) in (38) into (37), we get (33). Similarly we
can write the first derivative of f ( � )

lim
y!1

fðGyÞ�fðG0Þ
y

� �
¼
Z 1
0

x2dGX ðxÞ�
Z 1
0

x2dG0ðxÞ

¼fðGX Þ � fðG0Þ ð39Þ
proving (34). Therefore I(GX ) and f (GX ) are weakly
differentiable functions on G. Using Corollary 2, and the
weak differentiability of I(GX ) and f (GX ), (31) achieves its
maximum if and only if

I 0G0
ðGX Þ � lf0G0

ðGX Þ � 0 ð40Þ

Using the results obtained for I 0G0
ðGX Þ in (33) and f0G0

ðGX Þ
(34) we get the following inequality:Z 1

0

Z 1
0

pY jX ðyjxÞ logpY ðy; G0Þdy
� �

dGX ðxÞ

þ 1

2

Z 1
0

logð1þ x2ÞdGX ðxÞ þ C � V ðnrÞ

þ l
Z 1
0

ðx2 � PavÞdGX ðxÞ � 0 8GX 2 G ð41Þ

in order to have an optimal point. The following theorem is
given in [7].
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Theorem 3: Let E0 be the points of increase of a distribution
function G0. ThenZ

½Iðx; G0Þ � lx2�dGX ðxÞ � C � lPav ð42Þ

for all GX2G if and only if

Iðx; G0Þ � C þ lðx2 � PavÞ; 8x ð43Þ
IEE Proc.-Commun., Vol. 153, No. 6, December 2006
and

Iðx; G0Þ ¼ C þ lðx2 � PavÞ; 8x 2 E0 ð44Þ

Using Theorem 3 in (41), we obtain the necessary
and sufficient condition (6) for the function (32) to
have a maximum. This is known as the Kuhn–Tucker
condition.
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