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Abstract — In this contribution a temporally corre-

lated rayleigh fading channel model applicable in gen-

eral scattering environments, with Clarke’s isotropic

scattering environment as a special case, is consid-

ered. For a fixed direction of mobile travel, the results

show that the information rate penalty incurred for

not knowing the channel state information (CSI) in

a non-isotropic scattering environment can be signifi-

cantly less than that for the isotropic scattering envi-

ronment for the same average received signal-to-noise

power ratio (SNR). The results show that for a fixed

mean angle of arrival, fading rate and direction of

mobile travel, higher information rates are achievable

in case of more non-isotropic scattering environment.

The results are presented for different non-isotropic

scattering environments in terms of the normalized

fading rate and SNR, and are compared with those

for isotropic scattering environments

I. Introduction

In real world mobile communication scenarios either
the transmitter and/or the receiver may be in motion. A
mobile-radio situation in which transmitter is fixed in po-
sition while the receiver is moving, usually in such a way
that the direct line between transmitter and receiver is
obstructed by buildings, is more common. The amplitude
fluctuations of the received signal in this communications
scenario have been shown to follow Rayleigh distribution
[4]. The receiver mobility manifests itself in small scale
(on the scale of milliseconds) severe fading (signal level
may drop to as low as -40 dB) [7]. The channel estimate
on the basis of such deeply faded signal is supposed to be
quite unreliable. In addition, in a high mobility environ-
ment the rate of channel variation might be too fast to
limit enough observation period for reliable channel esti-
mates. It is, therefore, of particular interest to explore
the achievable information rates without CSI in a mobile
Rayleigh fading channel.
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When the receiver has perfect CSI the capacity achiev-
ing distribution is Gaussian. If, in addition, the trans-
mitter has CSI, the Gaussian distribution of the input al-
phabet is still optimal and capacity is achieved using the
principle of waterfilling. In the absence of CSI, the fading
channel capacity problem has been studied for some sim-
plified channel models e.g., finite state markov channel
model[13], discrete time memoryless channel model[11],
[14], block Rayleigh fading channel[10], [15]. A detailed
survey of capacity of fading channels can also be found
in [2].

The problem of achievable information rates in a time-
correlated Rayleigh fading channel without CSI has re-
cently been considered in [16] and [5]. While [16] consid-
ers the problem in a more general setting allowing for dif-
ferent scattering environments, the results in [5] are based
on the assumption of isotropic scattering environment
around the mobile receive antenna. Bounds on achiev-
able rates for constant power and Gaussian signaling were
derived. Some useful asymptotic results were also given
for information rate penalty, and achievable rates, when
there is no CSI either at the receiver or the transmitter. It
has been argued and experimentally demonstrated (see [1]
and references therein) that the scattering encountered in
many suburban and rural environments is non-isotropic.
The non-isotropicity of the scattering might well result if
directional antennas with non-uniform gain patterns are
employed at the receiver. It is, therefore, of particular
interest to explore the achievable information rates with-
out CSI in a mobile Rayleigh fading channel when the
scattering environment is non-isotropic. The purpose of
this paper is to extend the results of [5] from isotropic
scattering to general scattering environments.

We emphasize that the purpose of this paper is to com-
plement the work of [5] to cover realistic non-isotropic
(and isotropic) communication scenarios for design of
practical communication systems. The main assumptions
in this work are that the mobile antenna is isotropic but
the scattering is non-isotropic (or isotropic), and the re-
ceived average SNR is the same as would be if the scat-
tering were isotropic.

Main contributions of this paper are as follows:

1. For a fixed direction of mobile travel, we show that
the information rate penalty for unknown CSI in



non-isotropic scattering environments can be sig-
nificantly less than the penalty in an isotropic scat-
tering environment. The greater the degree of non-
isotropicity, the lower the information rate cost for
unknown CSI and, hence, higher the achievable in-
formation rates (Figs. 5 and 6). The autocorrela-
tion and power spectral density (PSD) plots (Figs.
2 and 3) for different scattering scenarios help ex-
plain the reason behind less penalty for more non-
isotropic scattering environments and vice versa.

2. The Clarke’s model of 2D isotropic scattering is a
special case of the generalized model being consid-
ered. The results presented in [5] for isotropic scat-
tering distribution, therefore, are a special case of
the generalized model.

3. The generalized channel model (equations (3) and
(7)) given without proof due to paper length re-
striction can be used to analyze the interplay be-
tween different parameters i.e., the mobile direc-
tion of travel, the degree of non-isotropicity and
the channel dynamics for arbitrary scattering dis-
tributions. Moreover, using the generalized model
we can test whether the assumption of ergodicity
of the channel fading process in general (unimodal)
scattering environments is valid1(Fig. 3).

Throughout the paper, the following notation will be
used: Bold lower (upper) letters denote vectors (matri-
ces). ∗ and T denote the conjugate transpose, and trans-
pose, respectively. The symbol C denotes the unit circle.
The log function is the natural logarithm so that the in-
formation rates and differential entropies are expressed in
nats/symbol. The notation E {·} denotes the mathemat-
ical expectation and the matrix I is the N ×N identity
matrix.

II. channel model

We consider a downlink SISO transmission system
where the transmitter is stationary while the receiver is
moving with some velocity v. We consider the transmis-
sion of a sequence of N symbols, x = [x1, x2, · · ·, xN ]T .
The received N×1 vector y can be written in discrete-time
complex baseband form as

y =
√

ρ Xh + n, (1)

where X = diag(x1, x2, · · ·, xN ) is the diagonal matrix
of average power constrained, E

{|xj |2
}

= 1, transmit-
ted symbols, n = [n1, n2, · · ·, nN ]T is N-dimensional
noise vector with zero mean vector and covariance ma-
trix I and h = [h1, h2, · · ·, hN ]T represents the samples
of a band-limited, flat-fading (frequency non-selective)
wide-sense stationary, zero-mean complex Gaussian pro-
cess with Toeplitz positive semidefinite covariance matrix

1For a channel fading process to be ergodic, the spectrum of the
fading process must be continuous[3] in the range −π ≤ ω ≤ π.

C , E {hh∗}. Equivalently, the magnitude of the fading
process is Rayleigh distributed and the phase is rectan-
gularly distributed over [0, 2π]. The factor ρ is, then, the
average received SNR.

Let (j + k, j) entry of the channel covariance matrix
be expressed as

[C]j+k,j = E
{
hj+kh∗j

}
. (2)

It can be shown that the autocorrelation function of
the channel fading process in a general (unimodal i.e.,
the scattering distribution has only one mode (dominant
scatterer)) scattering environment is given by 2 for SISO
as

Φ(k) =
∞∑

n=−∞
γnJn(ηvkTs)e−in(φv+ π

2 ),

=
∞∑

n=−∞
γnJn(ωdkTs)e−in(φv+ π

2 ) = [C]j+k,j , (3)

where Jn(·) is the Bessel function of integer order n, Ts is
the symbol time, ωd = ηv is the is the maximum Doppler
spread with η = 2π/λ being the free space phase constant
and λ being the carrier wavelength, v is the magnitude
of velocity of the mobile, and φv is the angle between
the mobile direction of travel and the x-axis (Fig.1) and
the coefficients 3 γn termed as scattering coefficients, are
defined as

γn =
∫

C

Ψ(β) einβ dβ, (4)

where Ψ(β) is the average received power from angle of
arrival β at the receive aperture.

Remarks:

1. Since we have assumed the channel fading process
to be wide-sense stationary4, the autocorrelation
function, Φ(k), in (3) is only a function of the time
lag k between the samples of the channel fading
process.

2. The function Ψ(β), termed as Angular Power dis-
tribution[8], is normalized such that

∫

C

Ψ(β)dβ = 1. (5)

In the literature, mathematically convenient dis-
tributions such as Von-Mises, truncated Laplacian,
truncated Gaussian distributions have been used to

2We assume that the channel fading process is sampled at least
at the Nyquist rate.

3For isotropic power distribution, γn = 0 for n 6= 0
4Since the channel fading process is complex Gaussian, the as-

sumption of wide-sense stationarity implies stationarity in our case.



model Ψ(β). In [18], the Fourier series is used to
expand an arbitrary Ψ(β), i.e,

Ψ(β) =
1
2π

∞∑
n=−∞

γn e−inβ (6)

and γn for popular distributions were given. Note
that (4) and (6) form a Fourier transform pair.

By taking the discrete-time Fourier transform (DTFT)
of (3), it can be shown that the PSD of the fading process
is given as

Φ(ω) =
1

ωD

∞∑
n=−∞

γn e−in(φv+π) Fn

(
ω

ωD

)
, (7)

where [17]

Fµ(x) , 2
cos(µ cos−1(x))√

1− x2
, (8)

and ωD = ωdTs = ωd/(1/Ts) is the maximum Doppler
spread normalized by the symbol rate, and fD =
ωD/2π = ωdTs/2π is the normalized maximum Doppler
frequency which is also called the normalized fading rate.
Equation (7) gives the distribution of power among dif-
ferent modes of the distribution function as a function of
doppler frequency and may be called Power Modal Spec-
tral Density.

III. clarke’s model as a special case of the
generalized model

Consider the scattering scenario (Fig. 1) in which the
scattered power (or the probability of angles of arrival) is
uniformly distributed over a sector with mean β0 and the
maximum deviation5∆r on each side of the mean, i.e.,

Ψ(β) =
{ 1

24r
, |β − β0| ≤ 4r;

0, otherwise,
(9)

r

v

φv

∆r∆r

β0

1
2∆r

Fig. 1: Uniform-limited scattering scenario where the scattered
power is uniformly distributed with magnitude 1/2∆r over a circu-
lar sector with mean angle of arrival β0 and maximum deviation of
∆r on each side of the mean. The mobile is moving with velocity
v at an angle of φv with x-axis.

5The relationship between angular spread, σ, and the maximum
deviation about the mean, ∆r is given by σ = ∆r/

√
3.

For this distribution, called uniform-limited power dis-
tribution6, values of γn were derived in closed form in [18]
and are given as

γn = einβ0sinc(n∆r). (10)

Using (10) in (3) and (7), we can write

Φ(k) =

∞∑
n=−∞

sinc(n∆r) Jn(ωDk) ein(β0−φv−π/2) (11a)

Φ(ω) =
1

ωD

∞∑
n=−∞

sinc(n∆r) Fn

(
ω

ωD

)
ein(β0−φv−π) (11b)

where (11b) is a consequence of the fact that Ψ(β) is real
and γn = γ∗−n. Notice that, in general, the autocorrela-
tion is complex valued and depends on the mean angle of
arrival (AOA) and the mobile direction of travel unlike
isotropic scattering environments in which channel auto-
correlation is strictly real valued and is independent of
AOA or the direction of mobile travel.
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Fig. 2: The squared magnitude of the autocorrelation function of
the channel fading process given in (11a) as a function of time lag
k in number of symbols for different ∆r when β0 = 90◦, φv = 45◦,
SNR=10dB and fD = 0.05.

Equations (11a) and (11b) give the second order statis-
tics for different ∆r corresponding to different scattering
scenarios, and will be used, in the next section, in deter-
mining the information rate penalty and achievable infor-
mation rates when no CSI is available at the transmitter
and the receiver. The autocorrelation and PSD of the
fading process based on (11a) and (11b) have been plot-
ted for different non-isotropic scattering environments in
Figs. 2 and 3, respectively.

In the limiting case of ∆r = π, which corresponds to
the isotropic power distribution, (11a) and (11b) collapse,

6We have considered uniform-limited scattering scenario because
it is easy to appreciate the equivalence of the Clarke’s model to the
generalized scattering model as a special case.
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Fig. 3: The PSD of the channel fading process as a function of
the doppler frequency for different ∆r when β0 = 90◦, φv = 45◦,
SNR=10dB and fD = 0.05. Horizontal axis is the normalized
doppler spread (ω) in radians and the vertical axis is the mag-
nitude of PSD in watts/Hz. Red-Triangle, Green-Star, Blue-Star
and Green lines, respectively, correpond to the values of ∆r =
25◦, 50◦, 75◦, 180◦. These plots show the discontinuous spectrum
of the fading process for each non-isotropic scenario and, hence,
the assumption of ergodicity of the fading process can not valid [3].

respectively, to

Φ(k) = J0(2πfDk), (12)

Φ(ω) =
1

πfD (1− (f/fD)2)
, (13)

where |ω| ≤ 2πfD in (11b) and (13) as a consequence of
the bandlimitedness of the channel fading process. Equa-
tions (12) and (13) are the well-known Clarke’s 2D model
for the autocorrelation and PSD of the fading process, re-
spectively.

Since the autocorrelation and PSD of channel fading
process in a non-isotropic scattering environment is de-
pendent on the mobile direction of travel, it is of interest
to find out the autocorrelation and PSD if the mobile di-
rection of travel is averaged out. If the mobile direction of
travel is equiprobable in all directions i.e., p (φv) = 1/2π,
then, from (11a), the average autocorrelation, Φavg(k) is
given by

Φavg(k) =
∞∑

n=−∞
sinc(n∆r) Jn(ωDk)

× ein(β0−π/2)

∫ 2π

0

e−inφvdφv, (14)

and using (11b), the average PSD, Φavg(ω) , is given by

Φavg(k) =
1

ωD

∞∑
n=−∞

sinc(n∆r) Fn

(
ω

ωD

)

× ein(β0−π/2)

∫ 2π

0

e−inφvdφv, (15)

It is not hard to see that, irrespective of ∆r and the β0,
the integrals in equations (14) and (15) are zero for all

n 6= 0 so that these two equations converge, respectively,
to (12) and (13) i.e., the Clarke’s isotropic case.

IV. information rates in non-isotropic
scattering environments

In order to make this paper self-contained , we review
in the following the information rate bounds derived in
[5]. From equation (1), the mutual information, I(y;x),
between the output vector y and the input vector x can
be expressed using the chain rule as follows

I(y;x) = I(y;x,h)− I(y;h|x), (16a)
= I(y;x|h)− {I(y;h|x)− I(y;h)}, (16b)

where the first term in (16b) is the mutual information
with perfect CSI and, therefore,

Pδ , I(y;h|x)− I(y;h), (17)

is the penalty in information rate due to unknown CSI.
Since I(y;h) is nonegative,

Pδ ≤ I(y;h|x). (18)

Thus I(y;h|x) is the upper bound on the penalty. Mak-
ing use of the Jensens’s inequality and the determinant
identity, det(I + AB) = det(I + BA), it was shown in
[5] that

Pδ ≤ logdet(I + ρC), (19a)

=
N∑

i=1

log (1 + ρλi) , (19b)

where λi, i = 1, 2, · · ·, N, are the eigenvalues of the covari-
ance matrix C and equality holds in for constant power
signaling (M-PSK signaling). As we have seen in section
III that the non-isotropicity of the scattering environment
affects the second order channel statistics and, hence, the
eigenvalues of the channel correlation matrix, Pδ as given
in (19b) will be different for different non-isotropic scat-
tering environments.

Let IC(y;x) and IG(y; x) denote the achievable infor-
mation rates without CSI for constant power and Gaus-
sian signaling, respectively. Making use of (16a), (16b)
and (19b), the following upper bound results for constant
power signaling [5]

IC(y,x) ≤ CAWGN(ρ)− Pδ, (20)

where CAWGN(x) , log(1 + x). The Gaussian signaling
lower bound is given as

IG(y,x) ≥ CRayleigh(ρ)− Pδ, (21)

where CRayleigh is the ergodic Rayleigh capacity [9] with
perfect CSI given as

CRayleigh , Ehlog
(
1 + x|hn|2

)
= −exp

(
1
ρ

)
Ei

(
−1

ρ

)
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Fig. 4: Information Rate Penalty, Pδ, versus SNR for different ∆r

when β0 = 90◦, φv = 45◦, fD = 0.05 and infinite block length.

where Ei is the exponential integral. In this bound we
can see that CRayleigh is the ergodic capacity and is inde-
pendent of a particular scattering scenario.

A. Analysis of Information Rate Penalty and Numer-
ical Results

As we can see that the information rate penalty for
unknown CSI (19b) is a function of the block length and
SNR, it is of information-theoretic interest to find out
the penalty asymptotics for large (possibly infinite) block
length and high (possibly infinite) SNR. From a practi-
cal standpoint, to find out the behavior of penalty with
increasing transmission block length is of interest.

In order to find out the behavior of the penalty
with increasing transmission block length in different
non-isotropic environments, we consider four different
uniform-limited scattering scenarios (keeping all other pa-
rameters fixed),i.e, ∆r = {10◦, 25◦, 50◦, 180◦} from very
non-isotropic to isotropic environment (Clarke’s case),
and then use (19b) and the autocorrelation function in
(11a) to compute the penalty for each scattering scenario
as a function of block length (Fig.5).

Since the penalty in (19b) is a non-increasing sequence
in N (the block length), it has a limit as N →∞. In or-
der to find that limit for different non-isotropic scattering
scenarios under consideration, we make use of (11b) and
the Szegö’s limit theorem [6, 64-65] to get

lim
N→∞

Pδ =
1
2π

∫ π

−π

log (1 + ρ Φ(ω)) dω. (22)

Since Φ(ω) given in (11b) involves summation, it is not
possible to find a closed form solution for Pδ due to the
summation appearing within log in (22).

Fig.5 gives the behavior of penalty with increasing
block length and the asymptotic penalty for each scat-
tering scenario. The Clarke’s case is also shown for com-
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Fig. 5: Information Rate Penalty, Pδ, versus block length for dif-
ferent scattering scenarios when β0 = 90◦, φv = 45◦, SNR=10dB
and fD = 0.05.

parison. In the limiting case of ∆r = π, the results for in-
formation rate penalty for finite and infinite block lengths
are consistent with those for Clarke’s reported in [5]. It
can be observed from Fig. 5 that the information rate
penalty for not knowing CSI in the non-isotropic mobile
communications scenario under consideration is signifi-
cantly less than that for isotropic scattering distribution.

Using (17), (20), (21) the achievable information rates
have been plotted versus SNR in Fig.6 for two non-
isotropic scattering scenarios along with the Clarke’s
isotropic environment. It can be seen that the informa-
tion rate bounds in non-isotropic scattering environment
are higher than those for the isotropic scattering environ-
ment, for the same fading rate and SNR.

V. conclusion and future work

Information rates achievable without CSI in a time-
varying Rayleigh fading channel were investigated for a
particular non-isotropic scattering environment keeping
the mobile direction of travel fixed. It was observed that
greater degree of non-isotropicity of scattering distribu-
tion resulted in higher correlation of the channel fading
process over time which in turn resulted in less cost for
not knowing the CSI for the same block length and, hence,
higher achievable rates. For any fixed scattering scenario
and fading rate, the autocorrelation and PSD of the fad-
ing process are identical to those for the Clarke’s case
when the direction of mobile travel is averaged out. In
other words, the achievable rates in a non-isotropic scat-
tering scenario, with mobile direction of travel averaged
out, are the same as for the isotropic scattering environ-
ment.

In this contribution we assumed that the mobile an-
tenna is isotropic while the scattering environment is non-
isotropic. If a directional antenna is employed at the re-
ceiver in an isotropic environment, there is an apparent



0 5 10 12 15 20 25 30
0

1

2

3

4

5

6

7 Gaussian signaling LB (∆r=10°)

Gaussian signaling LB (∆r=50°)

Gaussian signaling LB (Clarke’s Case)

Rayleigh Capacity

Constant signaling UB (∆r=10°)

Constant signaling UB (∆r=50°)

Constant signaling UB  (Clarke’s case)

AWGN Capacity

Difference is ~0.8
nats/symbol

Difference is ~1.2 nats/symbol

Fig. 6: Information rate bounds for Gaussian and Constant power
signaling as a function of SNR when β0 = 90◦, φv = 45◦,
SNR=10dB, fD = 0.05 and block length is infinite.

trade-off between the increased correlation of the fading
process and reduced SNR (as only a portion of the avail-
able SNR is being intercepted) as seen by the receiver. It
seems interesting to look for some optimal trade-off be-
tween these two parameters. Also unlike isotropic scat-
tering environment in which the autocorrelation is real-
valued, the autocorrelation in non-isotropic environments
is complex valued. It also seems interesting to look for
an answer to the question: Can we make use of the addi-
tional correlation dimension?
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