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ABSTRACT

This paper investigates the correlations between sensor sig-

nals in multipath environments created by correlated scat-

terers. We derive a closed form expression for the correla-

tion in fields created by arbitrary scatterer correlations and

scatterer powers, using Fourier techniques, and propose rea-

sonable function forms for scatterer correlation. Simulations

show notable differences from the uncorrelated scatterer case.

1. INTRODUCTION

Multiple sensor systems have received much attention re-

cently. An important characteristic of such systems in mul-

tipath environments is the level of correlation in the signals

between sensors. This correlation dictates performance in

MIMO systems and adaptive array processing algorithms. In

this paper, we calculate correlation in general multipath envi-

ronments.

For environments where multipaths propagate in uniformly

from all directions, a half wavelength sensor spacing yields

uncorrelated received signals [1]. Multipath is often more ac-

curately modelled as coming from a subset of directions how-

ever. This causes more strongly correlated received signals

and was recently studied by Teal et al. [2].

To calculate spatial correlation, [2] applied the wide-sense

stationary uncorrelated scatterer (WSSUS) model [3], which

assumes different scatterers (i.e. multipath gains) are uncor-

related. Direction-of-arrival and adaptive beamforming liter-

ature concedes this assumption is not strictly true, as coherent

sources cause several subspace-based techniques to fail [4, 5].

In this paper, we derive a closed form expression for the

spatial correlation between any two points in a wave field due

to correlated scatterers. A small correlation between adjacent

scatterers can cause significant deviations in spatial correla-

tion from the WSSUS case. In the following analysis, we

restrict attention to 2D, with obvious extension to 3D.
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Fig. 1. Multipath channel model. Environmental scattering is

modelled using transmitter-to-origin transfer function A(φ).

2. CHANNEL MODEL

Consider an antenna transmitting the unity amplitude nar-

rowband signal eiωt over a slow fading channel. The signal

propagates through a far-field scattering environment before

reaching the receiver antennas. As shown in Fig. 1, each re-

ceiver is fixed at xn within a circular aperture of radius R.

The scattering environment is modelled with the scattering

gain A(φ), defined as the transfer function between the trans-

mitter and the receiver origin for a plane wave propagating in

from direction φ̂ where in polar coordinates φ̂ = (1, φ). The

signal sn(t) captured by receiver antenna n is written as:

sn(t) = eiωt

∫ 2π

0

A(φ)e−ikxn·φ̂dφ. (1)

For non-line-of-sight channels, the scattering gain A(φ) is

assumed to be zero mean random variable. We are interested

in the second order statistics of the scattering gain, which gov-

ern the properties of a wide variety of channels.

A useful quantifier of the channel properties is the normal-

ized power density of scatterers

P(φ) � E{|A(φ)|2}∫ 2π

0
E{|A(φ)|2}dφ

. (2)

This function, also known as the normalized power azimuth

spectrum, indicates the relative power of the multipath com-

ing from each angle φ.
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Fig. 2. Pairs of rays reflecting off homogeneous diffuse scat-

terers. At the receiver, rays have similar amplitudes and

phases.

In this paper, we introduce the concept of scatterer corre-

lation. Previously in the WSSUS model, the scatterers were

assumed uncorrelated E{A(φ)A∗(ϕ)} = 0 for φ �= ϕ. We

consider the general case of correlated scatterers, with corre-

lation:

ρS(φ, ϕ) � E{A(φ)A∗(ϕ)}√
E{|A(φ)|2}E{|A(ϕ)|2} . (3)

We name the new model the correlated scatterer (CS) model1.

The intuition behind the CS model is justified thusly. When

rays reflect non-specularly off scatterers, the rays can reach

the receiver from two slightly different paths (Fig. 2). The

path lengths are almost identical, and for homogenous scat-

terer, absorption losses are the same. Received amplitudes

and phases at the receiver are almost identical. Statistically,

these scatterers are correlated.

3. FOURIER ANALYSIS OF MODEL PARAMETERS

In this paper, we explore the spatial correlation in terms of the

channel model parameters P(φ) and ρS(φ, ϕ). We perform

the Fourier expansions of these parameters.

3.1. Root Power Density of Scatterers

From the presence of
√

E{|A(φ)|2} in (3) and the linear

dependence of E{|A(φ)|2} on power density of scatterers

P(φ), it is convenient to compute the Fourier expansion of

root power density:

√
P(φ) =

1
2π

∞∑
m=−∞

γmeimφ, (4a)

γm =
∫ 2π

0

√
P(φ)e−imφdφ. (4b)

Since root power density is real, γ∗
m = γ−m.

1In the CS model, we can no longer apply the term wide-sense statioinary
used in the WSSUS model. For a moving antenna array, E{sp(t)s∗q(t+ τ)}
is no longer invariant in t.

3.2. Scatterer Correlation

The scatterer correlation is a function of two angular vari-

ables. Hence we consider the double Fourier expansion

ρS(φ, ϕ) =
1

(2π)2

∞∑
m=−∞

∞∑
m′=−∞

ξmm′ei(mφ−m′ϕ), (5a)

ξmm′ =
∫ 2π

0

∫ 2π

0

ρS(φ, ϕ)e−i(mφ−m′ϕ)dφdϕ. (5b)

From (3), we observe the following properties of the angu-

lar correlation coefficient: (i) ρS(φ, φ) ≡ 1, (ii) ρS(φ, ϕ) =
ρ∗S(ϕ, φ) and (iii) |ρS(φ, ϕ)| ≤ 1. From these we can show

the Fourier coefficients must satisfy
∑∞

m=−∞ ξm(m+n) =
δn0 for any integer n and ξm(−m′) = ξm′(−m) where δnn′

is the Kronecker delta function.

4. SPATIAL CORRELATION

Spatial correlation is defined as the correlation coefficient be-

tween two received signals captured by omnidirectional sen-

sors in the wave field:

ρ(xp,xq) �
E{sp(t)s∗q(t)}√

E{|sp(t)|2}E{|sq(t)|2}
. (6)

We derive an expression for the covariance between receiver

signals E{sp(t)s∗q(t)}. The expression for spatial correlation

can then be obtained by substituting this back into (6).

Theorem (Signal Covariance for CS Channels)
The correlation between received signals sp(t) and sq(t) is
given by:

E{sp(t)s∗q(t)} = A
∞∑

n=−∞

∞∑
n′=−∞

ζnn′Jn(xp)J ∗
n′(xq),

(7)

where

ζnn′ =
∞∑

m=−∞

∞∑
m′=−∞

ξmm′γ∗
m+nγm′+n′ , (8)

Jn(x) � inJn(kx)einθx , (9)

where in polar coordinates x = (x, θx),

A �
∫ 2π

0

E{|A(φ)|2}dφ (10)

is a constant normalizing term, and Jn(x) is the Bessel func-
tion of the first kind of order n. γm and ξmm′ are defined in
(4) and (5) respectively.

The proof for this theorem is in the appendix. The re-

sulting spatial correlation expression is more complicated
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Distribution Angular Power P(φ) Root Power Coef. γm

Isotropic 1
2π

√
2πδm0

Uniform limited

{
1

2∆ , |φ − ϕ0| ≤ ∆,
0, otherwise.

√
2∆e−imϕ0sinc(m∆)

Von-Mises

{
1

2πI0(κ)e
κ cos(φ−ϕ0), |φ − ϕ0| ≤ π,

0, otherwise.

√
2π

I0(κ)e
−imϕ0I−m(κ

2 )

Laplacian

{
Q1√
2σ

e−
√

2|φ−ϕ0|/σ, |φ − ϕ0| ≤ π
2 ,

0, otherwise.
Q2e

−imϕ0 1−(−1)�
m
2 �ηFm

(1+2σ2m2)(1−η)

Table 1. Popular angular power distributions and associated coefficients of root power. Im(·) is the modified Bessel function

of the first kind. For the Laplacian distribution, η = e−π/(2
√

2σ), Fm = 1 for m even, Fm =
√

2mσ for m odd and Q1 =
(1 − exp(−π/

√
2σ))−1 and Q2 = 25/4

√
σ/Q1 are normalization constants.

than the WSSUS case [2], since the received signal energy

E{|sp(t)|2} is now a function of position.

Due to the bandpass property of Bessel functions, we can

truncate each summation in (7) to a small number N =
�ekR/2� of terms, without loss of accuracy [6]. The the-

orem is hence elegant, as the covariances are governed by

(2N + 1)2 ζnn′ coefficients. Once computed, the covariance

between any two sensor signals is readily determined.

In the WSSUS case ρS(φ, ϕ) = δφϕ and (8) reduces to

ζnn′ =
∑∞

m=−∞ γ∗
m+nγm+n′ for which ζnn′ = ζ(n−n′)0.

One can show ζn0 is the Fourier coefficient of P(φ) and that

the theorem is consistent with the WSSUS result in [2].

5. FUNCTIONAL FORMS OF MODEL
PARAMETERS

Angular power distributions have been well discussed in the

literature [1, 7, 8, 9]. Angular power is usually parametrised

with the mean direction ϕ0 and the angular spread σ, defined

as the root variance of power density. Common examples are

summarized in Table 1, along with corresponding γm coeffi-

cients. Coefficients were derived following [2].

The functional form of scatterer correlation is compara-

tively unstudied. Intuitively, if scattered rays close in angle

have arrived from the same scattering object, they will be

strongly correlated in magnitude and phase. We propose a

ρS(φ, ϕ) that is close to 1 for small |φ−ϕ| and then smoothly

decreases to 0.

For scatter correlation only dependent on the angular dif-

ference φ−ϕ, ρS(φ, ϕ) = ρS(φ−ϕ), the Fourier coefficients

reduce to ξmm′ = ξmδmm′ where ξm � ξmm. For simplicity,

we explore angular correlation given by the Gaussian density

function:

ρS(φ, ϕ) = e−(φ−ϕ)2/2σ2
S , (11)

where σS is the standard deviation of the angular correlation.

Within a scaling constant, ξm = e−m2σ2
S/2. More general

angular correlation will be considered in future work.

6. EXAMPLES

In Fig. 3(a), we plot the spatial correlation at different points

in the field for a sensor pair with constant separation 2λ using

the Gaussian scatterer correlation (11) with σS = 2o. WS-

SUS spatial correlation only depends upon the displacement

between sensors. With CS, we see variation of the spatial cor-

relation with sensor pair position, for only a small σS .

Fig. 3(b) and (c) plots spatial correlation for uniformly dis-

tributed scatterers possessing (b) Gaussian angular correla-

tion and (c) the randomly-chosen angular correlation shown

in Fig. 3(d). Whilst Gaussian correlation yields modest dif-

ferences from the WSSUS case, the random angular correla-

tion causes significant divergence. In Fig. 3(c) the zeros in

the isotropic (∆ = 2π) case no longer corresponds to those in

Jakes model. In fields generated from isotropically distributed

correlated scatterers, half wavelength spacings do not always

yield uncorrelated sensor signals.

7. CONCLUSION

A closed form expression for spatial correlation has been de-

rived for the case of correlated scatterers, using Fourier tech-

niques. Simulations show that (i) for small angular correla-

tion in scatterers, the spatial correlation can be significantly

different from the uncorrelated scatterer case, and (ii) half

wavelength sensor spacings do not always yield uncorrelated

signals in fields from isotropic scatterer power.

8. APPENDIX

Proof
We calculate the expectation E{sp(t)s∗q(t)} directly from (1):

E{sp(t)s∗q(t)} =
∫ 2π

0

∫ 2π

0

E{A(φ)A∗(ϕ)} ×

e−ikxp·ϕ̂eikxq·φ̂dφdϕ. (12)

First rearranging (2), we see that

E{|A(φ)|2} = AP(φ), (13)
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Fig. 3. Spatial correlation for a sensor pair as (a) the pair is shifted through a field created from Von-Mises distributed scatterers

(κ = 5, ϕ0 = π/2) with 2λ sensor separation, (b) and (c) a sensor is fixed at the origin while the second sensor moved along

the y-axis with uniformly distributed scatterers (half-width ∆, ϕ0 = π/2) and sensor separation r using (b) Gaussian and (c) a

random angular correlation. (d) The random angular correlation function ρS(θ, φ) used to generate the field in (c).

where A is defined in (10). Similarly rearranging (3) and
inserting (13),

E{A(φ)A∗(ϕ)} = A
√
P(φ)

√
P(ϕ) ρS(φ, ϕ). (14)

Then inserting (14) into (12), followed by the Fourier expan-
sions of ρS and P and the Jacobi-Anger expression [10],

eikx·φ̂ =
∞∑

n=−∞
inJn(kx)ein(θx−φ),

where x � (x, θx), into (12) and rearranging:

E{sp(t)s∗q(t)} = A
∑

	

γ	

∑
	′

γ	′
∑
m

∑
m′

ξmm′
∑

n

∑
n′

× 1
(2π)2

∫ 2π

0

∫ 2π

0

ei(	φ+	′ϕ)ei(mφ−m′ϕ)ei(n−n′)φdφdϕ

×J ∗
n (xp)Jn′(xq),

where Jn(x) is defined in (9). The integrals are only nonzero
when �+m+n = 0 and �′−m′−n′ = 0 in which case each
integral evaluates to 2π. Hence:

E{sp(t)s∗q(t)} = A
∑

n

∑
n′

J ∗
n (xp)Jn′(xq)

×
∑
m

∑
m′

ξmm′γ−m−nγm′+n′

︸ ︷︷ ︸
ζnn′

.

The result in (8) follows after applying property γ−	 = γ∗
	 .
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