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Abstract— In this paper, we derive an analytical expression
for the exact pairwise error probability (PEP) of a differential
space-time coded system operating over a spatially correlated
slow fading channel. An analytic model for spatial correlation is
used which fully accounts for antenna spacing, antenna geometry
and non-isotropic scattering distributions. Inclusion of spatial
information in error performance analysis provides valuable
insights into the physical factors determining the performance
of a differential space-time code (DSTC). Using this new PEP
expression, we investigate the effects of antenna spacing, antenna
geometries and azimuth power distribution parameters (angle of
arrival/departure and angular spread) on the performance of
a differential space-time block code (DSTBC) proposed in the
literature for two transmit antennas.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communications
systems using multi-antenna arrays simultaneously during
transmission and reception have generated significant interest
in recent years. Under the assumption that the fading channel
coefficients between different antenna elements are statistically
independent and known at the receiver (coherent detection),
theoretical work of [1] and [2] revealed that the channel
capacity of multiple-antenna array communication systems
scales linearly with the smaller of the number of transmit
and receive antennas. Motivated by these works, [3–5] have
proposed several modulation and coding schemes, namely
space-time trellis codes and space-time block codes, to exploit
the potential increase in capacity and diversity gain using multi
antenna arrays with coherent detection. The effectiveness of
these schemes heavily relies on the accuracy of the channel
estimation at the receiver. Therefore, differential space-time
coding schemes make an attractive alternative to combat
inaccuracy of channel estimation in above schemes. With dif-
ferential space-time coding schemes channel state information
is not required at either end of the channel. Several differential
space-time coding schemes for multi-antenna systems have
been proposed in [6–8] and the error performance of some
of these schemes have been investigated in [9–11]. In [9], a
closed form expression of bit error probability of DSTBCs
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based on Alamouti’s scheme was derived assuming fading
channels are statistically independent. By applying the theory
of Gaussian quadratic forms, an upper bound for the PEP of
DSTCs was derived in [10] for arbitrary correlated channels.
Following a similar approach, [11] has derived a closed form
expression of the exact pairwise error probability (exact-PEP)
at asymptotically high signal-to-noise ratios (SNR) of the
DSTC in spatially correlated fading channels.

This paper presents analytical expressions developed to
analyze the error performance of a multi-antenna system
employing DSTC under spatially correlated fading channels.
In particular, using the moment generating function (MGF)
based approach presented in [12] and [13], this paper
presents an alternative expression for the exact-PEP of a
differential space-time coding scheme at asymptotically
high SNR operating over a spatially correlated slow fading
channel. Also the PEP upper bound of the DSTC in spatially
correlated channels is derived from the exact-PEP expression.
Compared with the asymptotic PEP expression in [11],
this new expression is much closer to the true PEP at
low SNRs. Furthermore, this expression fully accounts for
antenna spacing and antenna geometry (Uniform Linear
Array (ULA), Uniform Grid Array (UGA), Uniform Circular
Array (UCA), etc.) along with non-isotropic scattering
distributions (Uniform, Gaussian, Laplacian, Von-mises,
etc.) surrounding the transmit and receive antenna arrays.
For uncorrelated channels, a closed form expression for the
exact-PEP of DSTC is derived, and for correlated channels,
an analytical technique is given which can be used to evaluate
the exact-PEP of DSTC in closed form. The strength of our
new analytical PEP expression is demonstrated by evaluating
the performance of a DSTBC with two transmit antennas
proposed by Tarokh et al. [6].

Notations: Throughout the paper, the following notations
will be used: [·]T , [·]∗ and [·]† denote the transpose, complex
conjugate and conjugate transpose operations, respectively.
The symbols δ(·) and ⊗ denote the Dirac delta function and
Matrix Kronecker product, respectively. The notation E {·}
denotes the mathematical expectation, Q(y) =

∫ y

−∞ e−x2/2dx
denotes the Gaussian Q-function, ‖ · ‖ denotes the Euclidean
norm of a vector, |A| denotes the determinant of matrix A,
vec(A) denotes the vectorization operator which stacks the
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columns of A, and �.� denotes the ceiling operator. The matrix
In is the n × n identity matrix.

II. SYSTEM MODEL

Consider a MIMO system consisting of nT transmit anten-
nas and nR receive antennas. Let Xk be the k-th nT × T
code matrix to be transmitted by nT transmit antennas over
T symbol intervals. At the start of the transmission, the
transmitter sends the code matrix X0 = D. Thereafter,
information is differentially encoded according to the rule

Xk = Xk−1S�(k), for k = 1, 2, · · · (1)

where S�(k) ∈ C
nT ×T is the k-th information matrix which is

an element of a group of unitary space-time modulated constel-
lation matrices V of size L with unitary property S�(k)S

†
�(k) =

I for �(k) = 0, 1, · · · , L − 1 [7]. This unitary space-time
constellation can be constructed based on orthogonal designs
[5] or group designs [7, 8]. Similar to [7, 8] we assume that
T = nT and also D = InT

. As a result, Xk is also unitary.
Let H ∈ C

nR×nT be the unknown fading channel gain
matrix and Nk ∈ C

nR×nT be the additive noise matrix, then
the received signal Y k ∈ C

nR×nT corresponding to the k-th
space-time codeword Xk can be written as

Y k =
√

EsHXk + Nk, for k = 0, 1, 2, · · · (2)

where Es is the average transmitted signal energy per symbol
period. Each of the elements of Nk is assumed to be indepen-
dently and identically distributed zero-mean complex Gaussian
random variable with variance σ2

n/2 per complex dimension.
The (p, q)th entry of H is the complex channel fading gain
from transmit antenna q to receive antenna p and fading gains
are assumed to be flat Rayleigh fading.

At the receiver, the transmitted signal can be noncoherently
demodulated by using two consecutive observations, Y k−1

and Y k. We assume that the channel matrix H remains
constant for Y k−1 and Y k. Signals Y k−1 and Y k can be
expressed in vector form (row) as

yk−1 =
√

EshX k−1 + nk−1 (3)

yk =
√

EshX k + nk,

= yk−1S�(k) + wk, (4)

where yk = vec(Y T
k )

T
, X k = InR

⊗ Xk, h = vec(HT )
T

,

nk = vec(NT
k )

T
, S�(k) = InR

⊗ S�(k) and wk = nk −
nk−1S�(k). To obtain yk and yk−1, we have used the vec(·)
identity vec(AXB) = (BT ⊗ A) vec (X). From (4), the
transmitted data matrix is differentially detected using the
following maximum likelihood receiver

Ŝ = arg min
S∈V

‖ yk − yk−1S ‖2

= arg max
S∈V

Re{yk−1Sy†
k}. (5)

A. Spatial Channel Model and Channel Correlation

Using a recently developed 2-dimensional spatial channel
model1 [14], we are able to incorporate the antenna spacing,
antenna placement (ULA, UCA, UGA, etc.) and scattering
distribution parameters such as mean angle-of-arrival (AOA),
mean angle-of-departure (AOD) and angular spread, into the
exact-PEP calculations of differential space-time coded sys-
tems. In this model, the MIMO channel H is decomposed
into deterministic and random parts as

H = JRHSJ†
T , (6)

where JT is the nT×(2mT +1) transmit antenna array config-
uration matrix and JR is the nR×(2mR + 1) receive antenna
array configuration matrix, where (2mT +1) and (2mR+1) are
the number of effective communication modes2 available in the
transmitter and receiver regions, respectively. Note that, mT

and mR are determined by the size of the antenna aperture, but
not from the number of antennas encompassed in an antenna
array. The number of effective communication modes (M)
available at a region is given by [15]

M � 2�πer/λ� + 1, (7)

where r is the minimum radius of the antenna array aperture,
λ is the wavelength and e ≈ 2.7183. We refer the reader
to [14] for the definitions of JR and JT . Finally, HS is the
(2mR+1)×(2mT +1) random scattering matrix with (n,m)-
th element given by

{HS}n,m =
∫ π

0

∫ π

0

g(ϕ, φ)e−i(n−mR−1)φei(m−mT −1)ϕdφdϕ,

n = 1, · · · , 2mR + 1, m = 1, · · · , 2mT + 1. (8)

Note that {HS}n,m represents the complex gain of the scatter-
ing channel between the m-th mode of the transmitter region
and the n-th mode of the receiver region, where g(ϕ, φ) is
the scattering gain function, which is the effective random
complex gain for signals leaving the transmitter aperture with
angle of departure ϕ and arriving at the receiver aperture with
angle of arrival φ.

The correlation matrix of the channel H can be written as

R = E
{

h†h
}

= (J∗
R ⊗ JT ) RS(JT

R ⊗ J†
T ), (9)

where h = (vec (HT ))
T

and RS the correlation matrix of

the scattering channel, which is defined as RS = E
{

h†
ShS

}
with hS = (vec (HS

T ))
T

.
In some circumstances, RS can be expressed as a Kronecker

product between modal correlation matrices observed at the
transmitter and the receiver antenna arrays [16], i.e.,

RS = E
{

h†
ShS

}
= F R ⊗ F T , (10)

here F R and F T are the receive and transmit modal correla-
tion matrices. Substituting (10) in (9) gives

R =
(
J∗

RF RJT
R

)
⊗
(
JT F T J†

T

)
. (11)

1The 2-D case is a special case of the 3-D case where all the signals arrive
from on a horizontal plane only.

2The set of modes form a basis of functions for representing a multipath
wave field.
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III. EXACT PEP OF DIFFERENTIAL SPACE-TIME CODES

Based on (5), the receiver will erroneously select Sj when
Si was actually sent as the k-th information matrix if

‖ yk − yk−1Sj ‖2 ≤ ‖ yk − yk−1Si ‖2, (12a)

yk−1Di,jy
†
k−1 ≤ 2Re{wk∆

†
i,jy

†
k−1}, (12b)

where ∆i,j = Sj − Si = InR
⊗ (Sj − Si) and Di,j =

∆i,j∆
†
i,j = InR

⊗((Si−Sj)(Si − Sj)
†) is the code distance

matrix. For given yk−1, the term on the left hand side of (12b)
is a constant and the term on the right hand side is a Gaussian
random variable.

Let u = 2Re{wk∆
†
i,jy

†
k−1}, then it can be shown3 that u

has the conditional mean

m̄ = E
{
u | yk−1

}
, (13)

= 2Re{m̄nk−1|yk−1
(I − SiS†

j)y
†
k−1}

where m̄nk−1|yk−1
= σ2

nyk−1(X †
k−1RX k−1 + σ2

nInT nR
)−1,

and the conditional variance

σ2 = E
{‖ u − m̄ ‖2| yk−1

}
, (14)

= 2yk−1∆i,j(σ2
nI + S†

iΣnk−1|yk−1
Si)∆

†
i,jy

†
k−1,

where Σnk−1|yk−1
= σ2

n(I−σ2
n(EsX †

k−1RX k−1 +σ2
nI)−1).

Let d2
i,j = yk−1Di,jy

†
k−1, the PEP is then given by

P(Si → Sj | yk−1) = Pr(u > d2
i,j),

=
∫ ∞

d2
i,j

1√
2πσ

exp
(
− (u − m̄)2

2σ2

)
du,

= Q

(
d2

i,j − m̄

σ

)
. (15)

By using Craig’s formula for the Gaussian Q-function [17,
Chap. 4, Eq. (4.2)]

Q(x) =
1
π

∫ π/2

0

exp
(
− x2

2 sin2 θ

)
dθ

and the MGF-based technique presented in [12], we can write
the average PEP as

P(Si → Sj) =
1
π

∫ π/2

0

∫ ∞

0

exp
(
− Γ

2 sin2 θ

)
pΓ(Γ)dΓdθ,

=
1
π

∫ π/2

0

MΓ

(
− 1

2 sin2 θ

)
dθ, (16)

where MΓ(s) �
∫∞
0

esΓpΓ(Γ)dΓ is the MGF of

Γ =
(d2

i,j − m̄)2

σ2
(17)

and pΓ(Γ) is the probability density function of Γ. Finding
MGF of Γ in (17) poses a much harder problem. However, at
asymptotically high SNRs (i.e., keep Es constant and σ2

n→0)
the conditional mean and the conditional variance of u reduce
to m̄ = 0 and σ2 = 4σ2

nd2
i,j , respectively, and Γ reduces to

Γ =
1

4σ2
n

yk−1Di,jy
†
k−1. (18)

3Proofs will be reported in a future publication.

In this case Γ is a quadratic form of a random variable
since yk−1 is zero-mean complex Gaussian distributed random
vector with covariance Ryk−1

= EsX †
k−1RX k−1 + σ2

nI and
Di,j is Hermitian and also fixed for given two code words.
Note that R is the correlation matrix of the channel, defined
by (11). The MGF associated with a quadratic random variable
of form (18) is readily found in the literature [18]. Using [18,
Eq. 14], the MGF of Γ can be written as

MΓ(s) =
∣∣∣∣I − s

4σ2
n

Ryk−1
Di,j

∣∣∣∣−1

. (19)

Recalling the definition of Ryk−1 , we may write the MGF
of Γ as

MΓ (s) =
∣∣∣I − s

4

(
γ̄X †

k−1RX k−1 + I
)

Di,j

∣∣∣−1

, (20)

where γ̄ = Es/σ2
n is the average symbol energy-to-noise

ratio, then the exact-PEP of a DSTC operating over a spatially
correlated MIMO channel H is given by

P(Si → Sj) =

1
π

∫ π/2

0

∣∣∣∣I +
1

8 sin2 θ

(
γ̄X †

k−1RX k−1 + I
)

Di,j

∣∣∣∣−1

dθ,

(21)

where R is the channel correlation matrix, defined by (11). Eq.
(21) reveals that the error performance of differentially space-
time coded systems depends not only the channel correlation
matrix R and the code distance matrix Di,j , but also on the
previously transmitted code matrix Xk−1.

Since the maximum of the integrand occurs at the upper
limit, i.e., for θ = π/2, replacing the integrand by its
maximum value immediately gives the Chernoff upper bound

P(Si → Sj) ≤ 1
2

1∣∣∣I + 1
8

(
γ̄X †

k−1RX k−1 + I
)

Di,j

∣∣∣ .
(22)

In this paper, we mainly focus on the space-time modulated
constellations with the property

(Si − Sj)(Si − Sj)
† = βi,jInT

,∀ i �= j, (23)

where βi,j is a scalar. Space-time orthogonal designs [5] and
some cyclic and dicyclic space-time modulated constellations
in [7] are some examples which satisfy property (23) above.
Applying (23) on (21) and using the unitary property of X k−1

and the determinant identity |I + AB| = |I + BA|, after
straight forward manipulations, we can simplify exact-PEP
(21) to

P(Si → Sj) =
1
π

∫ π/2

0

∣∣∣∣I +
βi,j

8 sin2 θ
(γ̄R + I)

∣∣∣∣−1

dθ,

(24)

and the Chernoff upper bound (22) to

P(Si → Sj) ≤ 1
2

(
8+βi,j

8

)−nT nR∣∣∣I + βi,j γ̄
(8+βi,j)

R
∣∣∣ . (25)

With the property (23), it now becomes evident that error
performance of DSTC is independent of the previously trans-
mitted code matrix Xk−1.
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A. Exact-PEP for Uncorrelated Channels

When the fading channels are independent and identically
distributed (i.e., R = I), (24) simplifies to,

P(Si → Sj) =
1
π

∫ π/2

0

(
I +

βi,j

8 sin2 θ
(γ̄ + 1)

)−nT nR

dθ,

=
1
π

∫ π/2

0

(
sin2 θ

sin2 θ + η

)nT nR

dθ, (26)

where η = βi,j(1+ γ̄)/8. Using a result found in [17], integral
(26) can be evaluated in closed form as

P(Si→Sj) =
1
2

{
1 −
√

η

1 + η

nT nR−1∑
�=0

(
2�
�

)
1

4�(1 + η)�

}
.

(27)

This expression illustrates that the exact PEP of a differen-
tial space time code (DSTC) operating over an uncorrelated
channel depends only on βi,j , which relates to the code
distance matrix (Si −Sj)(Si − Sj)

†. In the next section, we
discuss a technique which can be used to evaluate the exact-
PEP in closed form for correlated channels.

B. Exact-PEP for Correlated Channels

Let Z = βi,j(γ̄R + I)/8 in (24). Suppose matrix Z has K
non-zero eigenvalues, including multiplicity, λ1, λ2, · · · , λK ,
and the decomposition Z = UDU−1, where U is the matrix
of eigenvectors of Z and D is a diagonal matrix with the
eigenvalues of Z on the diagonal. Then (24) becomes

P(Si → Sj) =
1
π

∫ π/2

0

∣∣∣∣I +
1

sin2 θ
Z

∣∣∣∣−1

dθ,

=
1
π

∫ π/2

0

∣∣∣∣I +
1

sin2 θ
D

∣∣∣∣−1

dθ,

=
1
π

∫ π/2

0

K∏
�=1

(
sin2 θ

λ� + sin2 θ

)m�

dθ, (28)

where m� is the multiplicity of eigenvalue λ�. Using the partial
fraction expansion technique given in [13] and a result found
in [17], the integral in (28) can be evaluated in closed form.

Recall the definition of the channel correlation matrix R
given in (9). When RS = I (i.e., correlation between different
communication modes is zero), Eq. (28) above captures the
effects due to antenna spacing and antenna geometry on the
performance of a differentially space-time coded communica-
tions system.

IV. ANALYTICAL PERFORMANCE EVALUATION

As an example, we consider the rate-1 2×2 space-time mod-
ulated constellation set V ≡ {Si|SiS

†
i = I, i = 0, · · · , 3},

derived in [5] based on orthogonal designs with

Si =
[

s1 −s2
s2 s1

]
, for i = 0, · · · , 3, (29)

where si, i = 1, 2 are symbols drawn from the normalized
BPSK alphabet {±1/

√
2}. Let S0 and S1 correspond to

the matrix with (s1, s2) = (1/
√

2, 1/
√

2) and (s1, s2) =

0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average symbol SNR (dB)

P
E

P

i.i.d. channel − w/o antenna conf.
Rx antenna sep: 0.1λ
Rx antenna sep: 0.2λ
Rx antenna sep: 0.5λ
Rx antenna sep: λ

Fig. 1. Exact-PEP performance of DSTC scheme with two transmit and two
receive antennas for transmit antenna separation 0.5λ and β0,1 = 2.

(1/
√

2,−1/
√

2), respectively. In following sections we ex-
amine the probability that the receiver erroneously decides in
favor of S1 when S0 was actually transmitted (i.e., P(S0 →
S1)) for various spatial scenarios. Note that in this case
β0,1 = 2.

A. Effect of Antenna Spacing

First we consider the effect of antenna spacing on the
exact-PEP when the scattering environment is uncorrelated,
i.e., F T = I2MT +1 and F R = I2MR+1. Consider a system
with two transmit antennas and two receive antennas, where
the two transmit antennas are placed in a circular aperture
of radius 0.25λ (antenna separation4 = 0.5λ) and the two
receive antennas are placed in a circular aperture of radius
r (antenna separation = 2r). Fig.1 shows the exact pairwise
error probability performance of the DSTC for the error event
S0 → S1 and receive antenna separations 0.1λ, 0.2λ, 0.5λ
and λ. Also shown in Fig.1 for comparison is the exact-PEP
(27) for the i.i.d. slow fading channel corresponding to the
error event S0 → S1.

As we can see from the figure, the effect of antenna
separation on the exact-PEP is not significant when the receive
antenna separation is 0.5λ or higher. However, the effect is
significant when the receive antenna separation is small. For
example, at PEP 10−4, the realistic PEPs are about 1dB and
3dB away from the i.i.d. chanel performance results for 0.2λ
and 0.1λ receive antenna separations, respectively. From these
observations, we can emphasize that the effect of antenna
spacing on the performance of DSTC is minimum for higher
antenna separations whereas the effect is significant for smaller
antenna separations.

4In a 3-D isotropic scattering environment, antenna separation 0.5λ (first
null of the order zero spherical Bessel function) gives zero spatial correlation,
but here we constraint our analysis to a 2-D scattering environment. The spatial
correlation function in a 2-D isotropic scattering environment is given by a
Bessel function of the first kind. Therefore, antenna separation λ/2 does not
give zero spatial correlation in a 2-D isotropic scattering environment.
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R1 

R3 
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r 

Fig. 2. Exact-PEP performance of DSTC scheme with two transmit and
three receive antennas for UCA and ULA receiver antenna configurations;
β0,1 = 2.

B. Effect of Antenna Configuration

In this section, we compare the PEP performance of the
DSTC used in the previous section for different antenna
configurations at the receiver antenna array. For example, we
choose UCA and ULA antenna configurations5. Consider a
system with two transmit antennas and three receive antennas.
The two transmit antennas are placed half wavelength (λ/2)
distance apart and the three receive antennas are placed within
a fixed circular aperture of radius r(= 0.15λ, 0.25λ), as
shown in Fig.2. The exact-PEP performance for the error event
S0 → S1, corresponding to β0,1, is also plotted in Fig 2.

From Fig.2, it is observed that at high SNRs the perfor-
mance given by the UCA antenna configuration outperforms
that of the ULA antenna configuration. For example, at PEP
10−6, the performance differences between UCA and ULA
are about 2.5dB with 0.15λ receiver aperture radius and
about 2dB with 0.25λ receiver aperture radius. Therefore, as
we illustrated here, one can use the PEP expression (28) to
determine the best antenna placement within a given region
which gives the maximum performance gain available from
a DSTC scheme. Furthermore, the slope of the performance
curve on a log scale corresponds to the diversity advantage
of the code and the horizontal shift in the performance curve
corresponds to the coding advantage. From Fig.2, we observed
that as the radius of the receiver aperture decreases the
diversity advantage of the code is reduced, particularly for
the ULA antenna configuration. Here, the loss of diversity
advantage is mainly due to the loss of rank of JR.

C. Effect of Modal Correlation

For simplicity, here we only consider the modal correlation6

effects at the receiver region and assume that the effective
communication modes available at the transmitter region are
uncorrelated, i.e., F T = I2MT +1. In [13], it was shown
that the correlation between the n-th and n′-th modes at the

5The exact-PEP expression we derived in this work can be applied to any
arbitrary antenna configuration.

6Second order statistics of the scattering channel HS .

0 0.5 1 1.5 2 2.5 3
10

−7

10
−6

10
−5

10
−4

10
−3

Rx antenna separation (λ)

P
E

P

AOA − 45° from broadside

zero modal corr.

σ = 5°

σ = 30°

σ = 180° −  Isotropic

SNR = 20dB 

SNR = 15dB 

σ = 5° 

σ = 30°

σ = 180° 

Zero modal corralation

Fig. 3. Exact-PEP performance of the DSTC scheme with two transmit
and two receive antennas against the receive antenna separation for a uniform
limited power distribution at the receiver with mean angle of arrival φ0 = 45◦
from broadside and angular spreads σs = [5◦, 30◦, 180◦]; Transmit antenna
antenna separation 0.5λ and β0,1 = 2.

receiver region due to the m-th mode at the transmitter region
can be written as

γRx
n,n′ =

∫
PRx(φ)e−i(n−n′)φdφ, (30)

where PRx(φ) =
∫

G(ϕ, φ)dϕ is the normalized azimuth
power distribution of the scatterers surrounding the receiver
antenna region. Note that the (n, n′)-th element of F R is given
by (30) and F R is a (2mR + 1) × (2mR + 1) matrix. Also
note that PRx(φ) can be modeled using all common azimuth
power distributions such as Uniform, Gaussian, Laplacian,
Von-Mises, Polynomial, etc. Here we restrict our investigation
only to the case of energy arriving uniformly over a limited
angular spread σs around a mean AOA φ0 (uniform limited
azimuth power distribution). In this case, the modal correlation
coefficient γRx

n,n′ in the receiver region is given by

γRx
n,n′ = sinc((n − n′)σs)e−i(n−n′)φ0 . (31)

Continuing the performance analysis, we now investigate
the modal correlation effects on the performance of the rate-1
2×2 DSTC scheme considered in previous sections. Consider
a system with two transmit and two receive antennas where
the two transmit antennas are placed 0.5λ distance apart.

Fig. 3 shows the exact-PEP results for the error event
S0 → S1 against the receiver antenna separation for a mean
AOA φ0 = 45◦ from broadside7 and angular spreads σs =
[5◦, 30◦, 180◦]. Note that σs = 180◦ represents the isotropic
scattering environment. Since the exact-PEP expression we
derived in this paper is valid only at high SNRs, the PEP
results are plotted for 15dB and 20dB SNRs.

From Fig. 3 it is observed that for a given SNR, the perfor-
mance of the DSTC scheme is improved as the receive antenna
separation and the angular spread are increased. However, the
performance does not improve monotonically with the increase
in receive antenna separation. We also observed that when the

7Broadside angle is defined as the angle perpendicular to the line connecting
the two antennas.
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Fig. 4. Exact-PEP performance of DSTC scheme with two transmit and
three receive antennas for UCA and ULA receiver antenna configurations
for a uniform limited power distribution at the receiver with mean angle of
arrivals φ0 = [60◦, 45◦, 15◦] from broadside and angular spread σs = 180◦;
Transmit antenna antenna separation 0.5λ, receive antenna separation 0.15λ
and β0,1 = 2.

angular spread is quite small (e.g. 5◦), we need to place the
two receive antenna elements at least several wavelengths apart
in order to achieve the maximum performance gain given by
the space-time code. In this case, the loss of performance is
mainly due to the higher concentration of energy closer to the
mean AOA for small angular spreads.

Fig. 4 illustrates the effects of mean AOA on the exact
PEP of DSTC for UCA and ULA antenna configurations
at the receiver. Antenna elements at the receiver are placed
within a fixed circular aperture of radius 0.15λ, similar to
antenna configuration setup shown in Fig. 2 and the two
transmit antennas are placed 0.5λ distance apart. As before, we
consider a uniform limited azimuth power distribution at the
receiver with mean AOAs φ0 = [60◦, 45◦, 15◦] from broadside
and angular spread σs = 180◦.

From Fig. 4 we observed that the performance loss of
the DSTC scheme is most pronounced for the ULA antenna
configuration when the mean AOA is closer to 90◦ (inline with
the array). But, for the UCA antenna configuration, the perfor-
mance loss is insignificant as the mean AOA moves away from
broadside. This suggests that the UCA antenna configuration
is less sensitive to change of mean AOA compared to the ULA
antenna configuration. Hence, the UCA antenna configuration
is best suited to employ a space-time code.

Using the results we obtained thus far, we can claim that, in
general, differential space-time codes are susceptible to spatial
fading correlation effects, in particular, when the antenna
separation and the angular spread are small.

V. CONCLUSION

Using an MGF-based approach, we have derived an an-
alytical expression for the exact pairwise error probability
of a differentially space-time coded system operating over
a spatially correlated slow fading channel. This analytical
PEP expression fully accounts for antenna separation, antenna
geometry and surrounding azimuth power distributions, both
at the receiver and the transmitter antenna arrays. In practice,

this expression can be used as a tool to estimate or predict the
error performance of a differential space-time coded system
under a given antenna configuration and surrounding azimuth
power distribution parameters.
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