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Abstract— Information transfer over a discrete time uncorre-
lated Rayleigh fading multiple input multiple output (MIMO)
channel is considered, where neither the transmitter nor the
receiver has the knowledge of the channel state information (CSI)
except the fading statistics. We derive a capacity supremum
with the receive antenna number at any signal to noise ratio
(SNR) using Lagrange optimisation. We show that the asymptotic
capacity is double logarithmic when the input power is large. We
prove that to achieve the capacity, the amplitude of the multiple
input needs to have a discrete distribution with a finite number
of mass points, one of them necessarily located at the origin. We
show how to compute the capacity numerically in multi-antenna
configuration at any SNR with the discrete input using the Kuhn-
Tucker condition for optimality. Furthermore, we show that the
capacity with two mass points is optimal at low SNR signifying
on-off keying. As the number of receive antennas increases, the
maximum SNR at which two mass points are optimal decreases.

Index Terms— Channel capacity, mutual information, Rayleigh
fading, upper bound, SISO, MIMO, Lagrange optimisation, non-
coherent, channel state information.

I. INTRODUCTION

In wireless systems, the knowledge of CSI is considered
to be vital part in information transfer across the channel. In
slowly changing channels, the CSI can be accurately obtained
using pilot symbols. It is also beneficial if the statistics of
the channels are known. However, the statistics of wireless
channels are highly variant and finding a general model which
holds in all scenarios seems to be very difficult if not an
impossible task. Therefore, there are scenarios or applications
where coherent detection is not plausible.

The capacity achieving input distribution of non-coherent
Rayleigh fading MIMO channels has been an open problem for
some time. Early work of [1], [2] using a block fading model
gave some insights into the characteristics of the optimal
input, with explicit calculations for a single input single output
(SISO) system at high SNR. In [1] it is shown that no capacity
gain is achieved by increasing the number of transmitter
antennas beyond the channel coherence time. The general
structure of the input signal matrix that achieves the capacity
was given, along with the capacity asymptotically in channel
coherence time for a SISO system and the signal density
that achieves it. The authors in [2] computed the asymptotic
capacity at high SNR in terms of the channel coherence
time, and the number of transmit and receive antennas. It
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was shown that the non-coherent and coherent capacities are
asymptotically equal at high SNR. The non-coherent channel
capacity is compared to the promised capacity increase using
MIMO in coherent Rayleigh fading channels [3], [4].

In [5], the maximum capacity loss due to lack of receiver
CSI for a wideband MIMO channel in Rayleigh fading is con-
sidered. The maximum penalty to be paid in terms of capacity
not having the CSI at the receiver is shown. Furthermore, it
is conjectured that on-off signaling is optimal, however no
proof was given. Upper and lower bounds of time selective
MIMO systems at high SNR is reported in [6]. The SISO non-
coherent Rayleigh fading channel is extensively studied in [7].
It was shown that the optimal input is discrete with a finite
number of mass points. Capacity is computed numerically
choosing the optimal number of mass points, their probabilities
and locations. In addition, Taricco [8] studied the capacity
supremum and confirmed that the attainable input distribution
is discrete in agreement with Abou-Faycal’s results in [7].

The contributions of this paper as follows: 1) We optimise
the mutual information using Lagrange optimisation method
and show the capacity supremum for a given number of
receivers at any SNR. 2) We prove that the asymptotic capacity
supremum is double logarithmic at high SNR, similar to the
results shown in [9]. 3) We prove for the first time, that the
capacity achieving amplitude input distribution is discrete with
a finite number of mass points, one necessarily located at
the origin. 4) The numerical simulation work in optimising
the channel capacity is described in brief, extending the work
presented in [7] for a single antenna to multiple antennas. 5)
Finally, we show that at low SNR, on-off keying is optimal.

II. CHANNEL MODEL

The input output relationship of a MIMO channel can be
written as

Y = HX + N , (1)

where the output Y is nr × 1, the channel gain matrix H
is nr × nt. The input X is nt × 1 and the noise N which
is assumed to be zero mean complex Gaussian is nr × 1.
Each element of H , hij , i = 1, ..., nr, j = 1, ..., nt and N is
assumed to be zero mean circular complex Gaussian random
variables with a unit variance in each dimension.

Notation: X = |X| and Y = |Y | denote the random
scalar variables where | · | is the Euclidean norm. x and
y represent each realisation of X and Y (i.e. x ∈ X
and y ∈ Y ). The input is power limited with an average
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power constraint
∫

x2pX(x)dx ≤ P . nt and nr denote the
number of transmit and receive antennas respectively and
γ = − ∫ ∞

0
e−ylog ydy ≈ 0.5772..., is Euler’s constant. Γ(·)

and Ψ(·) are the Gamma and Psi functions respectively [10].
It is assumed that the channel coherence time is one.

III. CAPACITY UPPER BOUND

A. Mutual Information

The conditional output probability density function (pdf)
of the non-coherent Rayleigh fading MIMO channel with nr

uncorrelated receivers is given by

pY |X(y|x) =
y2nr−1exp

[
− y2

2(1+x2)

]
2nr−1Γ(nr)(1 + x2)nr

, (2)

and represents the distribution of the magnitudes [11]. The
mutual information between the channel input and output of
the model (1)

I(X;Y ) = −
∫ ∞

0

pY (y)log pY (y)dy − 1
2
Ex

{
log(1 + x2)

}
− log

[
Γ(nr)√

2

]
+

(
nr − 1

2

)
Ψ(nr) − nr, (3)

can be used to compute the transmission rate for a given input
distribution pX(x) [11]. For the channel capacity, (3) needs
to be maximised over all input distributions subject to given
constraints.

B. Capacity supremum

The maximisation of (3) subject to the constraints∫ ∞
0

pX(x)dx = 1 and
∫ ∞
0

x2pX(x)dx = P does not provide
a valid input pdf for either SISO [8] or MIMO systems.
To overcome this difficulty, we adopt a similar optimisa-
tion technique used in [8] for SISO non-coherent Rayleigh
fading channels to optimise the mutual information in (3).
We ascertain the following constraints,

∫ ∞
0

pY (y)dy = 1,∫ ∞
0

y2pY (y)dy = 2nr(1 + P ), and∫ ∞

0

pY (y)log ydy =
1
2
(β + Ψ(nr) + log 2) (4)

in order to optimise (3) where β = Ex

{
log(1 + x2)

}
. Note

that the second constraint is the average mean squared power
of y ∈ Y , which is considered as the induced power at
the output by the input, channel gain and noise. Using the
Lagrange variable L and the multipliers λ1, λ2 and λ3, we
define

L = I(X;Y ) + λ1

[∫ ∞

0

pY (y)dy − 1
]

+ λ2

[∫ ∞

0

y2pY (y)dy − 2nr(1 + P )
]

+ λ3

[∫ ∞

0

pY (y)log ydy − 1
2
(β + Ψ(nr) + log 2)

]
. (5)

Solving (5) for pY (y), we can obtain the optimum output pdf

pY (y) = exp
[
(λ1 − 1) + λ2y

2 + λ3log y
]

(6)

for the mutual information in (3) in terms of Lagrange vari-
ables. Using the constraints defined on the output, we obtain
the output pdf which optimises (3)

pY (y) =
ζζy2ζ−1

nr(1 + P )ζΓ(ζ)
exp

[
− ζy2

2nr(1 + P )

]
, ζ > 0, (7)

where ζ = −λ2nr(1 + P ) and λ2 < 0. An expression for β,
defined above is given by [11]

β = log
{

nr(1 + P )
ζ

}
+ Ψ(ζ) − Ψ(nr). (8)

Substituting the optimum pY (y) from (7) and β from (8) into
(3), we obtain the non-coherent channel capacity

C(ζ) = G(ζ) − G(nr), (9)

where G(τ) = log Γ(τ) + τ(1 − Ψ(τ)). Note that 0 ≤
β ≤ log(1 + P ), where the upper bound is apparent through
Jensen’s inequality [12]. The capacity C(ζ) is a monotonically
decreasing function of ζ since C

′
(ζ) = −ζΨ1(ζ), where

Ψn(·) is the nth derivative of Ψ(·) [10, page 253-255].
Furthermore, β in (8) is a monotonically increasing function
of ζ where β

′
(ζ) = −1/ζ + Ψ1(ζ). Therefore, the supremum

of (9)

Csup = C(ζs) = G(ζs) − G(nr) (10)

is obtained with β = 0 where the corresponding ζs is given
by

Ψ(ζs) − log(ζs) = Ψ(nr) − log [nr(1 + P )] . (11)

The input distribution which provides the capacity supre-
mum (9) is given by

pY (y) =
∫ ∞

0

pX(x)pY |X(y|x)dx

=
ζζy2ζ−1

nr(1 + P )ζΓ(ζ)
exp

[
− ζy2

2nr(1 + P )

]
. (12)

The integral in (12) takes the form
∫ b

a
K(s, t)f(t)dt = g(s),

a well known Fredholm equation of the first kind [13] where
K(s, t) is the kernel. The kernel in (12) is analytic in y over
the whole plane for any nr. However, the right hand side
of (12) and its derivative with respect to y is infinite when
y → 0 for any nr and ζ ∈ (0, 1). Therefore, (12) does
not provide a continuous solution for pX(x) in which the
Csup in (10) is attained. This leads us to find a discrete input
distribution in the form of pX(x) =

∑N
i=1 piδ(x − xi) where

pi and xi are to be obtained solving g(s) =
∑N

i=1 piK(s, ti).
If the solution exists, it will provide a good lower bound to
Csup. The capacity supremum in (10) can be treated as an
upper bound for the capacity of non-coherent Rayleigh fading
MIMO channels.

C. Asymptotic Analysis

We consider the asymptotic analysis of the capacity supre-
mum (10) when P → ∞. Note that the P in (11) approaches

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

4181



∞ when ζs → 0 since lim
ζs→ 0ζs/eΨ(ζs) → ∞ [10]. Also when

ζs = 1,

P =
1

2nr
exp[Ψ(nr) + log 2 + γ] − 1, (13)

where the input power is zero for nr = 1 and a non-zero
quantity for nr > 1. Therefore, ζs = 1 is not valid in this
case and the ζs which produces P = 0 can be found by solving
log ζs − Ψ(ζs) = log(nr) − Ψ(nr) for each nr. We find an
expression for ζs, when P approaches infinity, as a result of
ζs approaching zero. From (11) we get

log ζs = Ψ(ζs) + log nr(1 + P ) − Ψ(nr). (14)

Multiplying both sides of (14) by ζs and using lim
ζs→ 0ζslog ζs =

0 and lim
ζs→ 0ζsΨ(ζs) = −1, [10], we get ζs ≈ 1/ log nr(1 +

P ). Substituting this ζs in (10) we get the asymptotic capacity

Csup ≈ log[log nr(1 + P )]. (15)

This double logarithmic behavior is also reported in [6], [8],
[9], [14], for both the MIMO and SISO schemes.

IV. CAPACITY AND OPTIMAL INPUT

A. Mutual Information

The mutual information of the channel (1) is given by

I(X;Y ) = −
∫ ∞

0

pY (y;G)log pY (y;G)dy

− 1
2

∫ ∞

0

log(1 + x2)dGX(x) + V (nr), (16)

where V (nr) = − log
[
Γ(nr)/

√
2
]
+ (nr − 1/2)Ψ(nr) − nr,

and GX(x) �
∫

pX(x)dx is the cumulative input distribution
function [11]. The channel capacity

C =
sup

GX(.)
E{|x|2}≤P

I(GX) (17)

is the supremum of (16) over the set of all input distributions
satisfying the input power constraint

∫
x2pX(x)dx ≤ P where

I(GX) � I(X;Y ) and pY (y;G) =
∫ ∞
0

pY |X(y|x)dGX(x)
is the marginal probability density induced by the input
distribution GX . The existence of an optimal amplitude
distribution achieving the supremum in (17) can be shown
proving i) the mutual information is continuous and concave
in the input distribution function, and ii) the set of input
distribution functions that meet the constraint is compact
[7]. The following lemma gives a necessary and sufficient
condition for an amplitude distribution G0 ∈ GX to be
optimal.

Lemma 1: For the uncorrelated Rayleigh fading MIMO
channel with the input average power constraint P , G0 is the
capacity achieving input amplitude distribution if and only if
there exist λ such that the following is satisfied ∀x ≥ 0∫ ∞

0

pY |X(y|x)log pY (y;G0)dy

+
1
2
log(1 + x2) + C − V (nr) + λ(x2 − P ) ≥ 0 (18)

with equality if x ∈ Eo where E0 is the set of points of
increase of G0.

The condition (18) is known as the Kuhn-Tucker condition
for the optimal input distribution and can be used to
characterise its behavior.

Proof: See appendix VII-A.

B. Input Distribution

The optimal input X∗ should possess one of the following
properties: i) the support set contains an interval, ii) it is
discrete, with an infinite number of mass points on some
bounded interval, iii) it is discrete and infinite, but with only a
finite number of mass points on any bounded interval or, iv) it
is discrete with a finite number of mass points. However, the
proof is not a straightforward extension from single antenna
[7] to multi-antenna systems.

Let’s assume i) or ii) holds, and define u = 1/(1 + x2),
z = y2/2. The support set Eo has infinite number of distinct
points and the Kuhn Tucker condition holds with equality for
all real u ∈ E0 [7]. Therefore, we get∫ ∞

0

e−uz
{

znr−1 log[
√

2zpZ(z)]
}

dz =
Γ(nr)
unr

×
[
−λ

(
1
u
− 1 − P

)
− C +

1
2
log u + V (nr)

]
(19)

where the left hand side (LHS) of (19) is the Laplace trans-
form of the function znr−1 log[

√
2zpZ(z)]. Taking the inverse

transform, we get the output pdf

pY (y) =
√

2
y

Mexp
(−λy2

2nr

)
(20)

where M = exp {λ(1 + P ) − C + V (nr) + Ψ(nr)/2} .
However, for any λ/2nr, the integral over (0,∞) is infinite
and hence the pY (y) in (20) cannot be a valid pdf, negating
our original assumptions i) and ii).

Assume case iii) holds for X∗, then the support set U∗ can
be written as a sequence {ui} converging to 0. With Pr[U =
ui] = pi 	= 0, i = 1, 2, ..., we get

pY (y) =
∞∑

i=0

pi




y2nr−1ui
nrexp

(
−uiy

2

2

)
2nr−1Γ(nr)




> pi




y2nr−1ui
nrexp

(
−uiy

2

2

)
2nr−1Γ(nr)


 , ∀ y ≥ 0, (21)

and the LHS of (18) can be lower bounded as

LHS ≥ (λ − nrui)
u

− λ(1 + P ) + C − V (nr)

+
(

nr − 1
2

)
Ψ(nr) − nr + log

[ √
2pi

Γ(nr)

(ui

u

)nr

]

(22a)

=
(λ − nrui)

u
+ O

(
1
u

)
. (22b)
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This lower bound diverges to ∞ for λ > nrui when u → 0,
but the LHS of (18) is zero on the support set U∗, hence
by contradiction λ ≤ nrui, where λ ≤ 0 when u → 0.
Therefore, the only possibility is that λ = 0 if the input
X∗ is discrete with infinite mass points. However, the
Kuhn Tucker theorem [15] for convex functions (the mutual
information and hence the channel capacity is concave [7])
states that the Lagrangian multiplier λ ≥ 0 on the support set
which optimises the objective function, negating the original
assumption confirming the optimal input is discrete with a
finite set of mass points.

Lemma 2: The optimal input distribution X∗ of a non-
coherent uncorrelated Rayleigh fading MIMO channel
contains necessarily a mass point located at the origin.

Proof: Since the optimal input X∗ is discrete with a
finite number of mass points, using the distribution function
G∗

X(x) =
∑N

i=1 piδ(x− xi), where 0 ≤ x0 < x1 < ... < xN ,
the mutual information can be written as

I(X;Y ) =
N∑

i=0

pi

∫ ∞

0

pY |X(y|xi)log

[
pY |X(x|xi)∑

j pjpY |X(x|xj)

]
.

(23)
Let’s define

J(z) = log

[
pZ|X(z|x0)∑

j pjpY |X(x|xj)

]
, (24)

differentiating (23) with respect to x0 ≥ 0, we get

∂I(X;Z)
∂x0

=
2x0p0

(1 + x0
2)

∫ ∞

0

[z − nr(1 + x0
2)]

×pZ|X(z|x0)J(z)dz (25)

where nr(1 + x0
2) is the mean value of pZ|X(z|x). It can be

shown that the function J(z) is decreasing. Using Lemma 1
in [7], we conclude that the derivative is negative with respect
to x0 for 0 ≤ x0 < x1 < ... < xN . Therefore, the X∗ with
x0 ≥ 0 can not produce a local maximum, hence the input
distribution GX

∗(x) necessarily has a mass point located at
the origin.

V. NUMERICAL RESULTS

Fig. 1 shows the capacity supremum in (10) against the
input power for different nr equating ζs in (11). It is clear
that the channel capacity is not promising with SNR even for
a large number of receivers as in coherent scheme [3], [4]. At
high SNR, the capacity asymptotically converges to (15) for
any nr showing the double logarithmic behaviour.

The optimal input amplitude, discrete with a finite number
mass points can be used to compute the MIMO channel capac-
ity numerically. The capacity is achievable once the optimal
number of mass points, their probabilities and locations are
found satisfying the Kuhn-Tucker condition stated in Lemma
1. Fig. 2 depicts the channel capacity as a function of input
power for nr = {1, 2, 3, 5}. The capacity results obtained
for both two and three mass points are shown. It is clear
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Fig. 1. Capacity supremum of the non-coherent Rayleigh fading MIMO
channel with the input power for different number of receive antennas nr .
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Fig. 2. Capacity of non-coherent Rayleigh fading MIMO channel vs input
power using two and three mass points for different number of receiver
antennas nr = {1, 2, 3, 5}. The dashed lines show the capacity having two
mass points for each receiver configuration.

that at low input power, there is no difference in capacity
in either case. Also, it is evident that as number of receivers
increases, the maximum input power at which two mass points
are inadequate decreases. In this analysis we conclude that at
very low SNR, the optimal input distribution has two mass
points, one located at the origin. Hence the on-off keying is
optimal similar to SISO systems [7].

Fig. 3 depicts the Kuhn-Tucker condition (18) for P = 1.4
with a single receiver. As claimed in Lemma 1, it is above zero
except at the optimal mass point locations where the Kuhn-
Tucker condition equals to zero.

VI. CONCLUSIONS

A capacity supremum is derived for non-coherent (no CSI)
Rayleigh fading MIMO channels in terms of the number
of receivers and the SNR. It was shown that at high SNR,
the asymptotic behavior of the capacity supremum is double
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Fig. 3. The Kuhn-Tucker condition (18) for P = 1.4,
λ = 0.08819532394409 and pX(x) = 0.79549244782344δ(x) +
0.20444300113415δ(x− 2.6160) + 0.0000645510564δ(x− 4.1451). The
channel capacity C=0.23549289482526.

logarithmic. Also, the number of transmitters has no bearing
on capacity supremum.

It is shown that the capacity achieving input distribution is
discrete with a finite number of mass points, one necessarily
located at the origin. The channel capacity is computed
numerically finding the optimal number of mass points, their
probabilities and locations. The optimality is guaranteed when
the optimal input distribution satisfies the Kuhn-Tucker con-
dition. The conjectured capacities in [7] are actually achieved.
Furthermore, the simulation is extended to MIMO systems
and the capacities are presented against the input power for
multiple receivers.

VII. APPENDIX

A. Proof of lemma 1

The following definition is given in [16] for the weak
differentiability on a convex space.

Definition 1: Let S be a convex space, L a functional from
S into the real line R, x0 a fixed element of S, and θ a number
in [0, 1]. Suppose there exists a map L

′
x0

:→ R such that

L
′
x0

(x) � lim
θ → 0

L[(1 − θ)x0 + θx] − L(x0)
θ

(26)

for all x in S. Then L is said to be weakly differentiable in
S at x0 and L

′
x0

is the weak derivative in S at x0. If L is
weakly differentiable in S at x0 for all x0 in S, L is said to
be weakly differentiable in S or simply weakly differentiable.

The following theorem [15, Page 139] shows the necessary
and sufficient condition for a weakly differentiable convex
function to have an optimum.

Theorem 1: Suppose Q is weakly differentiable, so that for
all x0, y in its domain S,

Q(y) ≥ Q(x0) + Q
′
(x0)(y − x0). (27)

Let X denote the feasible set, i.e.

X = {x|Qi(x) ≤ 0, i = 1, ...,m, hi(x) = 0, i = 1, ..., p},
(28)

then x0 is optimal if and only if x0 ∈ X and

Q
′
(x0)(y − x0) ≥ 0 for all y ∈ X. (29)

Geometrically, if Q
′
(x0) 	= 0 it means that −Q

′
(x0) defines

a supporting hyperplane to the feasible set at x0.
Using Theorem 1 on weakly differentiable concave functional,
we get the following.

Corollary 1: Assume L is weakly differentiable, concave
functional on a convex set S, If L achieves its maximum
on S at x0, then a necessary and sufficient condition for
L(x0) = maxx∈SL(x) is that L

′
x0

≤ 0 for all x in S.

The following shows the Lagrangian theorem [15, Page
215-218] commonly being used to find optimal solutions in
both convex and non convex functions. Lagrangian theorem
is valuable since it always provides a lower bound, and most
cases the optimal solution in the absence of a duality gap.

Theorem 2: Let X be a linear vector space, Z a normed
space, Ω a convex subset of X , and P the positive cone in
Z. Assume that P contains an interior point. Let f be a real
valued concave functional on Ω and G a convex mapping from
Ω into Z. Assume the existence of a point x1 ∈ Ω for which
G(x1) < 0. Let

µ0 =
sup
x∈Ω

G(x) < 0

f(x) (30)

and assume µ0 is finite. Then there is an element Z∗
0 > 0 in

Z (the dual space of Z) such that

µ0 =
sup

x ∈ Ω
{
f(x) − 〈

G(x), Z∗
0

〉}
. (31)

Furthermore, if the supremum is achieved in (30) by an x0 ∈
Ω, G(x0) ≤ 0, it is achieved by x0 in (31) and

〈
G(x), Z∗

0

〉
=

0.
Using the theorem 2, we can pose the optimisation problem
for channel capacity with λ ≥ 0

C =
sup

GX ∈G
E{|x|2}≤P

I(GX) =
sup

GX ∈ G I(GX) − λφ(GX) (32)

=
sup

GX ∈ G I(GX) − λ

(∫ ∞

0

x2dGX(x) − P

)
. (33)

Note in here that all the conditions of the Lagrangian theorem
are satisfied. The set of input distributions of nonnegative
random variables forms a convex set, the mutual information
is a concave function of the input distribution [7, Appendix
I-B], and input power constraint is convex since it is a linear
functional of the input distribution. Next we will show that
both mutual information I(·) and the input constraint φ(·) are
weakly differentiable functions.

Lemma 3: The mutual information I(·) defined in (16) and
φ(·) defined in (33) are weakly differentiable functionals on G
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with weak derivatives

I
′
G0

(GX) = −
∫ ∞

0

pY (y;GX) log pY (y;G0)dy

− 1
2

∫ ∞

0

log(1 + x2)dGX(x) − I(G0) + V (nr)

(34)

and
φ

′
G0

(GX) = φ(GX) − φ(G0). (35)
Proof: We define

Gθ = (1 − θ)G0 + θG, θ ∈ (0, 1) (36)

where G0 is the optimal input distribution. The difference in
mutual information obtained with two distributions Gθ, G0 is
given by

I(Gθ) − I(G0) =
∫ ∞

0

pY (y;G0) log pY (y;G0)dy

−
∫ ∞

0

pY (y;Gθ) log pY (y;Gθ)dy

+
1
2

{∫ ∞

0

log(1 + x2)dG0(x) −
∫ ∞

0

log(1 + x2)dGθ(x)
}

.

Using pY (y;Gθ) = (1−θ)pY (y;G0)+θpY (y;G) and dGθ =
(1 − θ)dG0 + θdG, we get

lim
θ → 0

[
I(Gθ) − I(G0)

θ

]
=

∫ ∞

0

pY (y;G0) log pY (y;G0)dy

−
∫ ∞

0

pY (y;G) log pY (y;G0)dy

+
1
2

{∫ ∞

0

log(1 + x2)dG0(x) −
∫ ∞

0

log(1 + x2)dG(x)
}

.

(37)

Also note that

I(G0) = −
∫ ∞

0

pY (y;G0) log pY (y;G0)dy

− 1
2

∫ ∞

0

log(1 + x2)dG0(x) + V (nr). (38)

Substituting I(G0) from (38) into (37), we get (34). Similarly
we can write the first derivative of φ(·),

lim
θ → 0

[
φ(Gθ) − φ(G0)

θ

]
= φ(GX) − φ(G0), (39)

proving (35).
Therefore I(GX) and φ(G)X are weakly differentiable func-
tions on G. Using Corollary 1, and the weak differentiability
of I(GX) and φ(G)X , (33) achieves its maximum if and only
if

I
′
G0

(GX) − λφ
′
G0

(GX) ≤ 0. (40)

Using the results obtained for I
′
G0

(GX) in (34) and φ
′
G0

(GX)
in (35) we get the following inequality∫ ∞

0

{∫ ∞

0

pY |X(y|x) log pY (y;G0)dy

}
dGX(x)

+
1
2

∫ ∞

0

log(1 + x2)dGX(x) + C − V (nr)

+ λ

∫ ∞

0

(x2 − P )dGX(x) ≥ 0 ∀G ∈ G (41)

in order to have a optimal point. The following theorem is
given in [7].

Theorem 3: Let E0 be the points of increase of a distribu-
tion function F0. Then∫

[I(x;F0) − λx2]dFX(x) ≤ C − λP (42)

for all F ∈ F if and only if

I(x;F0) ≤ C + λ(x2 − P ), ∀x, (43)

and
I(x;F0) = C + λ(x2 − P ), ∀x ∈ E0. (44)

Using Theorem 3 in (41), we obtain the necessary and suffi-
cient condition (18) for the function (33) to have a maximum.
This is known as the Kuhn-Tucker condition.
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