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Abstract—In this paper, we develop a channel simulator to
generate the channel gains to an arbitrary array of receiver
antennas, for a general class of non-line-of-sight channels. The
channel scattering environment is defined by the angular power
distribution as seen by the receiver. We derive the second order
statistics of the channel gains in terms of the parameters of the
angular power distribution. As an illustration of the channel
simulator, we compare the performance of different direction-of-
arrival techniques.

1. INTRODUCTION

With recent development of practical multiple-input-
multiple-output (MIMO) systems, there is need to quantify
MIMO system performance over realistic channels. Many
options for channel models are now available. However many
models either require ray-tracing, complicated parametriza-
tions, or restrict simulation to a single array geometry, We
present here a simulator for arbitrary array geometries that
generates channel realizations from readily available angular
power distribution data.

A number of schemes have been proposed for simulating
MIMO channels. Several authors propose ray tracing models
[1]. However for non-line-of-sight channels, the channel gains
are dominated by their second order statistics [2]. To model the
second order channel statistics, many use oversimplified mod-
els such as Rayleigh fading and Kronecker models [3] which
poorly estimate capacity [4]. Others use higher complexity
data-dependent models (e.g. [5], [6]) which learn statistical
parameters from a MIMO data set or geometric models [7]
based on parametrizations of the directional power distribution.

In this paper, we describe a simulator to realize non-line-
of-sight channels directly from directional power distributions.
The advantage of our model is that (i) arbitrary distributions of
receivers can be simulated from the same set of data, (i) low
simulator complexity and fast simulator time stemming from
an efficient parametrization of the chanpel. Here we present a
2-D model, but it extends naturally to 3-D. The simulator is
used to predict performance of competing direction-of-arrival
(DOA) algorithms to distributed sources.

In Section II, we describe a general channel model for
uncorrelated scatterers. In Section III, we derive a low order
parametrization for such a channel and derive parameter
statistics. Section IV reviews common power distributions.
Section V summarizes the structure of the proposed channel
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Fig. 1. Black box representation of the channel simulator.

simulator. In Section VI, we simulate channels for several
power distributions.

II. CHANNEL MODEL

Consider transmission of data from a transmitter over a flat
fading channel to ng receiver antennas. Let @, be the nth re-
ceiver antenna position with respect to an arbitrary origin O (as
shown in Fig. 2). Receiver antennas lie within a finite circular
aperture B of radius Rk The transmilter ransinits a signal s(¢)
over the time-varying channel with the transfer function hy, (¢)
to receive a signal 2,(¢) at each antenna n. Collect transfer
functions into vector h(t) £ [hi(t), ha(t), ... hn,(t)]7 where
" is the vector transpose operator, and received signals z,(t)
into vector z() £ [z1(t), 22(t), ... 20, (#)]7. Letting w(t) &
[wi(t),02(¢), ... w,,(t)]F be additive white Gaussian noise
at the receivers, we write:

(1) = h{1)s(t) + w(t). (1)

Assume that all scatterers lie in the far-field. The scattering
environment causes the transmitter signal to propagate in as
plane waves with a different amplitude for each direction.
Define the scattering gain A{¢, ) as the amplitude of the plane
wave propagating in from direction ¢ at time ¢ at the origin,
We can then write:

"2 R
ha(l) = / A(p, t)e” o P, )
JO

where ¢ is the unit vector of polar coordinates (1, ¢) and k is
wave number, Assume slow fading so that the channel remains
static over the symbol time. h,, and A are then not dependent
on t over each symbol. For the remainder of the paper, the
t-dependence is suppressed.
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Fig. 2. The channel model. Scattering is modelled with the scattering gain
A(é, t). Each receiver is positioned at @, within a circular aperture B shaped
of radius Rg.

To investigate the statistics of non-line-of-sight scattering,
A(¢) is assumed to be a zero mean Gaussian random variable
at each angle ¢. Further assume A(¢) uncorrelated between
different angles:

E{A(9)A" ()} = B{|A($)]*}0ge, 3)

where d4, is the Kronecker delta function and -* is the
complex conjugate. This assumption is referred to as the wide-
sense stationary uncorrelated scatterer (WSSUS) assumption
[8]. Without loss of generality, we assume A(¢) is normalized:

AﬂEﬂM@PM¢L

The SIMO channel is then characterized by the power density
of scatterers P(¢) as seen by the receiver, defined by:

P(o) £ B{A($)|*}. )

P(¢) is interpreted as the average energy arriving from the
channel in direction ¢. Statistics of A(¢) and hence h are
dependent entirely upon P(¢).

III. CHANNEL PARAMETRIZATION

We now derive a simple structure for the simulation of the
above channel model. By transforming angular functions into
the Fourier domain, we shall show how to represent the chan-
nel mixing vector h with a minimal number of parameters.
We then derive the statistics of the Fourier parameters.

A. Fourier Expansion

Perform the Fourier expansion of P(¢),

where v, is the Fourier series coefficient of P(¢),

27

Ym= [ Pld)e "™dg. Q)

0

Since P(¢) € R, we know that v}, = ~v_,,. Also note that
P(¢) > 0 which corresponds to 23" |ym| < y0 = 1.

Similarly write A(¢) as the Fourier expansion:

1 [o@]
= imeo
1ﬂ¢)4—%rm§;xﬁm 7 (©)
where 3, is the Fourier coefficient of A(¢),
27
b= [ Ay ™ @
0

Due to the limited size of B, (6) can be truncated and from
(2) each h,, can be written as a sum of a finite number of 5,
coefficients. Drawing from [9], we state the following theorem:

Theorem (General SIMO Parametrization)

For a set of ng receiver antennas, each positioned at x,, within
the circular aperture of radius Rg, the vector of transfer
Junctions h defined in SIMO model (1) can be decomposed:

h=JrpB, (®)
where B 2 [B_Np.B-Nnils---Byglt is a vector of the

scattering function coefficients defined in (6), Jr is a function
of the antenna positions,

T-ng(z1) INg(®1)
o | T-ng(®2) InNr(22)
Jr 2 : : )
j*NR(wnR) jNR(wnR)7
where for vector x defined in polar coordinates as (x, ¢,),
Tim(a) £ 0" Ty (k)™ =, (10)

and J.,(+) is the Bessel function of the first kind of order m
and Np = [ekRg/2] is the dimensionality of the receiver
aperture. O

This theorem is proved in the Appendix.

B. Statistical Relationships

We are interested in simulating the channel mixing vector
h. From (8), this can be done by realizing a random variable
with the statistics of 3.

Since the scattering gain is zero mean (Gaussian, the statis-
tics of ﬁ are governed by its correlation matrix Rg =
E{BB"}. From (7) each second order statistic [Rg]mm/ =
E{Bn5%,} can be calculated as:

BB} = fVEM

Applying the WSSUS property (3):

27

Pg)etmmIdg,

(9)ye{m=m' D) dgdsp.

E{BmbBrs} = (11)

0

from which we see by comparison with (5) that £{5,,5%,} =
Ym—ms, from which is written:
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TABLE I
POPULAR ANGULAR POWER DISTRIBUTIONS. Im(\~> IS THE MODIFIED BESSEL FUNCTION OF THE FIRST KIND. FOR THE LAPLACIAN DISTRIBUTION,

Theorem (WSSUS Parameter Correlation)

In a WSSUS Gaussian channel possessing angular power
distribution P(&), the correlation mairix of 3 defined in (7)
possesses the Toeplitz structure:

Yo Y1 Y-2Np
i o s T-(2Ng-1)
Rg = ) ) ) . , (12)
YaNr 2Np—1 .- o
where vy, is defined in (5). O

By virtue of the ., = ), property, to completely describe
the chanwnel statistics for any geometry of antenpnas within
B, only 2Ng + 1 complex parameters {7V, ...,Yonp:1} ar€
required.

IV. ANGULAR POWER DISTRIBUTIONS

In this section, we present some popular choices for the
angular power distribution P(¢) in the simulator. These dis-
tributions are parametrised by the mean direction ¢y and an
angular spreading parameter:

» Jakes model [10] where scatterers are isotropically ar-

ranged to yield rich scattering.

+ Uniform limited angular distribution [11] where energy

arrives uniformly from a restricted range of angles (¢ —

o Von-Mises distribution [12] having degree of nonisotropy
x> 0.

« Laplacian distribution [13] with measure o of angular
spread.

The functional forms of angular power and corresponding .,
coefficients are summarized in Table 1. Derivation of these
coefficients was made in [14].

V. SIMULATOR

We now describe a simple simulator algorithm that outputs
realizations of the chamnel mixing vector over a WSSUS
channel. This simulator generates a set of received sensor
data {Z(n)})_, statistically representative of the channel
simulation parameters, namely the angular power distribution
P(¢), noise variance o, and array geomewy @y, Ta, .. ., Ty,
As summarized in Fig. 3, the procedure for producing the
sensor data is:

Channel Array
Parameters Geometry
T P(9) {z. X
(1) Fourier analysis
Y= JTP(@)edd
Yr
(2) Construct
[R/B]nm = Yn—m

Ry

(3) Generate realizations
@ h(n) = JrRs'*g,(n)
®) @(n) = gug.,(n)

-
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h(n) l l @(n)
s(n) Z(n)
X +)
Fig. 3. Internal structure of the WSSUS channel simulator.

1) Calculate coefficients {, }) 7 Ny from (5).

2) Construct the correlation matrix Hg using (12).
3) Generate N realizations of h and w, {h{n),w(n)}_;
from the channel correlation parameters.

To perform step 3), we define the np x 1 independent and
identically distributed Gaussian random variables g4 and g,,
from which we generate realizations of 3 and w as: 3( n)=
1/2~ —
Ry gﬁ(v% and win) = ,
E{lBZ(n)B (n)} , we see that 1?;;2[12%3/2]” = jo so that
RB/ is the Cholesky decomposition of Hg. Then from (8),
iz('n,) = JRE('I‘L\).
Comments:

owtw(n), where by calculating

1) If we choose a scattering environment with a power
distribution in Table I, and associated mean angle and
angular spread.

2) The simulator vields k vectors with the WSSUS statisti-
cal properties preserved. The spatial correlation between
positions in the WSSUS field are presented in [14].
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Tig. 4. Simulation of Synthesized versus Design angular power distribu-

[LBA, A 2A BA]. (b) Von-Mises distribution for spreading parameter 5 =
i1, 10,100}

3y Due to the finite size of the receiver aperture, the
mean synthesized power distribution Pyynen(¢) e
E{JA(0;n)*} where A(0;n) is a realized scattering
gain, is a low bandwidth approximation to the design
power distribution P(¢). Inserting the Np truncation of
(6) for A(f:n), we can show:

1 L
4 {4 - Bl s £ {(m—m')
DsymhK ) E= ﬁ E ‘ § E{/&mﬁ;yk‘@m m’

m m’
2 j\‘"]?,

5 Z Hm )y €™,
7

where in the first equation m and m' are summed
from —Ng to N and {(m) = 1 — |m|/(2Ngr + 1)
is a triangular window function. Measuring with a finite
aperture, the higher order v, coefficients are attenuated.
However in the limit of large Ng, Peynin(¢) = P(0).

VI. EXAMPLES

In this section, we use the WSSUS simulator to perform
Monte-Carlo simulations with N = 10000 trials for different
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Fig. 5. Simulation of direction-of-arrival estimation techniques from data

shown are steered beamforming (SBF), minimum variance (MV) and multiple
signal classification (MUSIC), using a 5 element uniform circular array of
radius 0.8,

power distributions.

In Fig. 4 we simulate the Laplacian and Von-Mises power
distributions described in Table I, plotting the synthesized
power Psynen(¢) in each case. Fig. 4(a) plots the Laplacian
distribution synthesized by a finite aperture. The cusp of the
Laplacian distribution here possesses a large angular band-
width that requires a large aperture to observe. Fig. 4(b) illus-
trates its ability to reproduce different Von-Mises distributions.

In Fig. 5, we use of the simulator data to compare the perfor-
mance of basic DOA estimation schemes. Due to underlying
assurnptions (e.g. limited numbers of multipath directions),
different schemes will perform better or worse in different en-
vironments. In the case shown, MUSIC erroneously estimates
the single peak as two distinct multipaths.

VII. CONCLUSION

In this paper, we present a single-input-multiple output
(SIMO) channel simulator that generate channel data given
particular parameters of an angular power distribution. This
simulator implements a wide-sense stationary uncorrelated
scatterer flat fading channel. A Matlab implementation of
this simulator is available at http : //rsise.anu.edu.au/ ~
terenceb /code/simo_sim.zip. We are currently extending this
simulator to multiple-input-multiple output (MIMO) channels,
using double directional angular power distributions, simulat-
ing Doppler fading, and removing the uncorrelated scatterer
assumption.
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APPENDIX

Proof We start by writing for the vectors ® £ (2, ¢, ) and
£ (1, ¢) the Jacobi-Anger expression [15],
R o0
PRI Z i fm\/il\ Mn(oa,*tﬁ)' (13
o= X0

Substituting (6) and (13) into (2) followed by rearranging and
introducing Jm(2) as defined in (10):

Z Z j,n'u —m/ \wn>

1 7 ,

+ ilmtm o 7.
r)_/ gilmim )(‘D(,II,(,/).
LT Jo

Evaluating the integral:

&%

/3 { e
§ /‘5m h7m k Ly, ) .

M= 00

(14)

It has been shown in [16] that (13) can accurately be truncated
to |n] < Ng for Ngp = [ekRg/2] since successive terms
of the series decay exponentially. For a bounded scattering
function, the /3, coefficients are bounded and (14) can be
truncated to |n| < Np. Writing truncated (14) in vector
product form h,, = F, 3 where

Result follows from noting that 7,, is a row of (9).
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