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Abstract- In this paper, we develop a channel simulator to
generate the channel gains to an arbitrary array of receiver
antennas, for a general class of non-line-of-sight channels. The
channel scattering environment is defined by the angular power
distribution as seen by the receiver. We derive the second order
statistics of the channel gains in terms of the parameters of the
angular power distribution. As an illustration of the channel
simulator, we compare the performance of different direction-of-
arrival techniques.

I. INTRODUCTION

With recent development of practical multiple-input-
multiple-output (MIMO) systems, there is need to quantify
MIMO system performance over realistic channels. Many
options for channel models are now available. However many
models either require ray-tracing, complicated parametriza-
tions, or restrict simulation to a single array geometry. We
present here a simulator for arbitrary array geometries that
generates channel realizations from readily available angular
power distribution data.
A number of schemes have been proposed for simulating

MIMO channels. Several authors propose ray tracing models
[11]. However for non-line-of-sight channels, the channel gains
are dominated by their second order statistics [2]. To model the
second order channel statistics, many use oversimplified mod-
els such as Rayleigh fading and Kronecker models [3] which
poorly estimate capacity [4]. Others use higher complexity
data-dependent models (e.g. [5], [6]) which learn statistical
parameters from a MIMO data set or geometric models [7]
based on parametrizations of the directional power distribution.

In this paper, we describe a simulator to realize non-line-
of-sight channels directly from directional power distributions.
The advantage of our model is that (i) arbitrary distributions of
receivers can be simulated from the same set of data, (ii) low
simulator complexity and fast simulator time stemming from
an efficient parametrization of the channel. Here we present a
2-D model, but it extends naturally to 3-D. The simulator is
used to predict performance of competing direction-of-arrival
(DOA) algorithms to distributed sources.

In Section II, we describe a general channel model for
uncorrelated scatterers. In Section III, we derive a low order
parametrization for such a channel and derive parameter
statistics. Section IV reviews common power distributions.
Section V summarizes the structure of the proposed channel
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Fig. 1. Black box representation of the charnnel simulator.

simulator. In Section VI, we simulate channels for several
power distributions.

II. CHANNEL MODEL
Consider transmission of data from a transmitter over a flat

fading channel to nR receiver antennas. Let Xn be the nth re-

ceiver antenna position with respect to an arbitrary origin 0 (as
shown in Fig. 2). Receiver antennas lie within a finite circular
aperture B of radius RR. The transmitter transmits a signal s(t)
over the time-varying channel with the transfer function hn (t)
to receive a signal zr(t) at each antenna n. Collect transfer
functions into vector h(t) [h (t), h2 (t) hn (t)]T where
T is the vector transpose operator, and received signals zn(t)
into vector z(t) - I1(t), Z2(t) *n..(t)ITn Letting w(t)
uiW (t> W2(t)... Wn (t)]T be additive white Gaussian noise

at the receivers, we write.

z(t) = h(t)s(t) + w(t). (1)

Assume that all scatterers lie in the far-field. The scattering
environment causes the transmitter signal to propagate in as
plane waves with a different amplitude for each direction.
Define the scattering gain A(b, t) as the amplitude of the plane
wave propagating in from direction X at time t at the origin.
We can then write:

J27tT
hn?(t)= A(O, t)e-t-ikx ,;b.do, (2)

where q5 is the unit vector of polar coordinates (1, §) and k is
wave number. Assume slow fading so that the channel remains
static over the symbol time. hr and A are then not dependent
on t over each symbol. For the remainder of the paper, the
t-dependence is suppressed.
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Similarly write A(X) as the Fourier expansion:

I C00,
1~ 00A(X) = L Om 'im
m=-oo

where J3. is the Fourier coefficient of A(Q),

2

,
= A( e-iWdo.

Fig. 2. The charnel model. Scattering is modelled with the scattering gain
A(, t). Each receiver is positioned at x, within a circular aperture B shaped
of radius RR

To investigate the statistics of non-line-of-sight scattering,
A(X) is assumed to be a zero mean Gaussian random variable
at each angle . Further assume A(X) uncorrelated between
different angles:

E A($)A ( ) } = Et{A(X) (3)

where 60,, is the Kronecker delta function and * is the
complex conjugate. This assumption is referred to as the wide-
sense stationary uncorrelated scatterer (WSSUS) assumption
[8]. Without loss of generality, we assume A(X) is normalized:

E£ IA(X) }d( 1.

The SIMO channel is then characterized by the power density
of scatterers 'P(b) as seen by the receiver, defined by-

'P(0 -EfA(0)|} (4)

P(%) is interpreted as the average energy arriving from the
channel in directionL . Statistics of A(X) and hence h are

dependent entirely upon P(o).
III. CHANNEL PARAMETRIZATION

We now derive a simple structure for the simulation of the
above channel model. By transforming angular functions into
the Fourier domain, we shall show how to represent the chan-
nel mixing vector h with a minimal number of parameters.
We then derive the statistics of the Fourier parameters.

A. Fourier Expansion
Perform the Fourier expansion of P(o),

1 00

lP ('f) = . E 7Yrn C,im56
27r

wr=-ro

where am, is the Fourier series coefficient of P'(o),
i27

'm = I W((P) -im(do.

(7)

Due to the limited size of B, (6) can be truncated and from
(2) each hr can be written as a sum of a finite number of 3%
coefficients. Drawing from [9], we state the following theorem:
Theorem (General SIMO Parametrization)
For a set of TIR receiver antennas, each positioned at xr within
the circular aperture of radius RR, the vector of tra nsfer
functions h defined in SIMO model (1) can be decomposed:

h= JR/3, (8)

where 3 - [ -N, *Ni, ..*NT* is a vector of the

scatteringfuinction coeffcients defined in (6), JR is a function
of the antenna positions,

K-N (XI)

i-NR (X2)
JR A

v-fNR (XznR )

JN, (XI)
5NM (X )

5NIF (fXnR))

(9)

where for vector x defined in polar coordinates as (X, x),

Jr (x)-i JJ (h)eirklx (-10)

and J, (.) is the Bessel functioi of the first kind of order rn
and NR = [ckRR12] is the dimensionality of the receiver
aperture.

This theorem is proved in the Appendix.

B. Statistical Relationships

We are interested in simulating the channel mixing vector
h. From (8), this can be done by realizing a random variable
with the statistics of /.

Since the scattering gain is zero mean Gaussian, the statis-
tics of are governed by its correlation matrix ftR
E{3/3H From (7) each second order statistic [ftR3] =
E{@l,i,n } can be calculated as:

z2.7 b2

E{fmf din}£{=/ A(O)A* (p) -i(m2-mi

Applying the WSSUS property (3).
2{7

E{f3mo;3/I = j (m)-i(,n-m )Odo,(5)
Since 'P() C R, we know that >y*n = V-m. Also note that
P(b) > 0 which corresponds to 2 m= Iy < -yo = 1-

dodo.

(11)

from which we see by comparison with (5) that E{803m03/,
,from which is written:
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TABLE I

POPULAR ANGULAR POWER DISTRIBUTIONS. Im( ) IS THE MODIFIED BESSEL l
( = e /(V2'm 1 FOR m EVEN, Fm = Mru FOR'

Theorem (WSSUS Parameter Correlation)
In a WSSUS Gaussian channel possessing angalar power

distribution FP(y) the correlation rmatrix of defined in (7)
possesses the Toeplitz structure:

Yo T-I ...

Ro =

rf2NF 2NR- I

Yf- 2NM
-(2NR.- 1)

0

(12)

where /yrn is defined in (5). El

By virtue of the -y,r = -Y;rr property, to completely describe
the channel statistics for any geometry of antennas within
EB, only 2NR + 1 complex parameters 02o,...,N+1 are

required.

IV. ANGULAR POWER DISTRIBUTIONS

In this section, we present some popular choices for the
angular power distribution 'P(0) in the simulator. These dis-
tributions are parametrised by the mean direction o0 and an

angular spreading parameter:
. Jakes model [10] where scatterers are isotropically ar-

ranged to yield rich scattering.
Uniform limited angular distribution [11] where energy
arrives uniformly from a restricted range of angles (oo-
A, ,oo + A).
Von-Mises distribution [12] having degree of nonisotropy
K >O.
Laplaciati distribution [13] with measure a of angular
spread.

The functional forms of angular power and corresponding 7m
coefficients are summarized in Table I. Derivation of these
coefficients was made in [14].

V. SIMULATOR

We now describe a simple simulator algorithm that outputs
realizations of the channel mixing vector over a WSSUS
channel. This simulator generates a set of received sensor

data { (n)}N I statistically representative of the channel
simulation parameters, namely the angular power distribution
P(q) , noise variance o,, and array geometry X1, X2 7 *XnR -

As summarized in Fig. 3, the procedure for producing the
sensor data is:

'UNCTION OF THE FIRST KIND. FOR THE LAPLACIAN DISTRIBUTION,

m ODD AND Q IS A NORMALIZATION CONSTANT.

Channel
Parameters
jS P(j3)

r- -----|----------------

(1) Fourier analysis

f/=(27T ) d

Array
Geometry
{x n} 1

(2) Construct
correlation matrix

(3) Generate realizations

(a) h(n) JRRq /2g3 (n)
(b) iwv(n) =T,g, (n)

h(n) w(n)
s(n) Z(n)

Fig. 3. Internal structure of the WSSUS channel simulator.

1) Calculate coefficients N>,}N N from (5).
2) Construct the correlation matrix R, using (12).
3) Generate N realizations of h and w, {h(n), i (n) }I

from the channel correlation parameters.
4) Calculate signal realizations {z(n) }IN from (l)

To perform step 3), we define the oIR x I independent and
identically distributed Gaussian random variables g,3 and gw
from which we generate realizations of and w as: 13(n) =
RH1/2g-(n), and w(n) = cgTf,(n), where by calculating
E 3(71)3 (T) , we see that Rf HR, 3, so that
R1/2 is the Cholesky decomposition of Rf3. Then from (8),
h(n) = JRO(n).

Comments.
1) If we choose a scattering environment with a power

distribution in Table I, and associated mean angle and
angular spread.

2) The simulator yields h vectors with the WSSUS statisti-
cal properties preserved. The spatial correlation between
positions in the WSSUS field are presented in [14].
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Fig. 4. Simulation of Synthesized versus Design angular power distribu-
tions. (a) Laplacian distribution for a = 2° in apertures of radii RR=
.5A, A, 2A, 5A]. (b) Von-Mises distribution for spreading parameter =
[1,10, 100] in an aperture of radius RR = 2A.

3) Due to the finite size of the receiver aperture, the
mean synthesized power distribution 'Pyntl (X)
E{lA(0; TI) 2} where A(0; T) is a realized scattering
gain, is a low bandwidth approximation to the design
power distribution P(O). Inserting the NR truncation of
(6) for A(O; rn), we can show.

P)synth() =(2w)2 E{ 3rm }e (M m)
mmP

2NRn
X t(m)-m iemo27T Z-em=-2N9p

where in the first equation m and m/ are summed
from -NR to NR and t(m) = 1- mj/(2NR + 1)
is a triangular window function. Measuring with a finite
aperture, the higher order ym coefficients are attenuated.
However in the limit of large NR, 'Psynth() = P(O)

VI. EXAMPLES
In this section, we use the WSSUS simulator to perform

Monte-Carlo simulations with N = 10000 trials for different

Fig. 5. Simulation of direction-of-arrival estination techniques from data
generated from a Von-Mises power distribution with , = 10. Techniques
shown are steered beamforming (SBF), minimum variance (MV) and multiple
signal classification (MUSIC), using a 5 element uniform circular array of
radius 0.8A.

power distributions.
In Fig. 4 we simulate the Laplacian and Von-Mises power

distributions described in Table I, plotting the synthesized
power s ( ) in each case. Fig. 4(a) plots the Laplacian
distribution synthesized by a finite aperture. The cusp of the
Laplacian distribution here possesses a large angular band-
width that requires a large aperture to observe. Fig. 4(b) illus-
trates its ability to reproduce different Von-Mises distributions.

In Fig. 5, we use of the simulator data to compare the perfor-
mance of basic DOA estimation schemes. Due to underlying
assumptions (e.g. limited numbers of multipath directions),
different schemes will perform better or worse in different en-
vironments. In the case shown, MUSIC erroneously estimates
the single peak as two distinct multipaths.

VII. CONCLUSION

In this paper, we present a single-input-multiple output
(SIMO) channel simulator that generate channel data given
particular parameters of an angular power distribution. This
simulator implements a wide-sense stationary uncorrelated
scatterer flat fading channel. A Matlab implementation of
this simulator is available at http: //rsise.anu.edu.au/
terenceb/code/sirno sirn.zip. We are currently extending this
simulator to multiple-input-multiple output (MIMO) channels,
using double directional angulLar power distributions, simulat-
ing Doppler fading, and removing the uncorrelated scatterer
assumption.
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APPENDIX

Proof: We start by writing for the vectors x` (a, ox) and
(1, b) the Jacobi-Anger expression [15],

OC)

cikxao = r irJm(kx)eim(ox-o)
rn=-oo

(13)

Substituting (6) and (13) into (2) followed by rearranging and
introducing J,, (x) as defined in (10)

cc00 00 nhn =rE-rX nv_tlzx) x
rn=-oo m'=-oo

i(mt+,rn' )O¢do.
27

Evaluating the integral:
00

fin = : f3mSm (Xn).
M=-ro)
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