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Abstract- This paper investigates the capacity of discrete time
uncorrelated Rayleigh fading multiple input multiple output
(MIMO) channels with no channel state information (CSI) at
both the transmitter and the receiver. We prove that to achieve
the capacity, the amplitude of the multiple input needs to have
a discrete distribution with a finite number of mass points with
one of them located at the origin. We show how to compute
the capacity numerically in multi antenna configuration at any
signal to noise ratio (SNR) with the discrete input using the Kuhn-
Tucker condition for optimality. Furthermore, we show that at
low SNR, the capacity with two mass points is optimal. Since the
first mass point is necessarily located at the origin, we argue that
at low SNR, on-off keying is optimal for any antenna number. As
the number of receiver antennas increases, the maximum SNR
at which two mass points are optimal decreases.

I. INTRODUCTION

A. Motivation and Background

The capacity achieving input distribution of non-coherent
Rayleigh fading MIMO channels has been an open problem
for some time. Early work of [1] using a block fading model
gave some insights into the characteristics of the optimal input,
with explicit calculations for the special case of single input
and single output at high SNR. In [1] it is shown that in a non-
coherent Rayleigh fading MIMO channel, no capacity gain
is achieved by increasing the number of transmitter antennas
beyond the channel coherence time. The general structure of
the input signal matrix that achieves the capacity was given,
along with the capacity asymptotically in channel coherence
time for a single input single output (SISO) system and the
signal density that achieves it.
Work in [ 1] is extended in [2] by taking the channel

coherence time into account, and showed that the norm of
the transmitted signal on each antenna must be higher than
the noise level for high SNR. The asymptotic capacity is
computed at high SNR in terms of the channel coherence
time, and the number of transmit and receive antennas. The
non-coherent channel capacity is compared to the promised
capacity increase using MIMO in coherent Rayleigh fading
channels [3], [4]. Also it is shown that the non-coherent
and coherent capacities are asymptotically equal at low SNR.
Hence indicating that in the low SNR regime, to a first order,
there is no capacity penalty for not knowing the channel at
the receiver, unlike in the high SNR.
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In [5], the maximum capacity loss due to lack of receiver
CSI for a wideband MIMO channel in Rayleigh fading is con-
sidered. The maximum penalty to be paid in terms of capacity
not having the CSI at the receiver is shown. Furthermore, it is
conjectured that on-off signaling is optimal, however no proof
was given. The SISO non-coherent Rayleigh fading channel is
extensively studied in [6] showing the optimal input is discrete
with a finite number of mass points. Capacity is computed
numerically choosing the optimal number of mass points, their
probabilities and locations.

B. Problem Definition and Contributions

The previous results do not clearly show neither the optimal
input nor the capacity at any SNR. A question arises whether
there exists a proper method to compute the optimal input
and capacity. In this paper, we answer this with the following
contributions:

1) In section II, we develop a proper channel model noting
scalar properties in Rayleigh fading due to absence of the
phase information.

2) In section III, we prove that the capacity achieving input
distribution (i.e. the amplitude of multiple inputs) of the
non-coherent Rayleigh fading MIMO channel is discrete
with a finite number of mass points, one necessarily
located at the origin.

3) In section IV, we show how to compute the capacity with
the optimal input, which is an extension to work presented
in [6] for a single antenna system. Furthermore, we show
that at low SNR, on-off keying is optimal and the input
power at which it is optimal decreases with the increase
of receiver diversity.

II. CHANNEL MODEL

Consider the following time-varying non-coherent Rayleigh
fading MIMO channel model

Y =HX+N, (1)
where the output Y is nr x 1, the channel gain matrix H is
nr x nt, the input X is nt x 1 and the noise N is nr x 1.
Each element of H, hij,i 1 ,.,nr,j l,..., nt and N is
assumed to be zero mean circular complex Gaussian random
variables with a unit variance in each dimension. nt and nr de-
note the number of transmit and receive antennas respectively.
X = X and Y = Y denote scalar random variables whilst
x C X and y C Y represent the instantaneous realisations of
X and Y.
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The Euclidean norm is denoted by It is assumed that the
input is average power limited with constraint f x2Px (x)dx <
Pay Furthermore, we use F7(.) and TI(.) to indicate the Gamma
and Psi functions. Differential entropy of x C X is denoted
by h(X) and the mutual information between x and y C Y
is designated by I(X; Y). All the differential entropies and
the mutual information are defined to the base "e", hence the
results are expressed in "nats". It is assumed that neither the
receiver nor the transmitter has the knowledge of perfect CSI
except the fading statistics.

III. CHANNEL CAPACITY

The conditional output probability density function (pdf)
of the non-coherent Rayleigh fading MIMO channel with nr
uncorrelated receivers is given by

y2
2nr-1 2(1+x2)y2 1exp( (Y2)

PYIX(YMX) 2n(-lr)(n (1 + X2)n (2)

and represents the distribution of the magnitudes when Jaco-
bian coordinate transformation is applied on 2nr dimensions
[7].

A. Mutual Information

Using (2), we write the mutual information

I(X; Y) h(Y) -h(Y X)

J py(y; G)logpy(y; G)dy

-2j log(l + x2)dGx (x) + V((nr), (3)
o

between the input and the output of channel (1) where

V(nr) =-log
F ) + (nr (4)

and Gx (x) A fpx (x)dx is the cumulative input distribution
function [7]. The channel capacity is the supremum of (3)
over the set of all input distributions satisfying the input power
constraint f x2Px(x)dx < Par, i.e.,

is the capacity achieving input amplitude distribution if and
only if there exist A such that the following is satisfied V x > 0

YPI yxo)logpy(y; Go)dy
+ log(1+ x2)+ C -V(nrr) +A( Pav)>0 (6)

with equality if x C Eo where Eo is the set of points of
increase of Go.
The condition (6) is known as the Kuhn-Tucker condition

for the optimal input distribution which can be used to
characterise its behavior.

Proof: See appendix VI-A. a

B. Input Distribution

We adopt the same principle in proving the discrete charac-
ter of the optimal input X* given in [6] for the single antenna
system. Therefore, X* should possess one of the following
properties:

1) the support set contains an interval,
2) it is discrete, with an infinite number of mass points on

some bounded interval,
3) it is discrete and infinite, but with only a finite number

of mass points on any bounded interval, or
4) it is discrete with a finite number of mass points.

However, the proof is not a straightforward extension from
single antenna to multi antenna systems.

Let's assume both (1) and (2) holds, and define u
1 /(1 + X2), Z = y2 /2. The support set Ux has infinite number
of distinct points and the Kuhn-Tucker condition holds with
equality for all real u C (0,1] [6]. In this case, using the
equality in (6) we write

2n -l (expU- > log[py(y)]dy =
2n-7(2-) 10 1x- -C2,

1 1-A( -,, -C+ logu+V(n.). (7)

With the pdf of new variable z, Pz (z)
we have

PY(y) y=,2'

sup
CX(.)

E{ xlll<P.,
I(Gx) (5)

where I(Gx) I(X;Y) and py(y;G)
f'Pyjx(y x)dGx(x) is the marginal probability density
induced by the input distribution Gx. The existence of an
optimal amplitude distribution achieving the supremum in (5)
can be shown proving i) the mutual information is continuous
and concave in the input distribution function, and ii) the
set of input distribution functions that meet the constraint
is compact [6]. The following lemma gives a necessary and
sufficient condition for an amplitude distribution Go C Gx
to be optimal.

I e z{zn,-1log[V2zpz(z)]}dz

x {-A (j1-Par) -C+1
u ~~C2l

_ F(nr)
UnTr

g u + V(n.) }, (8)

where the left hand side (LHS) of (8) is the Laplace trans-
formation of the function z'--1 log[V2zpz (z)]. Taking the
inverse Laplace transformations [8, pages 1020-1030] we
obtain the output pdf

f2- xy2
py(y)= -Me 2n' (9)

y
where

Lemma 1: For the uncorrelated Rayleigh fading MIMO
channel with the input average power constrained Pao, Go M = exp {A(1 + Pav) C + V(nr) + I(n) }
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However, for any A/2nr, the integral over (0, ox) is infinite
and hence the py (y) in (9) cannot be a valid pdf, negating
our original assumptions (1) and (2).
Assume the case (3) holds for X*, then the support set

U* can be written as a sequence {ui} converging to 0. With
Pr[U = vi] = Pi 0O, i = 1,2, ...,N we get

PY (Y) 1=E exp( ud2)

PY(Y) S1 1F(ilr
{ y2n,l-inexp(-2r)

>t l 2n,-lr (nr ) } Vy > 0. (10)

Since logt, > log t2, for all t1 > t2 > 0, we can pose the
following inequality

PY u(Y V) log [Pr(g) ] > PY Iu (y U) log y

2 -1r(

xexp( i2 )dy. (1

We use the integral solutions [9, Page 260-265]

f002n- e-kx2dx (n2 1)!lo cx 2kn
and

X1X2 1+[tl 1 -t (1 + tjxte-l 1og[vlxJ]dx 2 u 2 logviF y 2

logul},

to simplify (11) into

PY Iu(yl ) log[py(y)] > (nr -2 (n,) - n,

+ log [V2 U< -nr (). (12)

The result in (12) can be used to derive the following bound
on LHS of (6).

LHS > (A -rui) A(1 + Pav) + C -V(nr)
U

Since X* does not possess any of the properties 1)-3), the
only possibility for the optimal input amplitude distribution
that maximises (5) is discrete with afinite set of mass points.

Comments:
i) For the first time in the information theory literature,

we have proved that to achieve capacity of discrete
time uncorrelated Rayleigh fading MIMO channel
without CSI, the L2 norm of the input distribution
X = X has to be discrete with a finite number of
mass points.

ii) However, we still need to find where the mass points
are located and their probabilities.

iii) Locating these mass points analytically is very diffi-
cult if not impossible.

iv) Tedious numerical methods could be used to locate
mass points numerically. In section IV we find mass
point locations for specific MIMO systems using
numerical techniques.

v) Existence of a mass point at zero is proven for a
single antenna system [6]. In next section, we show
how to prove this for a MIMO system.

C. Mass Point Locations

We begin with the following lemma:
Lemma 2: The optimal input distribution X* of a non-

coherent uncorrelated Rayleigh fading MIMO channel
contains necessarily a mass point located at the origin.

Proof: Since the optimal input X* is discrete with finite
number of mass points, we use the distribution function

N

G* (x) = :Pi6(x-Xi),
i=1

(15)

where 0 < xo < x, < ... < XN. The mutual information for
this input distribution is given by

N ooI(X; Y) = ,:pi X PYIX(x(Ii)
i=o o

x log [NPYIx(xxi) ]dy.
j=1 PiPYIXx(lz i)

(16)

I) t(n)-

(13)

(14)(A -nrui) + I
.

J

This lower bound diverges to oc for A > nrui when
u -> 0, but the LHS of (6) is zero on the support set
U* , hence by contradiction A < nuri, where A < 0 when
u -> 0. Therefore, the only possibility is that A 0 if the
input X* is discrete with infinite mass points. However, the
Kuhn-Tucker theorem [10] for convex functions (the mutual
information and hence the channel capacity is concave [6])
states that the Lagrangian multiplier A > 0 on the support set
which optimises the objective function, negating the original
assumption.

Using z
we get

= y2/2, and differentiating with respect to x0 > 0,

&I(X; Z)

where

a0Pzx(z xo) =-

= Pof aS Pzlx(z xo)

x log [E zl

2xo
(I +X02)2

lx(zlxo) ) dz (17)

)jpZ Ix (z l i)

nhr(1 + xo2)1pzlx(z xo).
(18)

Let's define

J(z) - log E}pjpzIx(z zi) (19)
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then (17) becomes

&I(X; Z) 2xopof [ 2
dx( ( +Xo2) o[z -nr(1+ Xo2)]

x Pzjx(z xo)J(z) dz (20)

where nlr(I + xo2) is the mean value of pzIx(z x).

Corollary 1: The function J(z) in (19) is a decreasing
function for O < xo < x1 < . < XN

Proof: The ratio

Pz (z)
Pzjx(z xo)

0 L
0Po +E (I + Xi22)n

i=i

x exp [z ( +x3)l (21)

is an increasing function since

( +X2)-1 > (1 +X12)-1 > > (1I+XN )

for 0 < Xo < X1 < ... < XN. Therefore, J(z) in (19) is a

decreasing function due to logarithm of the reciprocal of ratio
given in (21).

Using corollary 1 with the Lemma 1 in [6], we conclude that
the derivative is negative with respect to xo for 0 < xo < x, <
... < XN. Therefore, X* with x0 > 0 can not produce a local
maximum, hence the input distribution Gx*(x) necessarily
has a mass point located at the origin.

0.5 1 1.5 2 2.5
Input Power

3 3.5 4

1: Capacity of non-coherent Rayleigh fading MIMO channel vs input power
using two and three mass points for different number of receiver antennas
nr = { 1, 2, 3, 5}. The dashed lines show the capacity having two mass
points for each receiver configuration.
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IV. NUMERICAL RESULTS

The capacity is achievable once the optimal number of mass
points, their probabilities and locations are found satisfying the
Kuhn-Tucker condition stated in Lemma 1.

Fig. 1 depicts the channel capacity as a function of input
power for nr = {1, 2, 3, 5}. The capacity results obtained for
both two and three mass points are shown. It is clear that at low
input power, there is no difference in capacity in either case.
Also, it is evident that as the number of receivers increases,
the maximum input power at which two mass points are
inadequate decreases. Fig. 2 shows the difference in simulated
capacity in both cases. In this analysis we conclude that at very
low SNR, the optimal input distribution has two mass points,
one located at the origin. Hence the on-off keying is optimal
at low SNR in non-coherent Rayleigh fading MIMO channels.
Same input is shown to be optimal in [6] for SISO systems.
The probability distribution which optimises the channel

capacity with three mass points is shown in Fig. 3 with five
receive antennas. Similar to nr = 1, probability of the third
mass point is zero at low input power. Also, at low SNR, zero
mass point dominates with a high probability. Fig. 4 depicts
the Kuhn-Tucker condition (6) when Par = 1.4 for a single
receiver. As claimed in Lemma 1, it is above zero except the
optimal mass point locations where the Kuhn-Tucker condition
equals to zero.

0.01

0
-

0 0.5 1 1.5 2 2.5
Input Power

nr=

3 3.5 4 4.5

2: Loss in channel capacity with two mass points against three vs input
power for nr = { 1, 2, 3, 5}. High values shown at very low SNR is due to
oscillation of optimal mass points and should be ignored.
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3: Probability distribution of optimal mass points vs input power for nru
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weakly differentiable in S at xo for all xo in S, L is said to
be weakly differentiable in S or simply weakly differentiable.

The following theorem [10, Page 139] shows the necessary
and sufficient condition for a weakly differentiable convex
function to have an optimum.

Theorem 1: Suppose Q is weakly differentiable, so that for
all xo, y in its domain S,

Q(y) > Q(xo) + Q' (xo)(y - xo)
Let X denote the feasible set, i.e.

(23)

0 L
0 2 3

x
6

4: The Kuhn-Tucker condition (6) for Pay = 1.4, A = 0.08819532394409
and px(x) = 0.795492447823446(x) + 0.204443001134156(x -

2.6160) + 0.00006455105646(x - 4.1451). The channel capacity
C=0.23549289482526.

V. CONCLUSIONS

In this paper, we have shown that the capacity achieving
input distribution of a non-coherent uncorrelated Rayleigh
fading MIMO channel is discrete with a finite number of
mass points, one necessary located at the origin. The channel
capacity is computed numerically finding the optimal number
of mass points, their probabilities and locations. Optimality
is guaranteed when the optimal input distribution satisfies the
Kuhn-Tucker condition.
The conjectured capacities in [6] are actually achieved.

Furthermore, the simulation is extended to MIMO systems
and the capacities are presented against the input power for
multiple receivers. Although the capacity is shown numerically
at any SNR for any antenna configuration, there is a necessity
for a simple and easy way to determine the optimal input and
hence the capacity. For instance, results in a tabulated form of
the optimal mass point properties and the capacity for a given
input power constraint is highly desirable. These results are

far away from today's research and it is a challenge to look
at this problem in a different angle.

VI. APPENDIX

A. Proof of Lemma

The necessary and sufficient condition for an input
distribution to be optimal is derived in here proving the
Lemma 1 stated with Kuhn-Tucker condition. The following
definition is given in [11] for the weak differentiability on a

convex space.

Definition 1: Let S be a convex space, L a functional from
S into the real line R, xo afixed element of S, and 0 a number
in [0,1]. Suppose there exists a map LI0 -*-R such that

L (
A

lim L[(1- O)xo + Ox] -L(xo)
X,xo ) =

0 > 0 0
(22)

for all x in S. Then L is said to be weakly differentiable in
S at xo and L' is the weak derivative in S at xo. If L is

X = {fxQi(x) < O,i 1=l...,m, hi(x) = 0, i= l,...,p},
(24)

then xo is optimal if and only if xo C X and

Q (xo)(y -o) > 0 for all y C X. (25)

Geometrically, if Q' (xo) + 0 it means that -Q' (xo) defines
a supporting hyperplane to the feasible set at xo.
Using Theorem 1 on weekly differentiable concave functional,
we get the following.

Corollary 2: Assume L is weakly differentiable, concave

functional on a convex set S, If L achieves its maximum
on S at xo, then a necessary and sufficient condition for
L(xo) = max EsL(x) is that L0 < Ofor all x in S.

The following shows the Lagrangian theorem [10, Page
215-218] commonly being used to find optimal solutions in
both convex and non convex functions. Lagrangian theorem
always provides a lower bound, and in most cases the optimal
solution in the absence of a duality gap.

Theorem 2: Let X be a linear vector space, Z a normed
space, Q a convex subset of X, and P the positive cone in
Z. Assume that P contains an interior point. Let f be a real
valued concave functional on Q and G a convex mapping from
Q into Z. Assume the existence of a point xi C Q for which
G(xi) < 0. Let

(26)
sup

Po= xCQ f(x)
G(x) < 0

and assume u0 is finite. Then there is an element ZO* > 0 in
Z (the dual space of Z) such that

80 =
su

e ft (x) - G(x) Zo* )}(27)
Furthermore, if the supremum is achieved in (26) by an xo C
Q, G(xo) < 0, it is achieved by xo in (27) and KG(x), ZO*)
0.

Using the theorem 2, we can pose the optimisation problem
for channel capacity with A > 0

C = sup I(Gx) (28)
E{lxll} < P.,v

sup I(Gx) -Aq(Gx) (29)Gx' 9

Gx

Gx -A x2G x , 30)
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Note in here that all the conditions of the Lagrangian theorem
are satisfied. The set of input distributions of nonnegative
random variables forms a convex set, the mutual information
is a concave function of the input distribution [6, Appendix
I-B], and input power constraint is convex since it is a linear
functional of the input distribution. Next we will show that
both mutual information I(.) and the input constraint q(.) are
weekly differentiable functions.

Lemma 3: The mutual information It() defined in (3) and
q(.) defined in (30) are weekly differentiable functionals on 9
with weak derivatives

IGO(Gx) {p- (y; Gx) logpy(y; Go)dy

-2j log(1 + x2)dGx (x) -I(Go) + V(nir)
(31)

and
K (Gx) =5(Gx) -q(Go). (32)

Proof: We define

Go = (1- O)Go +OG, 0 C (0,1) (33)

where Go is the optimal input distribution. The difference in
mutual information obtained with two distributions Go, Go is
given by

I(Go) -I(Go) J P(y; Go) logpy(y; Go)dy

J py(y; Go) logpy(y; Go)dy
{23j log(1 +x2)dGo(x) j log(1 +x2)dGo(x)}.

(34)
Using

py(y; Go) = (1 -0)py(y; Go) + Opy(y; G)
and dGo = (1 -0)dGo + 0dG, we get

lim [1(Go) 1(Go)j P(;o1oP(;odlimF(G69 - IGo)2= jopy(y; Go) logpy(y; Go)dy

jP (y; G) logpy(y; Go)dy

2 {j log(1 + x2)dGo(x)
j log(1 +x2)dG(x)} (35)

Also note that

I(GO) JPY(Y; Go) logpy(y; Go)dy
2 j log(1 + X2)dGo(x) + V(nr). (36)

Substituting I(Go) in (36) into (35), we get (31). Similarly
we can write the first derivative of (.),
lim 0(Go)) - (Go)2 = , C2dxU-,zdo=(G)jGx)2dGx(x) j x2dGo(x)

q5(Gx) 5(Go), (37)

proving (32). X
Therefore I(Gx) and O(G)x are weakly differentiable

functions on 9. Using Corollary 2, and the weak differen-
tiability of I(Gx) and O(G)x, (29) achieves its maximum if
and only if

IG,(Gx) -AqGO(Gx) < 0. (38)

Using the results obtained for I' (Gx) in (31) and qO5 (Gx)
in (32) we get the following inequality

jO {j/o PYIx (y x) logpy (y; Go)dyiL dGx (x)

+ 2 j log(1 + x2)dGx(x) + C V(n,r)
+A (x2- Pav)dGx(x) > 0 VG C g (39)

in order to have a optimal point. The following theorem is
given in [6].

Theorem 3: Let Eo be the points of increase of a distribu-
tion function Fo. Then

[I(x; Fo) AX2]dFx (x) < C-APo

for all F C F if and only if

I(x;Fo) < C+A(x2VPa), x,

and

(40)

(41)

I(x; Fo) = C + A(x2 Pay), Vx Eo. (42)
Using Theorem 3 in (39), we obtain the necessary and suffi-
cient condition (6) for the function (30) to have a maximum.
This is known as the Kuhn-Tucker condition.
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