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Abstract- This paper presents an analytical model for the
fading channel correlation in general scattering environments.
In contrast to the existing correlation models, our new approach
treats the scattering environment as non-separable and it is
modeled using a bi-angular power distribution. The bi-angular
power distribution is parameterized by the mean departure
and arrival angles, angular spreads of the univariate angular
power distributions at the transmitter and receiver apertures,
and a third parameter, the covariance between transmit and
receive angles which captures the statistical interdependency
between angular power distributions at the transmitter and
receiver apertures. When this third parameter is zero, this new
model reduces to the well known "Kronecker" model. Using
the proposed model, we show that Kronecker model is a good
approximation to the actual channel when the scattering channel
consists of a single scattering cluster. In the presence of multiple
remote scattering clusters we show that Kronecker model over
estimates the performance by artificially increasing the number
of multipaths in the channel.

I. INTRODUCTION

Wireless channel modelling has received much attention
in recent years since space-time processing using multiple
antennas is becoming one of the most promising areas for
improvements in performance of mobile communication sys-
tems [1], [2]. In channel modelling research, the effects of
fading channel correlation due to insufficient antenna spacing
and sparse scattering environments are of primary concern as
they impact the performance of multiple-input multiple-output
(MIMO) communication systems.
A popular channel model that has been used in MIMO

performance analysis is the "Kronecker" model [3]-[5]. In this
model, the correlation properties of the MIMO channel are
modeled at the transmitter and receiver separately, neglecting
the statistical interdependency between scattering distributions
at the transmitter and receiver antenna apertures. Measurement
and analytical results presented in [6], [7] suggest that the
Kronecker model does not accurately model the underlying
scattering channel, therefore it does not provide accurate
performance results.

In this paper, using a recently proposed spatial channel
model [8], we develop an alternate to the Kronecker model
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which gives channel correlation for a general class of scat-
tering environments. In our proposed model, fading channel
correlation is parameterized by the antenna configuration de-
tails (spacing and the placement) both at the transmitter and
the receiver arrays, and the joint bi-angular power distribution
between transmitters and receivers, which models the scatter-
ing environment surrounding the transmit and receive antenna
apertures. The bi-angular power distribution is parameterized
by the mean departure and arrival angles, angular spreads of
the univariate angular power distributions at the transmitter
and receiver apertures, and a third parameter, the covariance
between transmit and receive angles which captures the sta-
tistical interdependency between angular power distributions
at the transmitter and receiver apertures. When this third
parameter is zero, i.e., the power distribution at the transmitter
is independent of the power distribution at the receiver, the
proposed correlation model reduces to the Kronecker model. In
order to model the scattering environment we propose several
bi-angular power distributions and also find the correlation
coefficients associated with these distributions in closed form.
Using the proposed model, we show that Kronecker model
is a good approximation to the actual channel when the
scattering channel consists of a single scattering cluster. We
also show that when the scattering channel consists of multiple
remote scattering clusters, the Kronecker model over estimates
the performance MIMO systems by artificially increasing the
number of scattering clusters in the scattering channel.

Notations: Throughout the paper, the following notations
will be used: Bold lower (upper) letters denote vectors
(matrices). [.]T, [.]* and [.]t denote the transpose, complex
conjugate and conjugate transpose operations, respectively.
The symbols 6(.) and X denote the Dirac delta function and
Matrix Kronecker product, respectively. The notation E }
denotes the mathematical expectation,vec(A) denotes the
vectorization operator which stacks the columns of A, .
denotes the ceiling operator and El denotes the unit circle.

II. SPATIAL CHANNEL MODEL

First we review the spatial channel model proposed in [8].
Consider a MIMO system consisting of nT transmit antennas
located at positions xt, t = 1, 2,... , nT relative to the
transmitter array origin, and nR receive antennas located at
positions Yr, r = 1, 2,... , nR relative to the receiver array
origin. rT > max XSZt 1 and rR > max 1 Yr 1 denote
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the radius of spheres that contain all the transmitter
receiver antennas, respectively. We assume that scatterers
distributed in the far field from the transmitter and recei
antennas and regions containing the transmit and rece
antennas are distinct.
By taking into account physical aspects of scattering,

MIMO channel matrix H can be decomposed into deterrr
istic and random parts as [8]

H = JRHSJT

where JR is the receiver configuration matrix,

J- MR(V1)
J- MR (V2)

JR =

J-MR (vnR)

*.* JM (V1 1)
* * JMR (V2)

R,

*** *JM (VnR) _

and
are
iver
-ive

the

Finally, Hs is the (2MR + 1) x (2MT+ 1) random complex
scattering channel matrix with (f, m)-th element given by

{Hs}tm IfJ ,g(,))eI(m-MT-l) eC- I(-MR-p)VdOd(p
(2)

in- representing the complex scattering gain between the
(m-MT- )-th mode of the scatter-free transmit region
and ( -MR -)-th mode of the scatter-free receiver region,

(1) where g(¢P, o) is the effective random complex scattering
gain function for signals with angle-of-departure q from
the scatter-free transmitter region and angle-of-arrival O at
the scatter-free receiver region. The reader is referred to
[8] for more information about the channel decomposition (1).

The correlation matrix of the MIMO channel H given by
(1) can be written as

and JT is the transmitter configuration matrix,

F -MT (U 1) ... JMT (Ui)
L MT (U2) ... JMT (U2)

JT = : . :

L MT (UnT) JMT (UnT) I

where Jn(x) is the spatial-to-mode function (SMF) which
maps the antenna location to the n-th mode of the region.
The form which the SMF takes is related to the shape of
the scatterer-free antenna region. For a circular region in 2-
dimensional space, the SMF is given by a Bessel function of
the first kind [8] and for a spherical region in 3-dimensional
space, the SMF is given by a spherical Bessel function [9].
For a prism-shaped region, the SMF is given by a prolate
spheroidal function [10].

Here we consider the situation where the multipath is
restricted to the azimuth plane only (2-D scattering envi-
ronment), having no field components arriving at significant
elevations. In this case, the SMF is given by

Jn(w) Jn(klw )etn(4. 7F2),

where Jn(.) is the Bessel function of integer order n, vector
w _ ( wl, w) in polar coordinates is the antenna location
relative to the origin of the aperture which encloses the
antennas, k = 27/A is the wave number with A being the
wave length and = . JT isnTrx(2MMT+ 1) and JR
is nRX(2MR + 1), where 2MT + 1 and 2MR + 1 are the
number of effectivel communication modes at the transmit and
receive regions, respectively. Note, MT and MR are defined by
the size of the regions containing all the transmit and receive
antennas, respectively [11]. In our case,

Mr FkrT1 and MR LkeRlR

where e - 2.7183.

'Although there are infinite number of modes excited by an antenna array,
there are only finite number of modes (2M + 1) which have sufficient power
to carry information.

R = E {hht} = (JT ( JR) RS(JTT ( JR):
where h = vec (H) and RS the modal correlation matrix of
the scattering channel,

Rs = E {hsh}

with hs = vec (Hs). Modal correlation matrix RS can also
be written as a block matrix of (2MT+1) X (2MT+ 1) blocks,
each of size (2MR + 1) x (2MR + 1),

[ Rs,, Rs,,2 ... RS,1,2MT+1

RS RS,2, RS,2,2 ... RS,2,2MT+1

Rs,2M,+1,1 Rs,2M,+1,2 ... Rs,2MR+1,2MT+1

where Rs,m,m, is the correlation between m-th and m'-th
columns of Hs. A diagonal block Rs,m,m gives the modal
correlation matrix at the receiver region due to the m-th mode
at the transmit region whereas off diagonal blocks Rs,m,m,
give the cross correlation between two distinct modal pairs at
the transmit and receiver apertures.

A. Modal Correlation in General Scattering Environments

Using (2), we can define the modal correlation between
complex scattering gains as

Ym m'-E { Hs ,mTm HsIm f . (3)

Substituting (2) in (3) gives

r,m' =] {gi(MMT1g (' i T}neMTMT -1)
e iCC-MR- 1)l½ ei(C' -MR- 1) f dXdfdX df,(4)

where we have introduced the shorthand f4=Affff1 X 51
Assume that the scattering from one direction is independent

of that from another direction for both the receiver and
the transmitter apertures (WSSUS). Then the second-order
statistics of the scattering gain function g(1, ) is given by

E {g(q,y5)g (5', y5')} G(o, )6(0 - 0)c(o) o ),
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where G(O,y5) = E{ g(Q,5) 2} is the 2D joint azimuth
power spectral density2 (PSD) over departure and arrival
angles a and o of the scattering channel, normalized such
that the total scattering channel power

Jf/ ~G(O,)dd = 1.

Using this assumption, the modal correlation coefficient (4)
can then be simplified to

2/m,m' )m "

"YffI = ITf-lx

which gives the (f, £')-th element of Rs,m,m'.

Since the scattering gain function g(Q, o) is periodic in both
X and X, the joint PSD function G(q, o) is also periodic
in both q and ~o. Therefore, using the orthogonal circular
harmonics einf as the basis set, G(Q, o) can be expanded
in a 2-D Fourier series as,

withcoefficientspe-iqoeipo
p=-o0 q=-00

with coefficients

(6)

By comparing (6) with (5), we can see that entries of Rs
are given by 2-D Fourier coefficients of the joint PSD function
G(Q, so). Furthermore, from (5), it is evident that the entries of
Rs are dependent on the joint PSD G(q, o), which is usually
parameterized by the mean departure and arrival angles 00, 00,
angular spreads ort and or for distributions at the transmitter
and receiver apertures, and the covariance

p = cov(O, 0) E {X9}-r0o
(7t (Jr

between transmit and receive angles.
From (5), the correlation between £-th and £'-th modes at

the receiver region due to the m-th mode at the transmitter
region is given by

a/ = RxR( O C 'do (8)

where PRX ( O) is the average power density of the scatterers
surrounding the receiver region, given by the marginalized
PSD

PRx(Y3) J1G(o, o)do.

Similarly, the correlation between m-th and m'-th modes at the
transmitter region due to the f-th mode at the receiver region
is given by

"Ym,m/ = JPTr(L)ei(m m' do,
I1

(9)

where 'PTX (X) = f1 G(q, o)do is the average power density
of the scatterers surrounding the transmitter region.

2also called bi-angular power distribution or joint scattering distribution.

B. Kronecker Model as a Special Case

When the covariance between departure and arrival angles
is zero, p = 0, the joint PSD can then be expressed as
the product of scattering distributions at the transmitter and
receiver regions, i.e.,

G(q, T)=rx (0)PRx (O)
This separability condition leads to the well known 'Kro-

necker' model [5], [7], [12], where we have

RS = FT ( FR
with FT the (2MT + 1) X (2MT + 1) transmitter modal
correlation matrix and FR the (2MR+ 1) x (2MR+ 1) receiver
modal correlation matrix. The (im, m')-th element of FT is
given by (9) and the (f, £')-th element of FR is given by (8).
The separability of G(Q, o) when p = 0 also yields that
* modal correlation at the transmitter /m, m' is independent

of the mode selected from the receiver region,
* modal correlation at the receiver y is independent of

the mode selected from the transmitter region and
* correlation between two distinct modal pairs is the prod-

uct of corresponding modal correlations at the transmitter
and the receiver,

In the Kronecker model, diagonal blocks RS,m,m and
off-diagonal blocks RS,mmT, of RS are given by FR and
1T)m,m'FR, respectively.

III. BI-ANGULAR SCATTERING DISTRIBUTIONS

In this section, we outline several examples of bi-angular
scattering distributions along with their modal correlation
coefficients (5), which give the entries of the modal correlation
matrix Rs.

A. Uniform Limited azimuth field
When the energy leaves uniformly to a restricted range of

azimuth (o- At: ¢ + At) at the transmitter and to arrive at
the receiver uniformly from (oo -Ar, yoo +Ar,) then following
Morgenstern's family of distributions [13], we have the joint
uniform limited azimuth scattering distribution

Gu($, Wo)
1 p(- 5o)GP - (o)

AtA 4A2
for q (-1o/5 < At and l- oo < Ar, and 0 elsewhere.
The parameter p is the covariance between b C [-7, 7) and
O C [-7, w7), which controls the flatness of GuQ(7, so). In this
case, the modal correlation coefficients (5) are given by,

sinc((m- m')At)ei(m- m)'° if L =' and mn-rm'
3rr>m'= <sinc(( -£')Ar)e -£'½, if f£#1' and m=m'

j ei((m m')fo - £'>po)p&) otherwise

where Fmf1, is given by (10). Note that Gu(q,y5) has
marginal distributions PTX(0) = 1/2 At for 0 C (Co-
At, XO + At) and zero elsewhere, and 'PRX(Y) = 1/2 Ar
for o C (oo -Ar,, oo + Ar) and zero elsewhere, with

7th Australian Communications Theory Workshop

(5)

/3P = G(O. ciq0d(pdo.q (P)C-ip.o
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corresponding transmit and receive modal correlation coef-
ficients -/m,m' = sinc((m m-')At)ei(m-m')OO and ty'j =

sinc(( -£')Ar)e )'½ respectively. For At = w and
Ar = w with p = 0 (isotropic scattering), we have uniform
PSD Gu (q, o) = 1/472 and the modal correlation coefficients
become,

1j,' =m?m'n-n
corresponding to i.i.d. elements of HS. In this special case,
the correlation matrix R takes the form

R =(JT JTf) (JR JR0).
B. Truncated Gaussian Distributed Field

A distribution that can be used to model the joint PSD is
the truncated Gaussian bivariate distribution, defined as

GG(¢),(p) = QGexp [2(1Q p2)] O5~eswc-7 ),

where QG is a normalization constant such that
f fil GG(¢)Yp)ddfo = l and

(0_50)2 2p(<-o)G- (°) + (fofo)2
(72 (+t (Jr (72t r~~t~

with 0 the mean AOD at the transmitter, o7t the standard
deviation of the non-truncated marginalized PSD at the
transmitter, 9o the mean AOA at the receiver, (Jr the
standard deviation of the non-truncated marginalized PSD
at the receiver and p is the covariance between receive
and transmit angles, as defined by (7). In this case, finding
modal correlation coefficients in closed form poses a much
harder problem. However, if the angular spread at the both
end of the channel is small, then a good approximation for
the truncated Gaussian case can be obtained by integrating
over the domain (-oo, ox), since the tails of marginalized
PSDs cause a very little error. Using a result found in [14],

4m,MM exp(i((m m'>y5o-(-( ')cpO)
1 (t2 (m_m/n)2 -2puto>(m-m)(f ) + o72(-_/)2)))

C. Truncated Laplacian Distributed Field

Similar to the truncated Gaussian distribution, an elliptical
truncated bivariate Laplacian distribution can be defined as
[15]

GL(¢),4$) QLKO (V (P$)) 475pewoc-7 ),

where QL is a normalization constant such that
f fsl GG(¢), Wo)dqdo = 1 and Ko(.) is the modified
Bessel function of the second kind of order zero. The modal
correlation coefficients (5) for this distribution are given by

e,m'I_ exp((imT'-pTo(m-m')o(- ')+f+o)Im,m/ 0J2(M-m/)2 - 2poJtoJ,(m-m/)(f -fl) + ar2(f -f/) 2 + I'

IV. SIMULATION EXAMPLES

In this section we compare the performance of MIMO com-
munication systems operating in separable (kronecker channel
with p = 0 in (5)) and non-separable scattering environments.
We consider transmit and receive apertures of radius 0.5A,

corresponding to 2F7eO.51 + 1 = 11 effective communication
modes at each aperture. Within each aperture, we place three
antennas in a uniform circular array (UCA) configuration (3 x 3
MIMO channel). The system performance is measured in
terms of the average mutual information. Here we assume
transmitter has no knowledge about the channel and the
receiver has the full knowledge about the channel. In this case,
the average mutual information is given by

IT = E {1og2 In, + HHt},

where y is the average symbol energy-to-noise ratio (SNR) at
each receiver antenna.
Assuming R is a positive definite matrix, a realization of

the MIMO channel H is obtained by forming

vec (H) = R1/2 vec (W),

where R1/2 is the positive definite matrix square root of R
andW is a nR X nT matrix which has zero-mean independent
and identically distributed complex Gaussian random entries
with unit variance.

25F
Non-separable Model p = 0.8

O Kronecker model
-- i.i.d. channel

20

N

;iv
a. 15

10

0 3 6 9 12 15 18 21 24
SNR (dB)

1: Average mutual information of 3-transmit UCA and 3-receive UCA MIMO
system in separable (Kronecker with p = 0) and non-separable (p = 0.8)
scattering environments: bivariate truncated Gaussian azimuth field with mean
AOD = 90°, mean AOA = 900, transmitter angular spread at = 10° and
receiver angular spreads a, = {30, 10 }.

Figure 1 shows the average mutual information for a
bivariate truncated Gaussian distributed azimuth field with
p = 0.8. It was shown in [16] that performance of UCA
antenna configuration is less sensitive to change of mean
AOD (0o) and mean AOA (foo). Therefore, without loss of
generality, we set 0 = oo = 900. Also, in this simulation, we
set transmitter angular spread ort = 100 and receiver angular
spreads (Jr = {300, 100}. For comparison, also shown is the
average mutual information of the 3 x 3 i.i.d. MIMO channel.
We observe that when (7r = 300, both models give very similar
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rtmm,= sinc((m- m')At)sinc((1f -')A,) + ( f)(T-T) x

[cos((mmm-m)rt)-sinc((m -m/)t)] [sinc((m- m')A)-cos((A-r )A,)] - (10)

performance for all SNRs. When the angular spread at the
receiver is small, e.g. or = 100, we can observe that the
Kronecker model gives slightly higher performance than the
non-separable model for higher SNRs. However, the margin
of capacity over estimation is insignificant in comparison with
the i.i.d. channel capacity performance. Therefore, Kronecker
model provides a good estimation to the actual scattering
channel when the joint scattering distribution is uni-modal.
Reasoning for this claim will be discussed in the next section.

A. Capacity in Multi-Modal Bivariate Azimuth Fields

A multi-modal azimuth power distribution arises when
there are two or more strong multipaths exist in a fading
channel. This may be the result of multiple remote macro-
scopic scattering clusters, for instance. A multi-modal bivariate
distribution can be constructed from a mixture of uni-modal
bivariate distributions. Fig. 2 shows a multi-modal bivariate
Gaussian distributed azimuth field with 3 modes centered
around (b0, po) {(-40°, 40), (00, -400) ,(50 0,0)}, each
mode with angular spreads or = ort 50 and p= 0.8. Note
that, in this case the effective angular spreads at the receiver
and transmitter are larger than 50.

25

20

415 -

CD 10

510

100

rx angle v (degrees) -100 -100
tx angle (degrees)

2: An example multi-modal bivariate Gaussian distributed azimuth field.
We now consider the 3 x 3 antenna configuration setup

discussed in the previous example. Fig. 3 shows the average
mutual information of it applied on the multi-modal scattering
distribution shown in Fig. 2. It is observed that Kronecker
model tends to overestimate the average mutual information
at high SNRs. Unlike in the uni-modal case considered pre-
viously, the margin of error seen here is quite significant,
especially at high SNRs. Following the analysis given in [7],
we now provide reasons for Kronecker model to overestimate
the mutual information for the scattering distribution shown
in Fig. 4.

20

N

;15n 1

-0

a) 10

0 3 6 9 12
SNR (dB)

15 18 21 24

3: Average mutual information of 3-transmit UCA and 3-receive UCA MIMO
system for separable and non-separable scattering channel considered in Fig.
2.

The joint PSD of the Kronecker model is given by
G(q5,y) = 'PTx ($)PRx(QO), where PTx (X) and PRx(Y3) are

the transmit and receive power distributions, generated by
marginalizing G(q, so). Fig. 4 shows the Kronecker model
PSD G(q, p) of the scattering channel considered in Fig. 2.
Comparing Fig. 4 with Fig. 2 we can observe that G(q, o)
consist of six extra modes, corresponding to additional six
scattering clusters. Therefore, Kronecker model introduces
virtual scattering clusters located at the intersection of the
actual scattering clusters. As a result, Kronecker model will
increase the effective angular spread at the transmit and re-
ceive apertures (lower modal correlation) and hence improved
system performance. Therefore, the popular Kronecker model
does not model the MIMO channel accurately when there exist
multiple scattering clusters in the channel. These observations
match the measurement results published in [6].
Now we consider the uni-modal PSD used in our first

simulation example. Fig. 5 shows the corresponding Kronecker
Model PSD G(q, () for this channel, for or = 100 and
(7t = 100. In this case the Kronecker model does not introduce
any additional virtual scattering clusters into the channel. As a
result, no increase in the number of multipaths of the channel,
hence both models give very similar performance.

V. CONCLUSIONS

We presented a MIMO channel correlation model which is
capable of capturing antenna geometry and joint correlation
properties of both link ends. The scattering environment
surrounding the transmitter and receiver apertures is modeled
using a bi-angular power distribution. We use the covariance
between transmit and receive angles to control the joint
correlation properties between transmit and receive angular
power distributions.
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o 3

.

-o

1 -

100

rx angle v (degrees)

A11 Ai1tl,1

-100 -100
tx angle p (degrees)

4: Kronecker model PSD G(5, qo) = PT (x PRx (GO) of the non-separable
scattering distribution considered in Fig. 27

12

10

200 \A
100

-100

rx angle v (degrees)

-100
-200 -200

tx angle (degrees)

5: Kronecker model PSD G(7,qo) = PTx(4)PRx G() of the uni-modal
non-separable scattering distribution used in the first example to obtain the
results in Fig. 1 for a, = 10°.

We showed that 2-D Fourier series coefficients of the bi-
angular power distribution and transmit and receive antenna
sampling points contribute to the entries of the correlation
matrix. We proposed several bi-angular power distributions
and their 2-D Fourier series coefficients in closed form.

Using the proposed model, we show that Kronecker model
is a good approximation to the actual channel when the
scattering channel consists of a single scattering cluster. In the
presence of multiple remote scattering clusters we show that
Kronecker model over estimates the performance of MIMO
systems by introducing virtual scattering clusters into the

channel. Therefore, in this case, Kronecker model cannot be
used to represent the channel.
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