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Abstract— Communication over a discrete time-varying Rician
fading channel is considered, where neither the transmitter nor
the receiver has the knowledge of the channel state information
(CSI) except the fading statistics. We provide closed form
expressions to the mutual information under both average and
peak input power constraint when its distribution is complex
Gaussian. The results are compared with the existing capacity
results showing the importance of the perfect CSI at the receiver
at moderate and high signal to noise ratio (SNR). Furthermore,
we show that the peak input power constraint gives better mutual
information compared to the average power constraint input in
Rician fading. Also, we show the information loss with a Gaussian
distributed input compared to channel capacity is negligible at
low SNR. Hence, there is no penalty for not knowing the channel
perfectly at the receiver in the low SNR regime.

Index Terms— Channel capacity, mutual information, Rician
fading, Gaussian-quadrature, differential entropy

I. INTRODUCTION

Optimal information transfer over fading channels is a
prime challenge in wireless communications. The knowledge
of channel capacity and the optimal input distribution in
fading channels motivates to develop powerful codes such as
Turbo codes which enable us to operate near Shannon limits.
Unlike the non-fading channel [1], and coherent Rayleigh
fading channels [2]–[5], finding the capacity and optimal input
distribution of non-coherent fading channels is considered as
a difficult problem in the literature.

The independent and identically distributed (i.i.d.) Gaussian
is the capacity achieving input distribution in non-fading
channel [1], Rayleigh fading channel with CSI [6]. Further-
more, white complex Gaussian input achieves the capacity
in coherent Rician fading channel [7]. However, the optimal
input distribution of the non-coherent fading channel is not
Gaussian. In this paper, we consider information transfer over
a non-coherent Rician fading channel when the input distri-
bution is complex Gaussian. We show the mutual information
under both average and peak power limited Gaussian inputs in
closed form and compare with channel capacity. Our results
prove that the channel knowledge at low SNR does not provide
a significant capacity improvement.

Communication over a non-coherent Rayleigh fading chan-
nel with average input power constraint is initially considered
by Richters [8] in which he conjectured that the capacity
achieving input distribution is discrete with a finite number of
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mass points. Richters’s work is extended by Abou-Faycal [9]
with a meticulous proof for the optimal input from which the
capacity is computed numerically using convex optimisation.
The channel capacity is found numerically identifying the
optimal number of discrete inputs, their probabilities, and
locations which satisfy the Kuhn Tucker condition for opti-
mality for a given input power. Extending this work, Gursoy,
Poor and Verdu [10] considered the communication over non-
coherent Rician fading channels under both average and peak
power limited inputs. It is shown that in both cases, the input
distribution is discrete with a finite number of mass points.
Similar to [9], numerical capacity results for Rician channel
is found in [10].

We deploy the discrete input shown in [10] for capacity
analysis to compare with mutual information obtained when
the input distribution is complex Gaussian. The integrals are
presented in closed form using the Gaussian quadrature where
abscissas are precisely the roots of corresponding orthogonal
polynomial and weighting functions which normalise orthog-
onal functions [11].

II. RICIAN MODEL

We consider the following time-varying memoryless Rician
fading channel model

y = mx + ax + n. (1)

Random variables a, n which represent the channel fading
and noise respectively are i.i.d. circular symmetric1 zero mean
complex Gaussian. It is assumed that both a, n are independent
of each other and of the input with a unit variance (i.e. the
variance in each dimension is 1/2). m is the deterministic
complex constant. x and y denote the channel input and output.
In (1), the time index is omitted for simplicity.

The Rician model (1) is appropriate when there is a line of
sight (LOS) component present in addition to the multipath
signals. In such a situation, random multipath components
arriving at different angles are superimposed on a stationary
dominant signal, having the effect of adding a dc component to
the random multipath. Further, the Rician model includes both
unfaded Gaussian channel and the Rayleigh fading channel as
two special cases.

1The distribution of a complex variable ω is said to be circularly symmetric
if for any deterministic −π ≤ θ ≤ π, the distribution of random variable
ejθω is identical to the distribution of ω.



In (1), the fading is assumed to be flat. This assumption
is valid when the channel has constant gain and linear phase
response over a bandwidth which is greater than the bandwidth
of the transmitted signal. Also it is assumed that the fading
is independent at every symbol period, hence the channel
coherence time is one. In fast fading systems or with a mobile
receiver, the channel estimation may become difficult through
the training sequence. Hence, we consider the non-coherent
case where both the transmitter and receiver has no CSI except
the fading statistics.

We use random variables x ∈ X and y ∈ Y to represents
specific values of the channel input and output respectively.
Also we use h(·) for differential entropy, I(·; ·) for mutual
information and Ei(·) for the exponential integral.

III. PEAK POWER LIMITED RICIAN CHANNEL

A. Mutual Information
Consider the non-coherent Rician fading channel with the

peak power constraint input |x|2 ≤ Pp. The mutual informa-
tion of channel model (1) is given by

I(X;Y ) =

∫

C

∫

C

fY |X(y|x)fX(x)

× log

[

fY |X(y|x)
∫

C
fY |V (y|v)fV (v)dv

]

dxdy, (2)

where the conditional probability density function (pdf) of the
output given input [12]

fY |X(y|x) =
1

π(|x|2 + 1)
exp

(−|y − mx|2
|x|2 + 1

)

. (3)

In (2), C denotes the complex domain. Since the channel out-
put y has a finite second moment, we can find the differential
entropy h(y|x).

Lemma 1: Differential entropy of the output given input in
the channel model (1) is given by

h(Y |X) = Ex{log[πe(1 + |x|2)]} ≥ log(πe). (4)

Proof: See Appendix VII-A.

Jensen’s inequality [13] provides the upper bound
h(Y |X) ≤ log[πe(1 + Pa)] where Pa is the average power
constraint at the input. Unlike Rayleigh fading [14], Rician
fading carry the phase information when the channel is un-
known. Therefore, phase carry information for |m| > 0. We
use the polar coordinates

x = uejφ, y = vejψ u, v ≥ 0 φ, ϕ ∈ [−π, π) (5)

where u, φ are the input magnitude and phase respectively and
v, ϕ are the magnitude and phase of the received signal. The
following result is shown in [10].

Theorem 1: Mutual information (2) of the non-coherent
Rician fading channel is bounded by

I(X;Y ) ≤ h(v) + log(2π) +

∫ ∞

0

fV (v;FU )log vdv

−
∫ ∞

0

log[πe(1 + u2)]dFU (u) (6)

with equality for independent v and φ with uniformly dis-
tributed φ. Further, the upper bound in (6) is achieved by
independent u and φ with φ uniformly distributed.
FU (·) is the cumulative distribution function of input magni-
tude of the channel. Define

r = v2, s = u r, s ≥ 0, (7)

where h(S) = h(U), s ∈ S and u ∈ U . The output
differential entropy is given by

h(R) = h(V ) +

∫ ∞

0

fV (v)log(2v)dv, (8)

where r ∈ R and v ∈ V . We use the upper bound in (6) with
φ uniformly distributed as the mutual information. Substituting
h(V ) from (8) in (6) we get

I(X;Y ) = h(Y ) − h(Y |X) = h(R) − h(R|S) (9a)

= h(R) −
∫ ∞

0

log(1 + s2)dFS(s) − 1. (9b)

The new output differential entropy

h(R) = −
∫ ∞

0

{
∫ ∞

0

fR|S(r|s)dFS(s)

}

× log

{
∫ ∞

0

fR|S(r|s)dFS(s)

}

dr (10)

can be found with the knowledge of fR|S(r|s). This condi-
tional pdf of the Rician channel output given the input is given
by [12]

fR|S(r|s) =
1

(1 + s2)
exp

(

−R + Ks2

1 + s2

)

I0

(

2
√

Ks
√

R

1 + s2

)

(11)
where K = |m|2/E{|a|2} = |m|2 is the Rician factor.

B. Non-Coherent Rician Capacity

Using mutual information derived in (9a), we can pose the
channel capacity

Cpeak =
sup
FS(·)

|s|2≤Pp

I(S;R) (12)

which depends on the Rician factor K and the input power
constraint Pp. The following theorem is given [12] for the
capacity.

Theorem 2: For the non-coherent Rician fading channel (1)
where the input is subject to a peak power constraint |x|2 ≤
Pp, uniformly distributed input phase that is independent of
the amplitude is optimal and the capacity achieving amplitude
distribution is discrete with a finite number of mass points.

Using theorem 2, the mutual information for the discrete
input fS(s) =

∑N

i=1 piδ(s − si) with probabilities pi,

Ipeak(S;R) = −
N
∑

i=1

∫ ∞

0

pifR|S(r|si)log
[

N
∑

i=1

pifR|S(r|si)
]

dr

−
N
∑

i=1

pilog(1 + si
2) − 1. (13)



The channel capacity

Cpeak =
sup

|s|2 ≤ Pp
Ipeak(S;R) (14)

can be computed numerically using the Kuhn Tucker [15]
condition for optimality.

C. Mutual Information with Gaussian Input
The capacity achieving input distribution is Gaussian in

channel (1) when the CSI is perfectly known at the receiver
only or at both the transmitter and receiver [7]. Since the
optimal input distribution is discrete, we look at the mutual
information achieved when the input distribution is complex
Gaussian.

For a Gaussian distributed input x, with an average power
constraint E{|x|2} ≤ Pa, the distribution of s

fS(s) =
2s

Pa
exp

(

− s2

Pa

)

, 0 ≤ s ≤ ∞ (15)

is Rayleigh. Since the input is peak power limited, we define
the truncated and normalised input as the distribution of s.
The new pdf is given by

fTS(s) =
2s

Pa(1 − e−ν)
exp

(

− s2

Pa

)

, 0 ≤ s ≤
√

Pp (16)

where ν is the peak to average power ratio.
Lemma 2: Mutual information of the non-coherent Rician

fading channel when the input distribution is complex Gaus-
sian with peak power constraint is given by (9a) where

h(R) = −
n
∑

`=1

m
∑

j=1

2WjA`νe−ντ`
2

exp
(

− KPpτ`
2

1+Ppτ`
2

)

(1 − e−ν)log( 1
τ`

)

× Io

(

2
√

KPpκjτ`
√

1 + Ppτ`2

)

log

{

n
∑

i=1

2WiAiνe−ντi
2

(1 + Ppτi2)(1 − e−ν)

×
exp

(

− KPpτi
2

1+Ppτi
2

)

log( 1
τi

)
exp

(

−κj(1 + Ppτ`
2)

1 + Ppτi2

)

× I0

(

2τi
√

KPpκj
√

1 + Ppτ`2

1 + Ppτi2

)}

(17)

and

h(R|S) =
1

(1 − e−ν)

{

exp

(

ν

Pp

){

Ei

[

−
(

ν(1 + Pp)

Pp

)]

−Ei

(−ν

Pp

)}

− e−ν log(1 + Pp)

}

+ 1. (18)

Proof: See Appendix VII-B.

Both (17) and (18) are shown in closed form using
Gauss-Legendre and Gauss-Laguree quadrature. A, W are
the weights and τ , κ are the roots of Legendre and Laguree
polynomials respectively. Using lemma 2, the mutual infor-
mation when the input distribution is complex Gaussian with
peak constraint input power can be computed numerically.
The roots and the weights are in tabulated form [11] where
the computations error is zero upon proper selection of the
polynomial order.

IV. AVERAGE POWER LIMITED RICIAN CHANNEL

A. Mutual Information

We consider the Rician channel model (1) with the phase
noise in the line of sight (LOS) component. The new channel
model is given by

y = mejϑx + ax + n (19)

where ϑ is assumed to be an i.i.d. uniform random variable on
[−π, π). It is assumed that both a and ϑ are known by neither
the receiver nor the transmitter. Here we consider the input is
average power constraint, E{|x|2} ≤ Pa. To obtain the output
conditional pdf, we use the following theorem [10].

Theorem 3: In a non-coherent Rician fading channel (19)
with a phase noise in the LOS component, the channel output,
y, is conditionally Gaussian given x and ϑ. The conditional
probability distribution of the channel output given input,

fY |X(y|x) =
1

π(1 + |x|2)exp

(

−|y|2 + |m|2|x|2
1 + |x|2

)

× I0

(

2|m||y||x|
1 + |x|2

)

. (20)

Introducing new random variables z = |y|2, g = |x|, the
conditional distribution of z given g can be obtained:

fZ|G(z|g) =
1

1 + g2
exp

(

−z + Kg2

1 + g2

)

I0

(

2
√

Kzg

1 + g2

)

(21)

where the Rician factor K = |m|2 and g ∈ G, z ∈ Z. Since
the above transformations are one to one, we have

I(X;Y ) = I(|X|; |Y |) = I(G;Z). (22)

The mutual information of Rician channel (19) with phase
noise is given by

I(Z;G) = h(Z) − h(Z|G) (23a)

= −
∫ ∞

0

fZ(z) log[fZ(z)]dz

− Eg

{
∫ ∞

0

fZ|G(z|g)log[fZ|G(z|g)]dz

}

(23b)

where fZ(z) =
∫∞

0
fZ|G(z|g)fG(g)dg.

B. Capacity

The channel capacity

Cave =
sup
FS(·)

E|s|2≤Pa

I(G;Z) (24)

depends on the Rician factor K and the constraint Pa. The
following theorem [10] characterises the capacity achieving
input in channel model (19).

Theorem 4: For the non-coherent Rician fading channel
with phase noise (19) where the input is subject to an average
power constraint E{|x|2} ≤ Pa, the capacity achieving input
amplitude distribution is discrete with a finite number of mass
points.



Hence, the mutual information for the discrete input FG(g) =
∑N

i=1 piδ(g − gi):

Iave(G;Z) =

N
∑

i=1

∫ ∞

0

pifZ|G(z|gi)

× log

[

fZ|G(z|gi)
∑N

j=1 pjfZ|G(z|gj)

]

dz (25)

can be used to compute the capacity

Cave =
sup

E{|s|2} ≤ Pa
Iave(G;Z). (26)

The optimal mass point probabilities and their locations are to
be found verifying the Kuhn Tucker condition [15].

C. Mutual Information with Gaussian Input

For the average power constraint input E{|x|2} ≤ Pa,
we use the distribution (15) when its distribution is complex
Gaussian.

Lemma 3: Mutual information of non-coherent Rician fad-
ing channel with phase noise in the LOS component, and the
input is average power constraint complex Gaussian is given
by (23a) where

h(Z) = −
n
∑

`=1

m
∑

j=1

2Wjω`v`exp

(

− KPav`
2

1 + Pav`2

)

× I0

(

2v`
√

KκjPa

1 + Pav`2

)

log

{

n
∑

i=1

2ωivi
1 + Pavi2

× exp

(

−κj(1 + Pav`
2)

1 + Pavi2

)

exp

(

− KPavi
2

1 + Pavi2

)

× I0

(

2vi
√

KκjPa(1 + Pav`2)

1 + Pavi2

)}

(27)

and

h(Z|G) = −
n
∑

i=1

m
∑

j=1

2Wiωjvjexp

(

− KPavj
2

1 + Pavj2

)

× I0

(

2vj
√

KκiPa
√

1 + Pavj2

)

log







e−κiexp
(

KPavj
2

1+Pavj
2

)

1 + Pavj2

× I0

(

2vj
√

KκiPa
√

1 + Pavj2

)}

. (28)

Proof: See Appendix VII-C.

Both (27) and (28) are shown in closed form using Gauss-
Laguree and Gauss-Hermite quadrature. W , ω are the weights
and κ, v are the roots of Laguree and Hermite polynomials
respectively [16]. From the expressions (27) and (28), the
mutual information of Rician channel (19) can be computed
numerically at any SNR.
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Fig. 1. Mutual information of a non-coherent Rician fading channel when
the input distribution is complex Gaussian for both average and peak power
constraint inputs.
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Fig. 2. Mutual information of non-coherent Rician fading channel for the
Gaussian distributed input with peak power constraint. The figure shows the
mutual information for peak to average power ratio, ν ∈ {2, 10}.
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Fig. 3. Capacity loss with mutual information obtained with the Gaussian
input under average power constraint. At very low SNR, Gaussian distribution
gives mutual information close to the channel capacity.
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Fig. 4. Capacity loss with mutual information obtained with the Gaussian
input under peak power constraint, ν = 2. At very low SNR, Gaussian
distribution gives mutual information close to the channel capacity.

V. NUMERICAL RESULTS
Using the closed form expressions derived in Lemma 2,

and 3, the mutual information can be numerically computed
precisely. The roots and weighting factors of the quadrature
polynomials are available in tabulated form [11], [16]. Fig.
1 depicts the mutual information when the input distribution
is complex Gaussian under both average and peak power
constraints. Mutual information is bounded by SNR in both
cases for each Rician factor, K ∈ {0, 1, 2, 3}. Furthermore,
the mutual information with only the peak power constraint
is dominant except for K = 0, in case of Rayleigh fading
where no LOS component present. Our results show that in
Rayleigh fading, the mutual information is optimal when the
input is average power constraint than peak.

The channel response for various peak to average power
ratio ν is observed under the peak power constraint. Fig.
2 shows the mutual information for ν ∈ {2, 10} with the
average input power for each Rician factor K. The increase
in mutual information is noted as ν increases.

Channel capacity under the peak and average power con-
straint inputs can be numerically computed using Theorems 2
and 4 respectively. Fig. 3 and 4 depict the loss in capacity in
each case when the input is Gaussian distributed instead of the
optimal. At low SNR, it is clear that loss is insignificant. Hence
it is hard to distinguish the difference in mutual information
and capacity. The i.i.d. Gaussian is the optimal input in
coherent Rician channel [7]. At very low SNR the same
distribution gives mutual information close to the capacity
when neither the receiver nor the transmitter has perfect CSI.
Therefore, the knowledge of CSI at very low SNR is not
important.

The loss increases at high SNR since the mutual information
in both cases is bounded by the SNR. Therefore, the % loss
in capacity at particular SNR compared to mutual information
also increases.

Consider two SNR’s SNR2 > SNR1 > 20dB where
the capacities are C1, and C2. Since the channel capacity
is monotonically increasing with SNR, C1 < C2. Define

the corresponding mutual information M1 and M2 where
M1 ' M2 = M . This assumption is valid since the mutual
information when the input distribution is Gaussian is bounded
by the SNR. For SNR > 20dB, the rate of increase is very
slow. The fractional loss in capacity in both cases L1 =
(C1 − M)/C1 < 1, and L2 = (C2 − M)/C2 < 1 are related
by

L2 − L1 = (1 − L1)

(

1 − C1

C2

)

> 0, (29)

indicating the significance of optimal input at high SNR.

VI. CONCLUSIONS
In this paper, we investigated the mutual information of

the Rician fading channel with both average and peak power
constraint input when its distribution is complex Gaussian.
The purpose of this exercise is to identify the performance
of Gaussian signalling in the presence of LOS component
compared to traditional Rayleigh fading.

The performance of Gaussian signalling is proven poor
at high SNR. However, in the low SNR regime the mutual
information obtained under both average and peak input power
constraint approximately match the channel capacity. Since
the i.i.d. Gaussian distribution is optimal in coherent Rician
channels, in the low SNR regime, it provides the mutual in-
formation close to non-coherent capacity. The specular (LOS)
component with K > 0 can transfer most of energy without
significant reduction in mutual information in which the peak
power constraint provides higher mutual information.

VII. APPENDIX
A. Proof of Lemma 1

The output conditional entropy is given by

h(Y |X) = −
∫

C

∫

C

fY |X(y|x)log[fY |X(y|x)]dyfX(x)dx.

(30)
For the output conditional pdf (3), we get

h(Y |X) = Ex

{

log[
√

π(1 + |x|2)]
√

π(1 + |x|2)

∫

C

exp

(

−|y − mx|2
1 + |x|2

)

dy

−
∫

C

|y − mx|2
√

π(1 + |x|2) 2

3

exp

(

−|y − mx|2
1 + |x|2

)

dy

}

.

(31)

Using the theorem [17, Page 105], which is an extension of the
fundamental theorem of calculus, we can evaluate the complex
integrals involved in (31). The following integral solutions [18]

∫

exp

(

−|x − n|2
k

)

dx =

√
πk

2
erf
(

x − n√
k

)

,

and
∫

|x − n|2 exp

(

−|x − n|2
k

)

dx =
(n − kx)

2

× exp

(

−|x − n|2
k

)

+
k

3

2

4

√
πerf

(

x − n√
k

)

,

gives
h(Y |X) = Ex

{

log π(1 + |x|2) + 1
}

, (32)

the result used in (4).



B. Proof of Lemma 2

The inner integral in (10)

fR(r) =

∫ ∞

0

fR|S(r|s)dFS(s) (33)

can be solved using Gauss-Legendre quadrature by substituting
t = s/

√

Pp. Using the integral solution [11]
∫ 1

0

log

(

1

τ

)

f(τ)dτ '
N
∑

i=1

Aif(τi), (34)

we get

fR(r) =

N
∑

i=1

2Aiνe−ντi
2

exp
(

r+KPpτi
2

1+Ppτi
2

)

(1 + Ppτi2)(1 − e−ν)log
(

1
τi

)I0

(

2
√

KPprτi

1 + Ppτi2

)

.

(35)
The output entropy h(R) = −

∫∞

0
fR(r) log[fR(r)]dr can

be simplified to (17) by substituting κ = r/(1 + Ppτ`
2),

` = {1, 2, 3, ...N} for the `th term of h(R) with the Gauss-
Laguree approximation on the integral

∫∞

0
e−κf(κ)dκ '

∑M

j=1 Wif(κi). With fTS(s) in (16), we get the output con-
ditional entropy

h(R|S) =

∫

√
Pp

0

2slog(1 + s2)exp
(

− s2

Pa

)

Pa(1 − e−ν)
ds + 1. (36)

Using the integral solution [18]
∫

s exp

(

−s2

k

)

log(1 + s2)ds =
k

2

{

exp

(

1

k

)

Ei

(

−1 + s2

k

)

− exp

(

−s2

k

)

log(1 + s2)

}

(37)

and applying the limits we obtain (18). Note that

h(R/S)

Pp → ∞ = − exp

(

1

Pa

)

Ei

(

− 1

Pa

)

+ 1

= Crcsi + 1, (38)

the result derived in [19] for Rayleigh fading with average
power constraint where Crcsi is the channel capacity of coher-
ent single antenna Rayleigh fading channel.

C. Proof of Lemma 3

We substitute v2 = g/Pa to

fZ(z) =

∫ ∞

0

fZ|G(z|g)fG(g)dg

where fZ|G(z|g) is given in (21). Using the Gauss-Hermite
quadrature integral solution [16]

∫ ∞

0

e−v
2

f(v)dv '
N
∑

i=1

ωif(vi)

we get

fZ(z) =

N
∑

i=1

2ωiviexp
(

− z+KPavi
2

1+Pavi
2

)

1 + Pavi2
I0

(

2
√

KPazvi
1 + Pavi2

)

.

(39)

Again we substitute κ = z/(1+Pav`
2), ` = {1, 2, 3, ...N} for

h(Z) in (26) and finally obtain (27). The proof for h(Z|G)
in (28) is similar using Gauss-Hermite and Gauss-Laguree
quadrature polynomials.
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