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Abstract—Previous results have shown channel capacity of of antennas in the region will not give further capacity gains.
multiple-antenna array communication systems linearly scales However, it was also shown that due to non-ideal antenna
with the number of antennas. In reality, by increasing the ,1acement, capacity achieved from a fixed region of space is
number of antennas within a fixed region of space the antenna I | than the th tical . it di
array become dense and spatial correlation (non-ideal antenna ayvays ower than . e gore Ical maximum capacity, an m
placement) significantly limits the capacity. In this paper, we this case the capacity achieved CQ”?SpondS to a smaller region
derive a spatial precoder which eliminates the effects of non- with optimally placed antennas within.
ideal antenna placement on the capacity performance of spatially  |n contrast, in this paper we show that the theoretical
con§tra|ned dense MIMO systems. The precoder is derived based maximum capacity for a fixed region of space can be achieved
on fixed and known parameters of MIMO channels, namely the . . . . . - L
antenna spacing and antenna placement which are known at the via ]Inear spatial precodlrlg, which basically ellmlnat'es'the
transmitter. Therefore, with this design, the precoder is fixed for detrimental effects of non-ideal antenna placement. This linear
fixed antenna placement and the transmitter does not require spatial precoder is designed based on previously unutilized

any feedback of channel state information (partial or full) from fixed and known parameters of a MIMO channel, the antenna
the receiver. Closed form solutions for the spatial precoder is spacing and antenna placement.

derived and numerical results are presented to show the capacity Th tial ch | del din 112 id
improvements obtained for two types of spatially constrained e spatial channel model proposed in [12] provides us

antenna arrays. a way to incorporate antenna spacing and antenna place-
ment details into the precoder design. In this model, MIMO
. INTRODUCTION channel is decomposed into deterministic and random parts,

Multiple-input multiple-output (MIMO) communications where deterministic parts are related to the transmitter and
systems using multi-antenna arrays simultaneously durirgceiver antenna configurations (antenna spacing and antenna
transmission and reception have generated significant intengisicement) and the random part is related to the scattering
in recent years. Theoretical work of [1] and [2] showed thenvironment surrounding the transmitter and receiver antenna
potential for significant capacity increases in wireless channelgays.
via spatial multiplexing with sparse antenna arrays. However,Unlike the power allocation schemes found in the literature
in reality by increasing the number of antennas within a fixgd, 10, 11] our new scheme does not require any feedback
region of space the antenna array become dense and spaifarmation from the receiver. Our novel scheme utilizes
correlation significantly limits the channel capacity [3]. Thehannel state information contained in the antenna locations,
achievable capacities of MIMO channels and power allocatiavhich has previously been ignored. Furthermore, this new
schemes to achieve these capacities under various assumptgheme can be used in stationary channels as well as non-
of channel state information (CSI) has been the subject sthtionary channels.
recent research work in information theory.

Previous studies [3-9] have given insights and bounds intiotations: Throughout the paper, the following notations
the effects of correlated channels and [7-9] have specificaltyil be used: The matrixI,, is the n x n identity matrix
studied the capacity of spatially constrained dense antersnal bold lower (upper) letters denote vectors (matric[e]§).
arrays. Above studies have assumed that the perfect @8hotes the conjugate transpose operation. The notatioh
is known only to the receiver. In [1,10,11] various powedenotes the mathematical expectatipn, denotes the matrix
allocation schemes (or water filling strategies) have beeeterminant, #-} denotes the matrix tracd(-) denotes the
derived assuming perfect CSI or partial CSI (e.g. chann@mplex conjugate of functiorf(-), [.] denotes the ceiling
covariance) is available at the transmitter through feedbadperator and| - || denotes the Euclidean length of a vector.
However, performance of these schemes heavily depends on
the accuracy of the feedback information. Il. SysTEM MODEL

In [7] it was shown that there exists a theoretical antennaConsider a MIMO system consisting of- transmit anten-
saturation point at which the maximum achievable capacitys andng receive antennas. The originaf-x1 data vector
for a fixed region occurs, and further increases in the numksemt from the transmitter is denoted bywith E {ssf} =




Pr/nrI,,., where Pr is the total transmit power. Beforecommunication modeof the region [14], where/,,(-) are the
each data vector is transmitted, it is multiplied by a fixeBessel functions of the first kind of order and k = 27/
linear spatial precoder matrik' of sizenpxnr, so thengx1

received signal becomes

y=Hx+ w,

is the wave number with\ the wave length2N, + 1 and
2NR + 1 are the number of effectifecommunication modes
at the transmit and receive regions, respectively. N&te and

Ny are defined by the size of the regions containing all the

wherex = F's is thent x 1 baseband transmitted signal vectotransmit and receive antennas, respectively [15]. In our case,

from nr antennas with input signal covariance matrix
Q=F {:cwt} =

w is then g x 1 white Gaussian noise matrix in which elements
are zero-mean independent Gaussian distributed random vari-

Pr

FFT,

@)

ables with variancéd /2 per dimension andd is theng x np
random flat fading channel matrix. Note thBf is also the wheree ~ 2.7183.

average signal-to-noise (SNR) at each receiver antenna. In thifinally, H s is the (2N +1) x (2N1 +1) random complex
work we adapt the spatial channel model derived in [12] fcattering channel matrix witfp, ¢)-th element given by
representd and in the next section we briefly review this

channel model.
A. Channel Model

Supposenr transmit antennas located at positiams t =
1,2,--- ,ny relative to the transmitter array origin, amg;
receive antennas located at positions r = 1,2,--- ,ng
relative to the receiver array origing > max |lu|| andrg >

max ||v, | denote the radius of spheres that contain all téheres(¢, )

Ny = ngﬂ and (4)
Ne = [£72). ©

27 p2m
{HS}p,q = / / g(¢,)etd=NT=D9=ip=Nr=1v 44 dy)
0o Jo

representing the complex scattering gain between (the

Nr — 1)-th mode of the scatter-free transmit region and
(p — Nr — 1)-th mode of the scatter-free receiver region,
is the effective random complex scattering gain

transmitter and receiver antennas, respectively. We assume {Hagtion for signals with angle-of-departugefrom the scatter-

scatterers are distributed in the far field from the transmittff€ {ransmitter region and angle-of-arrivabt the scatter-free

and receiver antennas and regions containing the transmit &gF'Ver region.

receive antennas are distinct. The channel matrix decomposition (2) separates the channel
Here we consider the situation where the multipath i8to three distinct regions of interest: the scatter-free region

restricted to the azimuth plane only (2-D scattering enviroground the transmitter antenna array, the scatter-free region

ment), having no field components arriving at significant elearound the receiver antenna array and the complex random

vations. In this case, the channel matEkcan be decomposedscattering environment which is the complement of the union
as [12] of two antenna array regions. In other words, MIMO channel

; is decomposed into deterministic and random matrices, where
H =JrHsJ7, (2 deterministic portionsJ and Jx represent the physical

whereJ ; is theny x (2N +1) receiver configuration matrix, configuration of the transmitter and the receiver antenna
arrays, respectively, and the random portion represents the

J-Nr(v1) Inn(v1) complex scattering environment between the transmitter and
Jp= J-nNp(v2) o Ing(v2) the receiver antenna regions.
: : 7 The rank of the channel matri¥l gives the effective
| J-Nr(Vng) INg(Vng) | number of independent parallel channels between the transmit
: . ' . . and receive antenna arrays, and thus determines the capacit
Jr is thenpx (2N + 1) transmitter configuration matrix, of the communications s;/stem. From the decompositionp(Z), ’
[ T N (w1) Inr(ur) rank{H} = min{rank(Jr),rank(Jg),rank(H)}. For a
T-Ne(u2) - Ing(u2) large number of antennas in a rich scattering environment (this
Jr = : . : ’ is the scenario we consider in this paper), rank of the channel
) ' ; matrix H becomesmin{2Nr + 1,2Ng + 1}. Therefore the
[ T-nr (Unr) Iz (tnzr) | number of available communication modes for the transmit
with and receive regions limits the capacity of the system.
Tnl@) 2 Tk ||| )0/ 3

as thespatial-to-modeiunction which maps the antenna loca- The set of modes form a basis of functions for representing a multipath

. . . wave field.
tion z = (||x ||, ¢.) in the polar coordinate system to theth 3Although there are infinite number of modes excited by an antenna array,

there are only finite number of modes (2N+1) which have sufficient power to
1Similar results can be obtained using the 3-D spatial model derived in [1&rry information.



[1l. CAPACITY OF SPATIALLY CONSTRAINED ANTENNAS  number of uncorrelated receive antennas, the ergodic capacity

. . . . 7) converges to the deterministic quan
The ergodic capacity afi transmit andnr receive anten- 0 g quantity

nas is given by [1], lim C=C2log|l,, +QJrRzJ}|. (8)
TR— 00
C=E {log I,,+HQH T’} ; This analytical capacity expression allows us to investigate

the effects of transmit antenna configuration, scattering envi-
where@Q = E {zx'} is the input signal covariance matrix.ronment and the input signal covariance mag@xon ergodic
In the following we will assume that the channel mathkis capacity. However, in this paper, our main objective idinol
fully known at the receiver and it is also partially known athe optimum transmit power allocation scheme which reduces
the transmitter, where deterministic parts of the channel sugte effects of non-ideal antenna placement on the capacity
as antenna spacing and antenna geometry are consideregeaformance of a communication system
partial channel information.

In this paper, we consider the case where the receiver array
consists of large number of receive antennas. It was shown irPAssume that the scatterers generate an isotropic diffuse field
[16] that the total received power at the receiver array shouadl the transmitter, which corresponds to independent elements
remain a constant for a given region, regardless of numberaif scattering channel matrifl s. With this assumption we
antennas in it. In this situation, the normalized ergodic capacttave Ry = Iy, 11 and (8) reduces to
is given by

IV. OPTIMIZATION PROBLEM SETUP

C =1log |l +QJrJh|. (9)
C=E {log

1

el f . . .
Loy + nRHQH ’}’ ®) In this case, we see that the capacity obtained from a
_ _ fixed region of space is dependent on the transmit antenna
where the scaling factot/ny scales the channel variancegonfiguration and also on the input signal covariance matrix.

to E{|h..|*} /ngr, which assures the total received power |n (9), (¢,r)-th element of scatter-free transmit matrix
remains a constant as the number of antennas is increasegroductJTJTT is given by,

Substitution of (2) into (6) gives the ergodic capacity

Nt
. 1 J JJr = n n )
C = E{log I.,+—JrH.J.QJrHIJ, } { ’ T}q,r _Z;V Inltiq) Inur)
) nr n=—Nr
1 =Jo(k || ug —ur )
K {log I, + —QJIrH! I JnH, T} } G '
"R which follows from a special case of Gegenbauer's Addition

where the second equality follows from the determinant ideh"€0rem [17, page 363]. For a rich scattering environment,
tity |I + AB| = |I + BA|. Jo(k || ug — u, ||) gives the spatial correlation between the

let H = JokH. — ET ET E’r complex envelopes of the transmitted signals from antennas

€ = JrH, = [y, 2,77 g g and r [18]. It is well known that the presence of spatial

1 x (2N7 + 1) row-vector of H, which corresponds to the correlation between antenna elements limits the capacity of

complex channel gains froif2 vy + 1) transmit modes to the ;Mo systems. So the main objective is to reduce the effects

r-th receiver antenna, the@Nry +1) x (2N7 +1) transmitter  of gpatial correlation (non-ideal antenna placement in our case)

modal correlation matrix can be defined as on MIMO capacity by designing (and hence the linear pre-
2 ~t= coderF’) to maximize the deterministic capacity (9) for a given

Ry =E {h’”hr} » VT antenna placement.

. : If the channel matrixH is known only to the receiver

7\ _ . ,

where (n, n')-th element ofRg, gives the modal correlation then as shown in [1], transmission of statistically independent

betweenn-th andn’-th modes in the transmit region. . . . S .
. : o . equal power signals each with a Gaussian distribution will be
Similar to [7], we consider the situation where the receiver

. . optimal. In this cas&) = (Pr/nr)I,... In what follows we
aperture of radiusrg has 'optlmally placed (uncorrelgted)wiu refer to this scheme as equal power loading.
ngr = 2Ng+1 antennas, which corresponds to independent
vectors, then the sample transmitter modal correlation matgx Optimum input signal covariance
is given by

], where h, is a

Writing Jr as the singular value decomposition (svud) =
UrA7V}, then (9) becomes

Ry= LY Ak
H ™ pp

For a large number of receive antennas, the sample tra$iere — ApAl

. . ) o is a diagonal matrix with squared singular
mitter modal correlation matrixRy; converges 10Ry @S \51yes ofJ; (or the eigen-values of spatial correlation matrix

rp — 00. Since HH = o EIET, then for a large JTJ,}) on the diagonal.

C =log|I,, +ULQUT|,



The optimum input signal covarianc® is obtained by  Note that); in (12) can be eliminated since it acts as a
solving the optimization problem: slack variable, giving new K.K.T conditions

qg>0, 1Tgq=Pr, thgq="P
max  log|I,,, + ULQUT 1= 1= va=aT

t; .
subjectto Q = 0, tr{Q} = Pr, 4 (U ol t@) =0 @=L, (139)
tr{ULQU T} = Pr, (10) v+ pt; > ti =1, np. (13b)
- 1 + /’/qz b b )
where we assumed) is non-negative definited = 0).  The complementary slackness conditidg; = 0 for i =
The power constraint fQ} = Pr ensures the total powery o ... . states that\; is zero unless thé-th inequality
transmitted fromny transmit antennas i& and the second constraint is active at the optimum. Therefore, from (13a) we
power constraint §{UL.QU T} = Pr ensures the total gptain optimumg;
power assigned to effective modes at the scatter-free transmit - Y Y
region is alsoPy. N sl A e R gl wrk
Let @ = ULQUy. Since Uy is unitary, maximiza- 4 = _
tion/minimization_over@ can be carried equally well over 0, otherwise

Q. FurthermoreQ is non-negative definite sino® is Non- where v and i are constants chosen to satisfy two power

negative definite. Therefore, the optimization problem (1 ; n 1— v
begomeé P P ( %nStramtS Zz:Tl max {0, U-Hﬁfi T ti(vtnts) Pi and
- S timax (0, St — rt Pr, and Q =
min  —log (I, +QT‘ diag(q1, 42, - ,qn,). Therefore, the optimum input signal
~ ~ ~ covariance matrixQ = UQU .. From (1), the linear spatial
subjectto Q = 0, tr{Q} = Pr, t{QT} = Pr.  (11) precoder Q=UrQUr @) p
By applying Hadamard's inequality (*InT + @T’ gives that F= &UT@UQUL,
nr

this determinant is maximized whe@QT is diagonal [1].
Therefore@Q must be diagonal a¥" is diagonal. SinceQT
is a non-negative definite diagonal matrix with non-negativéﬂT'

entries on its diagonal] + QT forms a positive definite B. Numerical Results

matrix. As a result, the objective function of our optimization We now present numerical results to illustrate the capacity

problem is convex [,19' page 73]', Thgrefpre the Optlm'Z""t'(m"lprovements obtained from the spatial precoder derived in
problem (11) above is a convex minimization problem becau previous section. The performance of the precoder is

the objective function and the inequality constraint are Conv%xy)mpared with the equal power loading scheme

and equa||ty~constra|nts are affine. We consider a MIMO system with transmitter antennas

Let ¢; = [Qli; andt; = [T, ;. Optimization problem (11) constrained within a scatter-free circular region of radius
then reduces to finding; > 0 such that rr = 0.5\ and a large number of uncorrelated receiver
antennas for a total power budgeti®f = 10dB. Fig. 1 shows

whereU,, is an arbitrary unitary matrix. Here we také, =

min  — ZTlog(l +43) the. capac_ity results for Uniform Circulgr Arrays.(UCA) and
= Uniform Linear Arrays (ULA) using the linear spatial precoder
subjectto g =0, 17q= Pr, t7q = Py, F and equal power allocation scher@e= (Pr/nr)I,, for

increasing the number of transmitter antennas in the transmit
region. Also shown is the maximum achievable capacity from
H]e transmit region when all ther antennas are placed
optimally such that the spatial correlation is zero between all

pliers A € R"T for the inequality constraint-g < 0 and th ¢ In thi th . hievabl it
v, € R for equality constraintsl”q — Pp and ¢7g — e antennas. In this case, the maximum achievable capacity
Srom the transmit region is given by [7, Eq. 35],

Pr, respectively, we obtain the Karush-Kuhn-Tucker (K.K.T

Wherezj = [5132727"' 7z]VnT}T; t = [tlatQa"' 7tnT]T and1
denotes the vector of all ones. Introducing Lagrange mul

conditions
Cunas (1) = Maar (1)1 (1+ PT) (14)
maxz\T = Ngat\T 0O, 7 |
G0, A=0, 17g=Py, t'G=Pr g HIT) 08 Nsat (17)
Aigi=0, i=1,2,---,ng wherengq:(rr) = 2Nr + 1 is the antenna saturation point for
t; the region which also corresponds to the number of effective

1+ha Aitvtpt; =0, i=12-,nr. (12) podesin the scatter-free transmit region. In our case, from
5If g(x) < v is a constraint inequality, then a variablewith the property
4Maximization of f(z) is equivalent to minimization of- f(x). thatg(z) + A = v is called a slack variable.



(4), nsqt(rr = 0.5X\) = 11, which is shown by the vertical schemes we considered and follow with some analysis.

hed line in Fig. 1.
dashed line 9 C. Transmit Modes and Power Allocation

1 . Let x = [z1,29,---,7,,.]7 be the column vector of
baseband transmitted signals fromy- transmitter antennas
o _ over a single signalling interval, then the signal leaving the
scatter-free transmit region along directignis given by

10+

UCA - equal power

() = i ethurd, (15)
t=1

ULA —with precoder __ __ ___ As before, we consider a 2-D scattering environment, then the
S 2-D modal expansion of the plane wav&+¢ is given by
) [20, page 67],

Capacity bps/Hz
®
T

ULA = equal power

o0
—_— UCA—eque‘inower 1 elkut.d) = Z jﬂ(ut)ezn¢7 (16)

— - UCA - with precoder n=—oo
ULA - equal power
— — ULA - with precoder
T T

o % whereJ,, (u.) is thespatial-to-moddunction (3),u; = (|| u:||
, @¢) location of thet-th transmitter antenna anfl = (1, ¢).

I I I
40

50 60 7
Number of transmit antennas n..

Fig. 1. Capacity comparison between spatial precoder and equal po&qbsututmn of (16) Into (15)’ gives

loading (Q = (Pr/nr)In,) schemes for uniform circular arrays and 0o nr
uniform linear arrays in a rich scattering environment with transmitter aperture o 1) — ing 17
radiusr = 0.5\ and a large number of uncorrelated receiver antennas (¢) Z thj”(ut)e ) ( a)
(rr = oo) for an increasing number of transmitter antennas. Also shown is n=—o0c t=1
the maximum achievable capacity (14) from the transmit region. i )
= > ane™, (17b)
It is observed that with the equal power loading scheme, ca- n=-00

pacity performance of both the UCA and ULA does not reaghhereq,, = ST 7 (uy) is then-th transmit mode excited
the maximum achievable capacity,.. (rr) from the region py ;.. antennas. Note that sum (17b) in fact is the Fourier

as the number of antennas is increased. This is because k@lfies expansion of signdl(¢) with Fourier coefficients,,.

the UCA and ULA do not optimally place the antennas withiffhe average power allocated to theh transmit mode is then
the given region. Furthermore, with this scheme capacity é‘f’ven by

saturated even beforer approachesi,,; for both antenna R

configurations. In fact the capacity achieved with this scheme 2 _ E 21 _ E N T a7 (wn 18
corresponds to a region of smaller radius with optimaIIyU" {|a”| } ZZ {wewe} Tn(ur) In(ur), (18)
placed antennas within. Lét.:(< nsq:) be the new antenna ) .
saturation point for a given antenna configuration. Therefordhere £ {z:z.} is the (t,1')-th entry of @. For the equal
with equal power loading one cannot achieve further capacRgWer loading scheme, (18) simplifies to

t=1t'=1

gains by increasing the number of antennas beyasné , Pri&
In contrast, spatially precoded systems give significant ca- = > (k)
pacity improvements as the number of antennas are increased t=1

beyond ns.:. For n > 80, we see the capacity of the As described in Section II-A, the number of effective modes
precoded UCA system reach€$,,..(rr), which corresponds excited by a spatially constrained antenna array is limited
to 1.2bps/Hz capacity gain over the equal power loadirgy the size of the aperture and is independent of number of
scheme. In this case, spatial precoder virtually arranges #etennas packed into the aperture. Fig. 2 shows the average
antennas into an optimal configuration as such the spaiimwer allocation to the first 11 effective transmit modes for the
correlation is zero between all the antenna elements. In theo antenna configurations considered in the previous section.
case of precoded ULA, it requires a large number of transniihe results shown here are far = 80 and P = 10dB.
antennas to achiev€,, .., (rr). However, as we can see, the In this work we assumed that the receiver has the full
spatial precoder still provides significant capacity gains ovknowledge of the channel matrikd = JRHSJTT and the
the equal power loading scheme for amy > 7,,:.. We also transmitter has the knowledge of antenna configuration matrix
observed that precoding does not provide significant capacify only. Since the scattering channel matfikg is not known
gains for lower number of transmit antennas. This is maintp the transmitter, the maximum capacity will occur for equal
due to the low spatial correlation between antenna elemeptsver allocation to the full set of uncorrelated transmit modes
in the transmit array for lower number of antennas. available for the given region, i.eq? = Pr/(2Nr + 1).

In the next section we compare the average power allocatedm Fig. 2, for both antenna configurations, equal power
to modes in the transmit region for the two power loadinpading scheme assigns different power levels to modes in



Uniform Gircular that this spatial precoding scheme still provides significant
g capacity gains in the presence of scattering correlation, and
g will be reported elsewhere.
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