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Abstract

In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of
a space-time coded system operating over spatially correlated fast (constant over the duration of a
symbol) and slow (constant over the length of a code word) fading channels using a moment-
generating function-based approach. We discuss two analytical techniques that can be used to
evaluate the exact-PEPs (and therefore approximate the average bit error probability (BEP)) in closed
form. These analytical expressions are more realistic than previously published PEP expressions
as they fully account for antenna spacing, antenna geometries (Uniform Linear Array, Uniform
Grid Array, Uniform Circular Array, etc.) and scattering models (Uniform, Gaussian, Laplacian,
\Von-mises, etc). Inclusion of spatial information in these expressions provides valuable insights
into the physical factors determining the performance of a space-time code. Using these new PEP

expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power
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distribution parameters (angle of arrival/departure and angular spread) on the performance of a

four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Index Terms

Gaussian Q-function, modal correlation, moment-generating function, MIMO system, non-

isotropic scattering, space-time coding.

I. INTRODUCTION

Space-time coding combines channel coding with multiple transmit and multiple receive
antennas to achieve bandwidth and power efficient high data rate transmission over fading
channels. The performance criteria for space-time codes have been derived in [1] based on
the Chernoff bound applied to the pairwise error probability (PEP). In [2, 3], the average bit
error probability (BEP) of space-time trellis codes was evaluated using the traditional Chernoff
bounding technique on the PEP. In general, the Chernoff bound is quite loose for low signal-
to-noise ratios. In [4], the exact-PEP of space-time codes operating over independent and
identically distributed (i.i.d.) fast fading channels was derived using the method of residues.
A simple method for exactly evaluating the PEP (and approximate BEP) based on the moment
generating function associated with a quadratic form of a complex Gaussian random variable
[5] is given in [6] for both i.i.d. slow and fast fading channels.

When designing space-time codes, the main assumption being made is that the channel
gains between the transmitter and the receiver antennas undergo independent fading. How-
ever, independent fading models an unrealistic propagation environment. The spatial fading
correlation effects on the exact-PEP of space-time codes were investigated in [7]. There, the
exact-PEP results derived in [4] were further extended to spatially correlated slow fading
channels with the use of residue methods. In [7], the correlation is calculated in terms of the
correlation between channel gains, but there is no direct realizable physical interpretation to
the spatial correlation. Therefore, existing PEP expressions derived in the literature do not
provide insights into the physical factors determining the performance of a space-time code
over correlated fading channels. In particular, the effect of antenna spacing, spatial geometry
of the antenna arrays and the non-isotropic scattering environments on the performance of
space-time codes are of interest.

In this paper, using the MGF-based approach presented in [6], we derive analytical expres-

sions for the exact-PEP (and approximate BEP) of a space-time coded system over spatially
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correlated fast and slow fading channels. These expressions are more realistic than previously
published [4, 6, 7] exact-PEP expressions, as they fully account for antenna placement along
with non-isotropic scattering environments. Using these analytical expressions one can eval-
uate the performance of a space-time code applied to a MIMO system in any general spatial
scenario &ntenna geometriedJniform Linear Array (ULA), Uniform Grid Array (UGA),
Uniform Circular Array (UCA), etcscattering modelsUniform, Gaussian, Laplacian, Von-
mises, etc.) without the need for extensive simulations. We discuss two analytical techniques
that can be used to evaluate the exact-PEPs (and therefore approximate the average BEP)
in closed form, namely, (apirect partial fraction expansior{b)-Partial fraction expansion

via eigenvalue decompositiofe demonstrate the strength of these new analytical PEP
expressions by evaluating the performance of a four-state QPSK space-time trellis code with

two transmit antennas proposed by Tarokh et al. [1] for different spatial scenarios.

1. SYSTEM MODEL

Notations: Throughout the paper, the following notations will be uséd", []* and
[-]T denote the transpose, complex conjugate and conjugate transpose operations, respec-
tively. The symbolsi(-) and ® denote the Dirac delta function and Matrix Kronecker
product, respectively. The notatidn ||> denotes the squared norm of a mattjX r.¢||* =
S Z]Q:l lai;|?, E{-} denotes the mathematical expectatios;(A) denotes the vector-
ization operator which stacks the columns Af and |.] denotes the ceiling operator. The

matrix I,, is then x n identity matrix.

Consider a MIMO system consisting afr transmit antennas andi receive antennas.
Letx, = [xg ), xé”), -xﬁf‘T)}T denote the space-time coded signal vector transmitted frpm
transmit antennas in the-th symbol interval. LetX = [z, x,, -+, x| denote the space-
time code representing the entire transmitted signal, whasethe code length. The received

signal at theg-th receive antenna in the-th symbol interval is given by
=VE th“p)w” g,
q:1a27"'7nR7n:1a27"'aLa (1)

whereF is the transmitted power per symbol at each transmit antennaé@nid the additive

noise on the-th receive antenna at symbol interval The additive noise is assumed to be
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white and complex Gaussian distributed with mean zero and vari&ip¢2 per dimension.
Here the coeﬁicienﬁé’f]} represents the random complex channel gain betweem-the
transmit antenna and theth receive antenna. Letl,, = [h,,] denote thexry x ny channel
gain matrix associated with the-th symbol interval.

By taking into account the physical aspects of scattering, the channel nk&jyigan be

decomposed into deterministic and random parts as [8—10]

where the matriced  andJ are deterministic an®,, is random. According to the channel
model proposed in [8]5,, is the i.i.d. channel matrix associated with theh symbol interval,

which has zero-mean and unit variance complex Gaussian entries, Whilend J are

the receive and transmit antenna correlation matrices, respectively. For the channel models
proposed in [9] and [10]S,, represents the random scattering environment associated with
the n-th symbol interval and/  and J represent the antenna configurations at the receive
and transmit antenna arrays, respectively.

In this work, we are mainly interested in investigating the impact of antenna separation,
antenna geometry and the general scattering environment on the performance of a space-time
coded system. The channel model given in [8] is restricted to a uniform linear array antenna
configuration and a countable number of scatterers around the transmit and receive antenna
arrays. However, the channel models given in [9,10], are capable of capturing different
antenna geometries as well as various non-isotropic power distributions around the transmit
and receive antenna arrays. Here we only consider planar antenna arrays and a 2-dimensional
scattering environment. Therefore we use the 2-dimensional spatial channel mogelsed

in [9] for our PEP investigations.

A. Spatial Channel Model

Using a recently developed spatial channel model [9], we are able to incorporate the antenna
spacing, antenna geometries and scattering distribution parameters such as the mean angle-
of-arrival (AOA), mean angle-of-departure (AOD) and the angular spread into the exact-PEP
calculations of space-time coded systems. In this model, the MIMO channel is separated into

three physical regions of interest: the scatterer-free region around the transmit antenna array,

! The 2-dimensional case is a special case of the 3-dimensional case where all the signals arrive from on a horizontal

plane only. Similar results can be obtained using the 3-dimensional channel model proposed in [10].
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the scatterer-free region around the receive antenna array and the complex random scattering
media which is the complement of the union of two antenna array regions. This separation
of regions leads to the decomposition in (2) which will play a key role in this paper.

Here Jr is thenrx (2mr + 1) transmit antenna array configuration matrix ahg is the
nrx(2mg+1) receive antenna array configuration matrix, wh@mer+1) and(2mzr+1) are
the number of effective communication modes available in the transmit and receive regions,
respectively. Note thatp, andmpy are determined by the size of the antenna aperture [11],
but not from the number of antennas encompassed in an antenna array. The precise definitions
of Jz and Jr are given in Appendix I.

S, is the(2mpg + 1) x (2mr + 1) random scattering matrix witf¢, m)-th element given
by

{Sn}em = / / Gn(, p)e TR DR eilm=mr=1dq,q g
0 0
(=1, 2mp+1, m=1,-- 2mp+1 3)

Note that{S,},,. represents the complex gain of the scattering channel between-the
modé of the transmit region and théth mode of the receive region, whegg(¢, ¢) is the
scattering gain function, which is the effective random complex gain for signals leaving the
transmit aperture with angle of departuseand arriving at the receive aperture with angle

of arrival ¢ over then-th symbol interval.

I11. EXACT PEPON CORRELATED MIMO CHANNELS

Assume that perfect channel state information (CSI) is available at the receiver and a
maximum likelihood (ML) decoder is employed at the receiver. Assume that the codé&vord
was transmitted, but the ML-decoder chooses another codeXiofthen the PEP, conditioned

on the channel, is given by [1]

P(X — X|H,)=Q ( 2%()&) : (4)

2The set of modes form a basis of functions for representing a multipath wave field.
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whereQ(y) = [* e **/2dx, is the Gaussiaf)-function andd is the Euclidian distance.

In the case of a time-varying fading channel,
Z | H (@0 — )],

n=1

~

wherex, = (z, — &,)(x, — &,)" andh,, = (vec (Hf))T is a row vector. For a slow fading
channel (quasi-static fading), we would hak#e, = H forn = 1,2, -- , L, thend? simplifies

to
& = |H(X - X)|?,
= h[InR ® XA]hTa (6)

where X» = (X — X)(X — X)' andh = (vec (HT))" is a row vector. Note also that

XA = Zizl TR
To compute the average PEP, we average (4) over the joint probability distribution of the

channel gains. By using Craig’s formula for the Gaussigfunction [12]

1 w/2 72 4
Q) = %/0 P (_2sin29) d

and the MGF-based technique presented in [6], we can write the average PEP as
P(X — X) / / exp < )pp(F)dFdO
2sin’ 0

1
:;/0 MF( 2 sin? (9) a9, 7

where Mr(s) £ [* eTpp(T')dI is the MGF of

Es

andpr(T") is the probability density function (pdf) df.

A. Fast Fading Channel Model

In this section, we derive the exact-PEP of a space-time coded system applied to a spatially

correlated fast fading MIMO channel.
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Substituting (2) forH,, in h,, = (vec (HZ))T and using the Kronecker product identity
[13, page 180Fec(AX B) = (B" ® A)vec (X), we re-write (5) as

L

&= su(Jp® T} (Lo, @ TR) (T © Jr)sh, (9a)
n=1

¢ t T ) t

= s [(ThTw) @ (Thandn)] s, (9b)
n=1
L
n=1

wheres,, = (vec(SZ:))T is a row vector and
T
G,=(JhJr) ®(JhahJr). (10)

Note that, (9b) follows from (9a) via the identity [13, page 1801 ® C)(B ® D) =
AB ® CD, provided that the matrix productda B and C D exist. Substituting (9¢) in (8),
we get

2Ny !

G.s!. (11)

Sinces,, is a random row vector and@,, is fixed asJr, J p andx’y are deterministic matrices,
thenT is a random variable too. In fact, G, s! is a quadratic form of a random variable.
Now we illustrate how one would find the MGF ofin (11) for a fast fading channel.

Using the standard definition of the MGF, we can write

E, &
_ s T
Mr(s)=F {exp <82N0 g snGnsn> } :

—F {H exp (sz—NosnG s ) } (12)

Assume thas,, is a proper-complex Gaussian random row-vector (properties associated with
proper-complex Gaussian vectors are given in [14]) with mean zero and covat@nce
defined ast {sis,}. Let p(si,ss,---,s.) denote the joint pdf ofs = (s1,s5,---,5.).

Then, we get

/ Hexp <s—snG’ s )p(sl, Sg,--+,8.)dV, (13)
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where we have introduced the following two shorthand notations

/dvé/ / / AV, AV, - dVy,
A% ViJVy Vi
K

AV, = [ dsfids,,
/=1

where s, and s!, are the real and imaginary parts of theh element of the vectos,,
respectively and<’ = (2mpg + 1)(2mr + 1) is the length ofs,,.

In this work, we are mainly interested in investigating the spatial correlation effects of the
scattering environment on the performance of space-time codes. Therefore, we can assume

that the temporal correlation of the scattering environment is zero, i.e.

R, n=m;

E{sls,} =
{ } 0, n # m.
forn,m=1,2,---,L. (14)

Assuming now that the scattering environment is temporally uncorrelated, and as a result

p(s1,82,---,81) = [1-_, p(sn), we can write the MGF of as
= E
- — nGn ! n dvn
e =] | e (s35550Gusl ) )V

L
= HMI‘H(S)v (15)

where

— ES
2N,

Here the2L K-th order integral in (13) reduces to a product bf2K-th order integrals,

I, snGnsIL.

each corresponding to the MGF of one of fthg whereTl’, is a quadratic form of a random
variable. The MGF associated with a quadratic random variable is readily found in the
literature [5]. Here we present the basic result given in Turin [5] on MGF of a quadratic
random variable as follows.

Let Q be a Hermitian matrix and be a proper complex normal zero-mean Gaussian row
vector with covariance matrif = F {vTv}. Then the MGF of the (real) quadratic form

f =vQu' is given by

M(s) = [det (I — sLQ)]™". (16)
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In our case(,, is a Hermitian matrix (the proof is given in Appendix-1l). Therefore, using
(16) we write the MGF ofl",, as

SA -1

Mr. (s) = [det (I _ %RnGnﬂ , (17)

where”y = 1]3_0 is the average symbol energy-to-noise ratio (SNR), is the covariance
matrix of s,, as defined in (14) andr,, is given in (10). Substituting (17) in (15) and then

the result in (7) yields the exact-PEP

P(X — X) =+ /M2 ﬁ [det (I + LRnGnﬂ e (18)
0 n=1

s 4sin% 4

Remark 1:Eq. (18) is the exact-PERf a space-time coded system applied to a spatially-
correlated fast fading channel following the channel decomposition in (2).

Remark 2:When R, = I (i.e., correlation between different communication modes is
zero), Eq. (18) above captures the effects due to antenna spacing and antenna geometry on
the performance of a space-time code over a fast fading channel.

Remark 3:When the fading channels are independent (i, = I andG,, = I,,, ®x}),

(18) simplifies to,
. 1 [7/2 L 5 —ng
P(X — X) = —/0 I1 [det (InT 1 ")] a8,

B N
T 4sin% 6
n=1

which is the same as [6, Eq. (9)].

In the next section, we derive the exact-PEP of a space-time coded system for a slow
guasi-static fading channel. Note that, we are not able to use the fast fading result (18) to
obtain the exact-PEP for a slow fading channel. This is because we derived (18) under the
assumption of a temporally uncorrelated scattering environment. In contrast, for a slow fading

channel, the scattering environment is fully temporally correlated.

B. Slow Fading Channel Model

For a slow fading channelH,, = H independent of: in which case (8) becomes

E
r=_—2 f 19
2N03Gs , (19

3Eq. (18) can be evaluated in closed form using one of the analytical techniques discussed in Section IV.
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where s = (Vec(ST))T is a row vector with proper complex normal Gaussian distributed

entries and
T
G = (JLJRr) @ (JLXAJr). (20)

As before,I' is a random variable that has a quadratic form. Siacén (20) is Hermitian

(as shown in Appendix Il), using (16), we can write the MGFlo&s

S -1
Mp(s) = [det (I - %RGH , (21)
where R is the covariance matrix of the scattering environment which is defineR as
E {s's}. Substitution of (21) into (7) yields
P(X — X) = /W/2 det (I + LRG)] ) (22)
T Jo 4sin? 0
Remark 4:Eq (22) is the exact-PEP of a space-time coded system applied to a spatially
correlated slow fading MIMO channel following the channel decomposition in (2).
Remark 5:When the fading channels are independent (fe= I andG = I,,,, ® X a),
(22) simplifies to,
1 ek : ~nR
P(X — X) = —/0 I1 [det (InT + LXQ] a6,

T 4sin’ 0
n=1

which is the same as [6, Eq. (13)].

C. Kronecker Product Model as a Special Case

In some circumstances, the covariance maffx of the scattering channel can be ex-
pressed as a Kronecker product between correlation matrices observed at the receiver and

the transmitter antenna arrays [15, 16], i.e.,
R,=E{sis,} =F{® F}, (23)

where F% and F” are the transmit and receive correlation matrices associated with+tite
symbol interval. Substituting (23) in (18) and recalling the definition@f in (10), we can

simplify the exact-PEP for the fast fading channel to

P(X — X) = l/ﬂ/zﬁ ot (1+ Zn>]1d9. (24)
0

T 4sin% 6
n=1
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11

where Z,, = (FEJLT%) @ (FLJlan Jr). Similarly, for the slow fading channel, we can

factor R as
R=E{s's} =Ffa F", (25)

and then the exact-PEP can be expressed as

P(X — X) = l/m et (1 + 7 Z)}l do (26)
0

T 4sin® 6

where Z = (FRILT:) @ (FTILX AT 7).

In section VII, we provide the necessary condition which a scattering channel must satisfy
in order for the factorizations (23) and (25) above to hold. There we also define the transmit
and receive correlation matrices associated with the channel model [9]. The pairwise error
probability expressions (24) and (26) will be used later in our simulations to investigate the

effects of correlation on the performance of space-time codes.

IV. REALISTIC EXACT-PEP

The exact-PEP expressions we derived in Sections IlI-A and 11I-B for the fast fading
and slow fading MIMO channels, respectively capture the antenna configurations (Linear
Array, Circular Array, Grid, etc.) both at the transmitter and the receiver arraydviand
J i, respectively. These expressions also incorporate the spatial correlation effects at the
transmitter and the receiver regions \ig, F'Z* for the fast fading case and v and F'*
for the slow fading case. Therefore, PEP expressions (24) and (26) aeatistic exact-PEPs

of space-time coded systems for the fast fading and slow fading MIMO channels, respectively.

To calculate the exact-PEP, one needs to evaluate the integrals (24) and (26), either using
numerical methods or analytical methods. In the following sections, we present two analytical
techniques which can be employed to evaluate the integrals (24) and (26) in closed form,
namely (a)Pirect partial fraction expansior(b)-Partial fraction expansion via eigenvalue
decompositionThe technique-(b) was previously reported in [17]. We shall use (26), which
is the integral involved with the slow fading channel model, to introduce these two techniques.
Note that both methods can be directly applied to evaluate the integral involved with the fast

fading channel; therefore we omit the details here for the sake of brevity.
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A. Direct Partial Fraction Expansion

Matrix Z in (26) has sizeVigp My x MgMy, where Mr = 2mp + 1 and My = 2my + 1.
Therefore, the integrand in (26) will take the fdtm

5 -1 (sin? §)N
det (I Z)] e s A— 27
[ ¢ + 4sin% 6 N 27)
ay(sin? 0)*
=0
where N = MrpMr anday,for ¢ =1,2,--- | N, are constants. Note that the denominator of

(27) is anN-th order polynomial irsin? § (for the fast fading channel, it would be dnv-th
order polynomial). To evaluate the integral (27) in closed form, we use the partial-fraction
expansion technique given in [18, Appendix 5A] as follows.
First we begin by factoring the denominator of (27) into terms of the fésim® 6 + ¢;),
for ¢ = 1,2,--- , N. This involves finding the roots of av-th order polynomial insin? §

either numerically or analytically. Then (27) can be expressed in product form as

(sin?0)N H( sin? )m" (28)
ST, a(sin? 0)* P cr + sin” 0

wherem, is the multiplicity of the rootc, and Ze:1 my = N. Applying the partial-fraction

decomposition theorem to the product form (28), we get

A sin? 6 A sin“ "
_ 29
E(Cg+sin20> ;; (ce+sm 9) (29)

where the residuall,, is given by [18, Eq. 5A.72]

A m
dméfk H 1 "
k
ZE 1+ ot e

. n;é[
et = (mg — k)" ' (30)

Expansion (29) often allows integration to be performed on each term separately by inspec-

tion. In fact, each term in (29) can be separately integrated using a result found in [6],

1 ™2/ sin20 \"
P k)= — —— | db
(ce, k) / (q + sin? 9) ’

hEsY) @) e

J=

where

40One would need to evaluate the determinant bt .- 1»;Z) and then take the reciprocal of it to obtain the form
(27).
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Now using the partial-fraction form of the integrand in (29) together with (31), we obtain

the exact-PEP in closed form as

. 1 /2 A 2 me
P(X—>X):_/ H(%) a0,
m™Jo o \C+sin 0

A my
= — Z Z AMP Cg, . (32)
Z 1 k=1
For the special case of distinct roots, &, = my = --- = my = 1, the exact-PEP is given

by

N N
~ 1 Cy Cy
P(X - X)== 1— .
X = X) 2;( 1+Cé>ll<cz—0n)
- ntl
B. Partial Fraction Expansion via Eigenvalue Decomposition

The main difficulty with the above technique is finding the roots of\ath order polyno-
mial. Here we provide a rather simple way to evaluate the exact-PEP in closed form using an
eigenvalue decomposition technique. However, this technique also makes use of the partial

fraction expansion technique given in [18, Appendix 5A].

Let Z = 1Z, whereZ is the matrix defined in (27). Suppose matéxhas K non-zero
eigenvalues, including multiplicityp,, Xs, - - - , Ax, and the decompositio = ADA™,
where A is the matrix of eigenvectors & and D is a diagonal matrix with the eigenvalues

of Z on the diagonal. Then the integrand in (26) can be written as

e (1 12y 2)] = e (14 20)]

K m
sin” 0 ¢
= 33
H ()\g—i—sm 9) (33)

wherem, is the multiplicity of eigenvalue\,,. Note that the RHS of (33) has the identical form

as the RHS of (28). Therefore, the partial-fraction expansion method, which we discussed in

Section IV-A can be directly applied to evaluate the exact-PEP results in closed form.

V. ANALYTICAL PERFORMANCEEVALUATION : AN EXAMPLE

As an example, we consider the 4-state QPSK space-time trellis code (STTC) with two
transmit antennas proposed by Taradhal. [1]. The 4-state STTC code is shown in Fig.1

where the labelling of the trellis branches follow [1]. The QPSK signal points are mapped
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to the edge label symbols as shown in Fig. 1. For this code, the exact-PEP results and
approximate BEP results forp = 1 andny = 2 were presented in [4, 6] for i.i.d. fast and
slow fading channels. In [7], the effects of spatial fading correlation on the average BEP
were studied fomyp = 1 over a slow fading channel. In this work, we compare the i.i.d.
channel performance results (without considering antenna configurations) presented in [4, 6]
with our realistic exact-PEP results for different antenna spacing, antenna placements and

scattering distribution parameters.

00, 01, 02, 03

10, 11, 12, 13

20, 21, 22, 23

30, 31, 32, 33

Fig. 1. Trellis diagram for the 4-state space-time code for QPSK constellation.

In [4, 6], performances were obtained under the assumption that the transmitted codeword
is the all-zero codeword. Here we also adopt the same assumption as we compare our results
with their results. However, we are aware that space-time codes may, in general, be non-linear,
i.e., the average BEP can depend on the transmitted codeword.

For the 4-state STTC, we have the shortest error event path of lehgtR, as illustrated

by shading in Fig. 1 and

11
11 -1 1

Note thatX and X in (34) will be used in our simulations.

VI. EFFECT OFANTENNA SEPARATION

First we consider the effect of antenna separation on the exact-PEP when the scattering
environment is uncorrelated, i.ef’ = Isp41 and Ff = I5p, 41 for the slow fading

channel andFZ = Isp,41 @nd Ff = Ip,41 for the fast fading channel.
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A. Slow Fading Channel

Consider the 4-state STTC withy = 2 transmit antennas andz = 1 receive antenna.
In this case, we place the two transmit antennas in a circular aperture of raffhnsenna
separation 2r). Sinceny = 1, there will only be a single communication mode available
at the receiver aperture. Hendeg; = 1.

Fig.2 shows the exact pairwise error probability performance of the 4-state STHH
and transmit antenna separatidns), 0.2\, 0.5\ and A\, where )\ is the wave-length. Also
shown in Fig.2 for comparison is the exact-PEP for the i.i.d. slow fading channel (Rayleigh)

corresponding tdd = 2.

10 °F

Pairwise Error Probability —-PEP

107}

| —o— ideal channel-without antenna conf.

| ©— Tx antenna sep: 0.1\

|| = Tx antenna sep: 0.2\

| -8— Tx antenna sep: 0.5\ )

—— Tx antenna sep: A
I I

107°

I I | |
0 2 4 6 8 10 12 14 16 18 20
Average Symbol SNR (dB)

Fig. 2. Exact pairwise error probability performance of the 4-state space-time trellis code with 2-Tx antennas and 1-Rx
antenna: length 2 error event, slow fading channel.

As we can see from the figure, the effect of antenna separation on the exact-PEP is not
significant when the transmit antenna separation.is\ or higher. However, the effect is
significant when the receive antenna separation is small. For example2 atind 0.1\
receive antenna separations, the realistic PEPs are 1dB and 3dB away from the i.i.d. channel

performance results, respectively. From these observations, we can emphasize that the effect
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of antenna spacing on the performance of the 4-state STTC is minimum for higher antenna

separations whereas the effect is significant for smaller antenna separations.

1) Loss of Diversity AdvantageWe now consider the diversity advantage of a space-
time coded system as the number of receive antennas increases while the receive antenna
array aperture radius remains fixed. Fig.3 shows the exact-PEP of the 4-state STTC with two
transmit antennas andy receive antennas, wherer = 1,2,---,10. The two transmit
antennas are placed in a circular aperture of radi@s)\ (antenna separatién= 0.5))
andny receive antennas are placed in a uniform circular array antenna configuration with
radius0.15\. In this case, the distance between two adjacent receive antenna elements is
0.3\ sin(7/ng).

10 o T T T T T T T T T
107 E SIS ; Y i : =
107k = B <— Diversity + Coding Advantage ~
<
i S
107
¥
107
o™
o
107 K E
10° H ; | S8
467 . ~ N ]
L Os s /
10 e H s \'\ \'\ |
-8~ 6-RX . R SRS SRS S
. 7-Rx Coding Advantage Only ST T
10°H o 8-Rx |: ; ; ; B RROh
* 9-Rx N
10-R g
10*11 v T X | | | | | | | | Y
0 1 2 3 4 5 6 7 8 9 10

Average Symbol SNR (dB)

Fig. 3. Exact PEP performance of the 4-state space-time trellis code with 2-Tx antennas and n-Rx antennas: length 2 error

event, slow fading channel.

®In a 3-dimensional isotropic scattering environment, antenna sepatafiar(first null of the order zero spherical Bessel
function) gives zero spatial correlation, but here we constraint our analysis to a 2-dimensional scattering environment. The
spatial correlation function in a 2-dimensional isotropic scattering environment is given by a Bessel function of the first kind.

Therefore, antenna separatidfi2 does not give zero spatial correlation in a 2-dimensional isotropic scattering environment.
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The slope of the performance curve on a log scale corresponds to the diversity advantage
of the code and the horizontal shift in the performance curve corresponds to the coding
advantage. According to the code construction criteria given in [1], the diversity advantage
promised by the 4-state STTC 2&;. With the above antenna configuration setup, however,
we observed that the slope of each performance curve remains the same yhen which
results in zero diversity advantage improvement#gr > 5. Nevertheless, fony > 5, we
still observed some improvement in the coding gain, but the rate of improvement is slower
with the increase in number of receive antennas. Here the loss of diversity gain is due to
the fewer number of effective communication modes available at the receiver region than the
number of antennas available for reception. In this case, from (44) in Appendix I, the receive
aperture of radiu$.15\ corresponds ta/ = 2[7e0.15] + 1 = 5 effective communication
modes at the receive region. Therefore when> 5, the diversity advantage of the code
is determined by the number of effective communication modes available at the receiver
antenna region rather than the number of antennas available for reception. That is, the point
where the diversity loss occurred is clearly related to the size of the antenna aperture, where
smaller apertures result in diversity loss of the code for lower number of receive antennas,

as proved analytically in [19].

2) Effect of Antenna ConfigurationVe now compare the exact-PEP results of the 4-state
STTC for different antenna configurations at the receiver. For example, we choose UCA and
ULA antenna configuratiorfsConsider a system with two transmit antennas and three receive
antennas. The two transmit antennas are placed half wavelexghdistance apart and the
three receive antennas are placed within a fixed circular aperture of rgeius 15\, 0.25))
as shown in Fig.4. The exact-PEP performance for the error event of length two is also
plotted in Fig 4.

From Fig.4, it is observed that, the performance given by the UCA antenna configuration
outperforms that of the ULA antenna configuration. For example, at 10dB SNR, the perfor-
mance differences between UCA and ULA are 2.75dB Wittb\ receiver aperture radius
and 1.25dB with).25) receiver aperture radius. Therefore, as we illustrated here, one can use
the realistic PEP expressions (24) and (26) to determine the best antenna placement within a

given region which gives the maximum performance gain available from a space-time code.

®The exact-PEP expressions we derived in this work can be applied to any arbitrary antenna configuration.
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Fig. 4. The exact-PEP performance of the 4-state STTC with two transmit and three receive antennas for UCA and ULA

receive antenna configurations: length 2 error event, slow fading channel.

B. Fast Fading Channel

Consider the 4-state STTC with two transmit antennas and two receive antennas, where the
two transmit antennas are placed in a circular aperture of radis\ (antenna separation
= 0.5)) and the two receive antennas are placed in a circular aperture of ra@undenna
separation =2r).

Fig.5 shows the exact pairwise error probability performance of the 4-state STHHa
and receive antenna separations\, 0.2\ and0.5\. Also shown in Fig.5 for comparison, is
the exact-PEP for the i.i.d. fast fading channel. Similar results are observed as for the slow
fading channel. For the fast fading channel, the effect of antenna separation is minimum
when the antenna separation is higher and it is significant when the antenna separation is
smaller (< 0.5)). At 0.1\ receive antenna separation, the performance loss is 3dB and at

0.2 the performance loss is 1dB. Note that the performance loss we observed here is mainly
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Fig. 5. Exact pairwise error probability performance of the 4-state space-time trellis code with 2-Tx antennas and 2-Rx

antennas-length two error event: fast fading channel.

due to the antenna spacing.

VIl. EFFECT OFMODAL CORRELATION

In Section VI, we investigated the effect of antenna spacing and antenna configurations
on the exact-PEP of space-time codes, assuming an uncorrelated scattering environment. In
this section, we study the scattering correlation effects or modal correlation effects on the
exact-PEP of space-time codes.

On a fast fading channel environment, we assume that the scattering gains change inde-
pendently from symbol to symbol. It is also reasonable to assume that the statistics of the
scattering channel remain constant over an interval of interest. Here we take the interval of
interest as the length of the space-time codeword. Then we Rave, Rforn =1,2,--- | L
in (14).

"Antenna spacing and scattering distribution parameters such as mean AOA/AOD and angular spread are the main

contributors to spatial fading correlation.
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Using (3), we can define the modal correlation between complex scattering gains as
fy'réf'lm’ = E {S[’mSZ/7m/} .

Assume that the scattering from one direction is independent of that from another direction
for both the receiver and the transmitter apertures. Then the second-order statistics of the

scattering gain functiog(¢, ¢) can be defined as

B{9(6,0)9'(6".¢) } = G(6.¢)0(6 = )0l — &),

where G (¢, ¢) = E{|g(¢, »)|*} with normalization [ [G(¢, ¢)dedp = 1. With the above

assumption, the modal correlation coeﬁiciayﬁlf;l, can be simplified to

ﬁ%@le/:/fX¢,wkf“5””%“m’””dwd¢

Then the correlation between tiigh and/’-th modes at the receiver region due to theh

mode at the transmitter region is given by

ol = / Prolp)e %4y, (35)

wherePr. () = [G(¢, p)d¢ is the normalized azimuth power distribution of the scatterers
surrounding the receiver antenna region. Here we see that modal correlation at the receiver
is independent of the mode selected from the transmitter region.

Similarly, we can write the correlation between theth andm’-th modes at the transmitter

as

vgﬁn’::jfﬁh%(¢)éon_m”¢d¢, (36)

wherePr,(¢) = [G(¢, ¢)dyp is the normalized azimuth power distribution at the transmitter
region. As for the receiver modal correlation, we can observe that modal correlation at the
transmitter is independent of the mode selected from the receiver region. Note that, azimuth
power distributionsPg,(¢) and Pr,(¢) can be modeled using all common azimuth power

distributions such as Uniform, Gaussian, Laplacian, Von-Mises, etc.

Denoting thep-th column of scattering matri$ asS,, the (2mgr+1) x (2mgr+1) receiver

modal correlation matrix can be defined as

F'2£E{S,ST},
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where the (¢, ¢')-th element of F* is given by (35) above. Similarly, we can write the

transmitter modal correlation matrix as
F" =E{S!S,},

where S, is the g-th row of S. The (m, m’)-th element ofF” is given by (36) andF'” is a
(2mr + 1) x (2my + 1) matrix.

The correlation matrix of the scattering chanrtelcan be expressed as the Kronecker
product between the receiver modal correlation matrix and the transmitter modal correlation

matrix,
R=E{s's} =F'@F". (37)

As a result, the correlation between two distinct modal pairs can be written as the product

of corresponding modal correlations at the transmitter and the receiver, i.e.,

N x_ Tx
’ym,m’ = WEe/VZ,m" (38)

Note that (38) holds only for class of scattering environments where the power spectral

density of the modal correlation function satisfies [15, 16]

Also note that, (39) is the necessary condition that a channel must satisfy in order to hold

the realistic exact-PEP (24) and (26) for the fast and slow fading channels, respectively.

It was shown in [20] that all azimuth power distribution models give very similar correlation
values for a given angular spread, especially for small antenna separations. Therefore, without
loss of generality, we restrict our investigation only to the Uniform limited azimuth power

distribution, which is defined as follows.

Uniform-limited azimuth power distribution (UL-APD) When the energy is arriving/departing
uniformly from/to a restricted range of azimuth angleg\ around a mean angle of ar-
rival/departurev, € [—m, ), the azimuth power distribution is defined as [21]

!
oA

where A represents the non-isotropic parameter of the azimuth power distribution, which

P(w) lw — wo| < A, (40)

is related to the angular spread (standard deviation of the distribution). In this case,
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Substituting (40) into (35) gives the receiver modal correlation coefficient
Wff = sinc((£ — 0)A,)e” =)0, (41)

where ¢, is the mean AOA and\, is the non-isotropic parameter of the azimuth power

distribution. Similarly, the modal correlation coefficient at the transmitter is found to be
vﬁfm, = sinc((m — m')At)ei(m’m/)d’o, (42)

where ¢y is the mean AOD and)\, is the non-isotropic parameter of the azimuth power

distribution.

A. Fast Fading Channel

Consider the 4-state STTC with two transmit antennas and two receive antennas, where the
two transmit antennas are separated by a distan0e&5af In Section VI-B, we observed that
the performance loss due to antenna separation is minimum when the two receive antenna
elements are placed at a distance greater @hfax Therefore, to study the modal correlation
effects on the exact-PEP over a fast fading chafivet, set the receive antenna separation
to 0.5\. For simplicity, here we only consider the modal correlation effects at the receiver
region and assume that the effective communication modes available at the transmitter region
are uncorrelated, i.eE7 = Ty, 1.

Fig. 6 shows the exact-PEP performances of the 4-state code for various angular spreads
o = {5°,30°,60°, 180°} about a mean AOAy, = 0° from broadside, where the broadside
angle is defined as the angle perpendicular to the line connecting the two antennas. Note that
o = 180° represents the isotropic scattering environment. The exact-PEP performance for the
i.i.d. fast fading channel (Rayleigh) is also plotted on the same graph for comparison.

Fig.6 suggests that the performance loss incurred due to the modal correlation increases
as the angular spread of the distribution decreases. For example, at 10dB SNR, the realistic
PEP performance results obtained from (24) are 0.25dB, 2.5dB, 3.25dB and 7.5dB away from
the i.i.d. channel performance results for angular spréads 60°, 30° and5°, respectively.

Therefore, in general, if the angular spread of the distribution is closégd (isotropic

8We omit the performance results over a slow fading channel for the sake of brevity.
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Fig. 6. Effect of receiver modal correlation on the exact-PEP of the 4-state QPSK space-time trellis code with 2-Tx
antennas and 2-Rx antennas for the length 2 error event. Uniform limited power distribution with mean angle dfarrival

from broadside and angular spreatls= {5°,30°,60°,180°}; fast fading channel.

scattering), then the loss incurred due to the modal correlation is insignificant, provided that
the antenna spacing is optimal. However, for moderate angular spread values gifch as
and30°, the performance loss is quite significant. This is due to the higher concentration of
energy closer to the mean AOA for small angular spreads. It is also observed that for large
angular spread values, the diversity order of the code (slope of the performance curve) is
preserved whereas for small and moderate angular spread values, the diversity order of the
code is diminished.

Fig.7 shows the PEP performance results of the 4-state STTC for a meanshSAL5°
from broadside. Similar results are observed as for the mean AQA 0° case. Comparing
Figs. 6 and 7 we observe that the performance loss is increased for all angular spreads as
the mean AOA moves away from broadside. This can be justified by the reasoning that, as
the mean AOA moves away from broadside, there will be a reduction in the angular spread

exposed to the antennas and hence less signals being captured.
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Fig. 7. Effect of receiver modal correlation on the exact-PEP of the 4-state QPSK space-time trellis code with 2-Tx
antennas and 2-Rx antennas for the length 2 error event. Uniform limited power distribution with mean angle of&rrival

from broadside and angular spreatls= {5°,30°,60°,180°}; fast fading channel.

Finally, we consider the exact-PEP results for the length two error event against the receive
antenna separation for a mean AQA = 45° from broadside and angular spreagls=
[5°,30°,180°]. The results are plotted in Fig.8 for 8dB and 10dB SNRs. It is observed that
for a given SNR, the performance of the space-time code is improved as the receive antenna
separation and the angular spread are increased. However, the performance does not improve
monotonically with the increase in receive antenna separation. We also observed that when
the angular spread is quite small (€5¢), we need to place the two receive antenna elements
at least several wavelengths apart in order to achieve the maximum performance gain given
by the 4-state STTC.

Comparison of Figs. 6, 7 and 8 reveals that when the angular spread of the surrounding
azimuth power distribution is closer 180° (i.e., the scattering environment is near-isotropic),
the performance degradation of the code is mainly due to the insufficient antenna spacing.

Therefore, employing multiple antennas on a Mobile-Unit (MU) will result in significant
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Fig. 8. Exact-PEP of the 4-state QPSK space-time trellis code with 2-Tx antennas and 2-Rx antennas against the receive
antenna separation. Uniform limited power distribution with mean angle of arb7/afrom broadside and angular spreads
o = {5°,30°,60°,180°}; fast fading channel

performance loss due to the limited size of the MU.

Furthermore, we observed that (performance results are not shown here) when there are
more than two receive antennas in a fixed receive aperture, the performance loss of the 4-state
STTC with decreasing angular spread is most pronounced for the ULA antenna configuration
when the mean AOA is closer t90° (inline with the array). But, for the UCA antenna
configuration, the performance loss is insignificant as the mean AOA moves away from
broadside for all angular spreads. This suggests that the UCA antenna configuration is less
sensitive to change of mean AOA compared to the ULA antenna configuration. Hence, the
UCA antenna configuration is best suited to employ a space-time code.

Using the results we obtained thus far, we can claim that, in general, space-time trellis
codes are susceptible to spatial fading correlation effects, in particular, when the antenna

separation and the angular spread are small.
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B. Extension of PEP to Average Bit Error Probability

An approximation to the average bit error probability (BEP) was given in [22] on the basis

of accounting for error event paths of lengths upHas,

Py(B) = 5 S a(X — X)P(X — X), 43)

whereb is the number of input bits per transmissig,X — X)), is the number of bit errors
associated with the error evehand P(X — X)), is the corresponding PEP. In [6], it was
shown that error event paths of lengths upHare sufficient to achieve a reasonably good
approximation to the full upper (union) bound that takes into account error event paths of
all lengths. For example, with the 4-state STTC, error event paths of lengths p=ta

andH = 3 are sulfficient for the slow and fast fading channels, respectively.

The closed-form solution for average BEP of a space-time code can be obtained by finding
closed-form solutions for PEPs associated with each error type, using one of the analytical
techniques given in Section IV. In previous sections, we investigate the effects of antenna
spacing, antenna geometry and modal correlation on the exact-PEP of a space-time code over
fast and slow fading channels. The observations and claims which we made there, are also
valid for the BEP case as the BEPs are calculated directly from PEPs. Therefore, to avoid

repetition, we do not discuss BEP performance results here.

VIIl. CONCLUSION

Using an MGF-based approach, we have derived analytical expressions for the exact-
PEP of a space-time coded system over spatially correlated fast and slow fading channels.
Two analytical techniques are discussed which can be used to evaluate the exact-PEPs in
closed form. The analytical expressions we derived fully account for antenna separation,
antenna geometry (Uniform Linear Array, Uniform Grid Array, Uniform Circular Array,
etc.) and surrounding azimuth power distributions, both at the receiver and the transmitter
antenna array apertures. In practice, these analytical expressions can be used as a tool to
estimate or predict the performance of a space-time code under any antenna configuration and
surrounding azimuth power distribution parameters. Based on these new PEP expressions, we
showed that space-time codes employed on multiple transmit and multiple receive antennas
are susceptible to spatial fading correlation effects, particularly for small antenna separations

and small angular spreads.
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APPENDIX |

TRANSMIT AND RECEIVE ANTENNA ARRAY CONFIGURATION MATRICES

Let u,, p =1,2,--- ,ny be the position op-th transmit antenna relative to the transmit
antenna array origin and,, ¢ = 1,2, --- ,ng be the position of-th receive antenna relative

to the receive antenna array origin. Then

j_mT(ul) s jmT(ul)

JT _ jfmT (u2) . jmT.(’uQ)

)

T-mr(Ung) - Ty (tny)

is the transmit antenna array configuration matrix and

j_mR(vl) ij(vl)

JR _ jfm].{(UZ) . ij.(UQ)

Y

T-mp(Vng) - Tmp(Vng)

is the receive antenna array configuration matrix, wiigyer) is the spatial-to-mode function
(SMF) which maps the antenna location to thh mode of the region. The form which

the SMF takes is related to the shape of the scatterer-free antenna region. For a circular
region in 2-dimensional space, the SMF is given by a Bessel function of the first kind [9]
and for a spherical region in 3-dimensional space, the SMF is given by a spherical Bessel
function [10]. For a prism-shaped region, the SMF is given by a prolate spheroidal function
[23]. Here, we consider only the 2-dimensional scattering environment where antennas are

encompassed in scatterer-free circular apertures. Then the SMF is given by
Tu(w) £ Jy(kljaw])yer @),

where J,(-) is the Bessel function of integer order, vectorw = (|lw],¢,) in polar
coordinates is the antenna location relative to the origin of the aperture which encloses the
antennask = 27/ is the wave number withh being the wave length and= /—1.

The number of effective communication mo¢ks) available in a region is given by [11]
M = 2[mwer/\] + 1, (44)

wherer is the minimum radius of the antenna array aperture @nd2.7183.
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APPENDIX I

PROOFS

The following three properties of Hermitian matrices will be used to prove@hain (10)

and G in (20) are Hermitian.

Property 1: If H is anym x n matrix, thenHH' and H'H are Hermitian.
Property 2: If A is a Hermitian matrix andd is any matrix, thenHAH' and H'AH

are Hermitian.

Property 3: Kronecker product between two Hermitian matrices are always Hermitian.

Proposition 1: MatricesG,, = (JLJ )" @ (JhaiJr) andG = (JhJr) @ (JLXaJ7)
are Hermitian, wheres = (z,, — 2,)(@, — &) and Xa = (X — X)(X — X)".

Proof: From property-1, matrices.]}%JR, x’x and X A are Hermitian. Thereforgrop-

erty-2 implies thatJTT:cZJT and JTTXAJT are Hermitian. Thus, fronproperty3, G,, and

G are Hermitian.
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