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Abstract

In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of

a space-time coded system operating over spatially correlated fast (constant over the duration of a

symbol) and slow (constant over the length of a code word) fading channels using a moment-

generating function-based approach. We discuss two analytical techniques that can be used to

evaluate the exact-PEPs (and therefore approximate the average bit error probability (BEP)) in closed

form. These analytical expressions are more realistic than previously published PEP expressions

as they fully account for antenna spacing, antenna geometries (Uniform Linear Array, Uniform

Grid Array, Uniform Circular Array, etc.) and scattering models (Uniform, Gaussian, Laplacian,

Von-mises, etc). Inclusion of spatial information in these expressions provides valuable insights

into the physical factors determining the performance of a space-time code. Using these new PEP

expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power
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distribution parameters (angle of arrival/departure and angular spread) on the performance of a

four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Index Terms

Gaussian Q-function, modal correlation, moment-generating function, MIMO system, non-

isotropic scattering, space-time coding.

I. I NTRODUCTION

Space-time coding combines channel coding with multiple transmit and multiple receive

antennas to achieve bandwidth and power efficient high data rate transmission over fading

channels. The performance criteria for space-time codes have been derived in [1] based on

the Chernoff bound applied to the pairwise error probability (PEP). In [2, 3], the average bit

error probability (BEP) of space-time trellis codes was evaluated using the traditional Chernoff

bounding technique on the PEP. In general, the Chernoff bound is quite loose for low signal-

to-noise ratios. In [4], the exact-PEP of space-time codes operating over independent and

identically distributed (i.i.d.) fast fading channels was derived using the method of residues.

A simple method for exactly evaluating the PEP (and approximate BEP) based on the moment

generating function associated with a quadratic form of a complex Gaussian random variable

[5] is given in [6] for both i.i.d. slow and fast fading channels.

When designing space-time codes, the main assumption being made is that the channel

gains between the transmitter and the receiver antennas undergo independent fading. How-

ever, independent fading models an unrealistic propagation environment. The spatial fading

correlation effects on the exact-PEP of space-time codes were investigated in [7]. There, the

exact-PEP results derived in [4] were further extended to spatially correlated slow fading

channels with the use of residue methods. In [7], the correlation is calculated in terms of the

correlation between channel gains, but there is no direct realizable physical interpretation to

the spatial correlation. Therefore, existing PEP expressions derived in the literature do not

provide insights into the physical factors determining the performance of a space-time code

over correlated fading channels. In particular, the effect of antenna spacing, spatial geometry

of the antenna arrays and the non-isotropic scattering environments on the performance of

space-time codes are of interest.

In this paper, using the MGF-based approach presented in [6], we derive analytical expres-

sions for the exact-PEP (and approximate BEP) of a space-time coded system over spatially

July 8, 2004 DRAFT



3

correlated fast and slow fading channels. These expressions are more realistic than previously

published [4, 6, 7] exact-PEP expressions, as they fully account for antenna placement along

with non-isotropic scattering environments. Using these analytical expressions one can eval-

uate the performance of a space-time code applied to a MIMO system in any general spatial

scenario (antenna geometries: Uniform Linear Array (ULA), Uniform Grid Array (UGA),

Uniform Circular Array (UCA), etc.scattering models: Uniform, Gaussian, Laplacian, Von-

mises, etc.) without the need for extensive simulations. We discuss two analytical techniques

that can be used to evaluate the exact-PEPs (and therefore approximate the average BEP)

in closed form, namely, (a)-Direct partial fraction expansion(b)-Partial fraction expansion

via eigenvalue decomposition. We demonstrate the strength of these new analytical PEP

expressions by evaluating the performance of a four-state QPSK space-time trellis code with

two transmit antennas proposed by Tarokh et al. [1] for different spatial scenarios.

II. SYSTEM MODEL

Notations: Throughout the paper, the following notations will be used:[·]T , [·]∗ and

[·]† denote the transpose, complex conjugate and conjugate transpose operations, respec-

tively. The symbolsδ(·) and ⊗ denote the Dirac delta function and Matrix Kronecker

product, respectively. The notation‖ · ‖2 denotes the squared norm of a matrix:‖XP×Q‖2 =
∑P

i=1

∑Q
j=1 |aij|2, E {·} denotes the mathematical expectation,vec(A) denotes the vector-

ization operator which stacks the columns ofA, and d.e denotes the ceiling operator. The

matrix In is then× n identity matrix.

Consider a MIMO system consisting ofnT transmit antennas andnR receive antennas.

Let xn = [x
(n)
1 , x

(n)
2 , · · ·x(n)

nT ]T denote the space-time coded signal vector transmitted fromnT

transmit antennas in then-th symbol interval. LetX = [x1,x2, · · ·,xL] denote the space-

time code representing the entire transmitted signal, whereL is the code length. The received

signal at theq-th receive antenna in then-th symbol interval is given by

r(n)
q =

√
Es

nT∑
p=1

h(n)
q,px(n)

p + η(n)
q ,

q = 1, 2, · · · , nR, n = 1, 2, · · · , L, (1)

whereEs is the transmitted power per symbol at each transmit antenna andη
(n)
q is the additive

noise on theq-th receive antenna at symbol intervaln. The additive noise is assumed to be

July 8, 2004 DRAFT



4

white and complex Gaussian distributed with mean zero and varianceN0/2 per dimension.

Here the coefficienth(n)
q,p represents the random complex channel gain between thep-th

transmit antenna and theq-th receive antenna. LetHn = [hq,p] denote thenR × nT channel

gain matrix associated with then-th symbol interval.

By taking into account the physical aspects of scattering, the channel matrixHn can be

decomposed into deterministic and random parts as [8–10]

Hn = JRSnJ †
T , (2)

where the matricesJR andJT are deterministic andSn is random. According to the channel

model proposed in [8],Sn is the i.i.d. channel matrix associated with then-th symbol interval,

which has zero-mean and unit variance complex Gaussian entries, whileJR and JT are

the receive and transmit antenna correlation matrices, respectively. For the channel models

proposed in [9] and [10],Sn represents the random scattering environment associated with

the n-th symbol interval andJR andJT represent the antenna configurations at the receive

and transmit antenna arrays, respectively.

In this work, we are mainly interested in investigating the impact of antenna separation,

antenna geometry and the general scattering environment on the performance of a space-time

coded system. The channel model given in [8] is restricted to a uniform linear array antenna

configuration and a countable number of scatterers around the transmit and receive antenna

arrays. However, the channel models given in [9, 10], are capable of capturing different

antenna geometries as well as various non-isotropic power distributions around the transmit

and receive antenna arrays. Here we only consider planar antenna arrays and a 2-dimensional

scattering environment. Therefore we use the 2-dimensional spatial channel model1 proposed

in [9] for our PEP investigations.

A. Spatial Channel Model

Using a recently developed spatial channel model [9], we are able to incorporate the antenna

spacing, antenna geometries and scattering distribution parameters such as the mean angle-

of-arrival (AOA), mean angle-of-departure (AOD) and the angular spread into the exact-PEP

calculations of space-time coded systems. In this model, the MIMO channel is separated into

three physical regions of interest: the scatterer-free region around the transmit antenna array,

1 The 2-dimensional case is a special case of the 3-dimensional case where all the signals arrive from on a horizontal

plane only. Similar results can be obtained using the 3-dimensional channel model proposed in [10].
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the scatterer-free region around the receive antenna array and the complex random scattering

media which is the complement of the union of two antenna array regions. This separation

of regions leads to the decomposition in (2) which will play a key role in this paper.

HereJT is thenT×(2mT + 1) transmit antenna array configuration matrix andJR is the

nR×(2mR+1) receive antenna array configuration matrix, where(2mT +1) and(2mR+1) are

the number of effective communication modes available in the transmit and receive regions,

respectively. Note that,mT andmR are determined by the size of the antenna aperture [11],

but not from the number of antennas encompassed in an antenna array. The precise definitions

of JR andJT are given in Appendix I.

Sn is the (2mR + 1)× (2mT + 1) random scattering matrix with(`,m)-th element given

by

{Sn}`,m =

∫ π

0

∫ π

0

gn(φ, ϕ)e−i(`−mR−1)ϕei(m−mT−1)φdϕdφ,

` = 1, · · · , 2mR + 1, m = 1, · · · , 2mT + 1 (3)

Note that{Sn}`,m represents the complex gain of the scattering channel between them-th

mode2 of the transmit region and thè-th mode of the receive region, wheregn(φ, ϕ) is the

scattering gain function, which is the effective random complex gain for signals leaving the

transmit aperture with angle of departureφ and arriving at the receive aperture with angle

of arrival ϕ over then-th symbol interval.

III. E XACT PEPON CORRELATED MIMO CHANNELS

Assume that perfect channel state information (CSI) is available at the receiver and a

maximum likelihood (ML) decoder is employed at the receiver. Assume that the codewordX

was transmitted, but the ML-decoder chooses another codewordX̂. Then the PEP, conditioned

on the channel, is given by [1]

P(X → X̂|Hn) = Q

(√
Es

2N0

d2

)
, (4)

2The set of modes form a basis of functions for representing a multipath wave field.
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whereQ(y) =
∫ y

−∞ e−x2/2dx, is the GaussianQ-function andd is the Euclidian distance.

In the case of a time-varying fading channel,

d2 =
L∑

n=1

‖Hn(xn − x̂n)‖2,

=
L∑

n=1

hn[InR
⊗ xn

∆]h†n, (5)

wherexn
∆ = (xn− x̂n)(xn − x̂n)† andhn = (vec (HT

n ))
T

is a row vector. For a slow fading

channel (quasi-static fading), we would haveHn = H for n = 1, 2, · · · , L, thend2 simplifies

to

d2 = ‖H(X − X̂)‖2,

= h[InR
⊗X∆]h†, (6)

whereX∆ = (X − X̂)(X − X̂)
†

and h = (vec (HT ))
T

is a row vector. Note also that

X∆ =
∑L

n=1 xn
∆.

To compute the average PEP, we average (4) over the joint probability distribution of the

channel gains. By using Craig’s formula for the GaussianQ-function [12]

Q(x) =
1

π

∫ π/2

0

exp

(
− x2

2 sin2 θ

)
dθ

and the MGF-based technique presented in [6], we can write the average PEP as

P(X → X̂) =
1

π

∫ π/2

0

∫ ∞

0

exp

(
− Γ

2 sin2 θ

)
pΓ(Γ)dΓdθ,

=
1

π

∫ π/2

0

MΓ

(
− 1

2 sin2 θ

)
dθ, (7)

whereMΓ(s) ,
∫∞
0

esΓpΓ(Γ)dΓ is the MGF of

Γ =
Es

2N0

d2 (8)

andpΓ(Γ) is the probability density function (pdf) ofΓ.

A. Fast Fading Channel Model

In this section, we derive the exact-PEP of a space-time coded system applied to a spatially

correlated fast fading MIMO channel.
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Substituting (2) forHn in hn = (vec (HT
n ))

T
and using the Kronecker product identity

[13, page 180]vec(AXB) = (BT ⊗A) vec (X), we re-write (5) as

d2 =
L∑

n=1

sn(JT
R ⊗ J †

T )(InR
⊗ xn

∆)(J∗
R ⊗ JT )s†n, (9a)

=
L∑

n=1

sn

[
(J †

RJR)
T ⊗ (J †

T xn
∆JT )

]
s†n, (9b)

=
L∑

n=1

snGns
†
n, (9c)

wheresn = (vec(ST
n ))

T
is a row vector and

Gn = (J †
RJR)

T ⊗ (J †
T xn

∆JT ). (10)

Note that, (9b) follows from (9a) via the identity [13, page 180](A ⊗ C)(B ⊗ D) =

AB ⊗CD, provided that the matrix productsAB andCD exist. Substituting (9c) in (8),

we get

Γ =
Es

2N0

L∑
n=1

snGns†n. (11)

Sincesn is a random row vector andGn is fixed asJT ,JR andxn
∆ are deterministic matrices,

thenΓ is a random variable too. In fact,snGns
†
n is a quadratic form of a random variable.

Now we illustrate how one would find the MGF ofΓ in (11) for a fast fading channel.

Using the standard definition of the MGF, we can write

MΓ(s) = E

{
exp

(
s

Es

2N0

L∑
n=1

snGns
†
n

)}
,

= E

{
L∏

n=1

exp

(
s

Es

2N0

snGns†n

)}
. (12)

Assume thatsn is a proper-complex Gaussian random row-vector (properties associated with

proper-complex Gaussian vectors are given in [14]) with mean zero and covarianceRn

defined asE
{
s†nsn

}
. Let p(s1, s2, · · · , sL) denote the joint pdf ofs = (s1, s2, · · · , sL).

Then, we get

MΓ(s) =

∫

V

L∏
n=1

exp

(
s

Es

2N0

snGns†n

)
p(s1, s2, · · · , sL)dV , (13)
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where we have introduced the following two shorthand notations
∫

V

dV ,
∫

V 1

∫

V 2

· · ·
∫

V L

dV 1dV 2 · · · dV L,

dV n =
K∏

`=1

dsR
n`dsI

n`,

where sR
n` and sI

n` are the real and imaginary parts of the`-th element of the vectorsn,

respectively andK = (2mR + 1)(2mT + 1) is the length ofsn.

In this work, we are mainly interested in investigating the spatial correlation effects of the

scattering environment on the performance of space-time codes. Therefore, we can assume

that the temporal correlation of the scattering environment is zero, i.e.

E
{
s†nsm

}
=





R n, n = m;

0, n 6= m.

for n, m = 1, 2, · · · , L. (14)

Assuming now that the scattering environment is temporally uncorrelated, and as a result

p(s1, s2, · · · , sL) =
∏L

n=1 p(sn), we can write the MGF ofΓ as

MΓ(s) =
L∏

n=1

∫

V n

exp

(
s

Es

2N0

snGns†n

)
p(sn)dV n,

=
L∏

n=1

MΓn(s), (15)

where

Γn =
Es

2N0

snGns
†
n.

Here the2LK-th order integral in (13) reduces to a product ofL 2K-th order integrals,

each corresponding to the MGF of one of theΓn, whereΓn is a quadratic form of a random

variable. The MGF associated with a quadratic random variable is readily found in the

literature [5]. Here we present the basic result given in Turin [5] on MGF of a quadratic

random variable as follows.

Let Q be a Hermitian matrix andv be a proper complex normal zero-mean Gaussian row

vector with covariance matrixL = E
{
v†v

}
. Then the MGF of the (real) quadratic form

f = vQv† is given by

Mf (s) = [det (I − sLQ)]−1 . (16)
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In our case,Gn is a Hermitian matrix (the proof is given in Appendix-II). Therefore, using

(16) we write the MGF ofΓn as

MΓn(s) =
[
det

(
I − sγ̄

2
RnGn

)]−1

, (17)

where γ̄ = Es

N0
is the average symbol energy-to-noise ratio (SNR),Rn is the covariance

matrix of sn as defined in (14) andGn is given in (10). Substituting (17) in (15) and then

the result in (7) yields the exact-PEP

P(X → X̂) =
1

π

∫ π/2

0

L∏
n=1

[
det

(
I +

γ̄

4 sin2 θ
RnGn

)]−1

dθ. (18)

Remark 1:Eq. (18) is the exact-PEP3 of a space-time coded system applied to a spatially-

correlated fast fading channel following the channel decomposition in (2).

Remark 2:When Rn = I (i.e., correlation between different communication modes is

zero), Eq. (18) above captures the effects due to antenna spacing and antenna geometry on

the performance of a space-time code over a fast fading channel.

Remark 3:When the fading channels are independent (i.e.,Rn = I andGn = InR
⊗xn

∆),

(18) simplifies to,

P(X → X̂) =
1

π

∫ π/2

0

L∏
n=1

[
det

(
InT

+
γ̄

4 sin2 θ
xn

∆

)]−nR

dθ,

which is the same as [6, Eq. (9)].

In the next section, we derive the exact-PEP of a space-time coded system for a slow

quasi-static fading channel. Note that, we are not able to use the fast fading result (18) to

obtain the exact-PEP for a slow fading channel. This is because we derived (18) under the

assumption of a temporally uncorrelated scattering environment. In contrast, for a slow fading

channel, the scattering environment is fully temporally correlated.

B. Slow Fading Channel Model

For a slow fading channel,Hn = H independent ofn in which case (8) becomes

Γ =
Es

2N0

sGs†, (19)

3Eq. (18) can be evaluated in closed form using one of the analytical techniques discussed in Section IV.
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wheres = (vec(ST ))
T

is a row vector with proper complex normal Gaussian distributed

entries and

G = (J †
RJR)

T ⊗ (J †
T X∆JT ). (20)

As before,Γ is a random variable that has a quadratic form. SinceG in (20) is Hermitian

(as shown in Appendix II), using (16), we can write the MGF ofΓ as

MΓ(s) =
[
det

(
I − sγ̄

2
RG

)]−1

, (21)

whereR is the covariance matrix of the scattering environment which is defined asR =

E
{
s†s

}
. Substitution of (21) into (7) yields

P(X → X̂) =
1

π

∫ π/2

0

[
det

(
I +

γ̄

4 sin2 θ
RG

)]−1

dθ. (22)

Remark 4:Eq (22) is the exact-PEP of a space-time coded system applied to a spatially

correlated slow fading MIMO channel following the channel decomposition in (2).

Remark 5:When the fading channels are independent (i.e.,R = I andG = InR
⊗X∆),

(22) simplifies to,

P(X → X̂) =
1

π

∫ π/2

0

L∏
n=1

[
det

(
InT

+
γ̄

4 sin2 θ
X∆

)]−nR

dθ,

which is the same as [6, Eq. (13)].

C. Kronecker Product Model as a Special Case

In some circumstances, the covariance matrixRn of the scattering channel can be ex-

pressed as a Kronecker product between correlation matrices observed at the receiver and

the transmitter antenna arrays [15, 16], i.e.,

Rn = E
{
s†nsn

}
= F R

n ⊗ F T
n , (23)

whereF R
n andF T

n are the transmit and receive correlation matrices associated with then-th

symbol interval. Substituting (23) in (18) and recalling the definition ofGn in (10), we can

simplify the exact-PEP for the fast fading channel to

P(X → X̂) =
1

π

∫ π/2

0

L∏
n=1

[
det

(
I +

γ̄

4 sin2 θ
Zn

)]−1

dθ. (24)
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whereZn = (F R
n JT

RJ∗
R) ⊗ (F T

nJ †
T xn

∆JT ). Similarly, for the slow fading channel, we can

factor R as

R = E
{
s†s

}
= F R ⊗ F T , (25)

and then the exact-PEP can be expressed as

P(X → X̂) =
1

π

∫ π/2

0

[
det

(
I +

γ̄

4 sin2 θ
Z

)]−1

dθ (26)

whereZ = (F RJT
RJ∗

R)⊗ (F T J †
T X∆JT ).

In section VII, we provide the necessary condition which a scattering channel must satisfy

in order for the factorizations (23) and (25) above to hold. There we also define the transmit

and receive correlation matrices associated with the channel model [9]. The pairwise error

probability expressions (24) and (26) will be used later in our simulations to investigate the

effects of correlation on the performance of space-time codes.

IV. REALISTIC EXACT-PEP

The exact-PEP expressions we derived in Sections III-A and III-B for the fast fading

and slow fading MIMO channels, respectively capture the antenna configurations (Linear

Array, Circular Array, Grid, etc.) both at the transmitter and the receiver arrays viaJT and

JR, respectively. These expressions also incorporate the spatial correlation effects at the

transmitter and the receiver regions viaF T
n , F R

n for the fast fading case and viaF T andF R

for the slow fading case. Therefore, PEP expressions (24) and (26) are therealisticexact-PEPs

of space-time coded systems for the fast fading and slow fading MIMO channels, respectively.

To calculate the exact-PEP, one needs to evaluate the integrals (24) and (26), either using

numerical methods or analytical methods. In the following sections, we present two analytical

techniques which can be employed to evaluate the integrals (24) and (26) in closed form,

namely (a)-Direct partial fraction expansion(b)-Partial fraction expansion via eigenvalue

decomposition. The technique-(b) was previously reported in [17]. We shall use (26), which

is the integral involved with the slow fading channel model, to introduce these two techniques.

Note that both methods can be directly applied to evaluate the integral involved with the fast

fading channel; therefore we omit the details here for the sake of brevity.
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A. Direct Partial Fraction Expansion

Matrix Z in (26) has sizeMRMT×MRMT , whereMR = 2mR + 1 andMT = 2mT + 1.

Therefore, the integrand in (26) will take the form4

[
det

(
I +

γ̄

4 sin2 θ
Z

)]−1

=
(sin2 θ)N

N∑

`=0

a`(sin
2 θ)`

, (27)

whereN = MRMT anda`, for ` = 1, 2, · · · , N , are constants. Note that the denominator of

(27) is anN -th order polynomial insin2 θ (for the fast fading channel, it would be anLN -th

order polynomial). To evaluate the integral (27) in closed form, we use the partial-fraction

expansion technique given in [18, Appendix 5A] as follows.

First we begin by factoring the denominator of (27) into terms of the form(sin2 θ + c`),

for ` = 1, 2, · · · , N . This involves finding the roots of anN -th order polynomial insin2 θ

either numerically or analytically. Then (27) can be expressed in product form as

(sin2 θ)N

∑N
`=0 a`(sin

2 θ)`
=

Λ∏

`=1

(
sin2 θ

c` + sin2 θ

)m`

(28)

wherem` is the multiplicity of the rootc` and
∑Λ

`=1 m` = N . Applying the partial-fraction

decomposition theorem to the product form (28), we get
Λ∏

`=1

(
sin2 θ

c` + sin2 θ

)m`

=
Λ∑

`=1

m∑̀

k=1

Ak`

(
sin2 θ

c` + sin2 θ

)k

(29)

where the residualAk` is given by [18, Eq. 5A.72]

Ak` =





dm`−k

dxm`−k

Λ∏
n=1
n 6=`

(
1

1 + cnx

)mn





∣∣∣
x=−c−1

`

(m` − k)!cm`−k
`

. (30)

Expansion (29) often allows integration to be performed on each term separately by inspec-

tion. In fact, each term in (29) can be separately integrated using a result found in [6],

where

P (c`, k) =
1

π

∫ π/2

0

(
sin2 θ

c` + sin2 θ

)k

dθ,

=


1−

√
c`

1 + c`

k−1∑
j=0


 2j

j




(
1

4(1 + c`)

)j

 . (31)

4One would need to evaluate the determinant of
(
I + γ̄

4 sin2 θ
Z

)
and then take the reciprocal of it to obtain the form

(27).
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Now using the partial-fraction form of the integrand in (29) together with (31), we obtain

the exact-PEP in closed form as

P(X → X̂) =
1

π

∫ π/2

0

Λ∏

`=1

(
sin2 θ

c` + sin2 θ

)m`

dθ,

=
1

2

Λ∑

`=1

m∑̀

k=1

Ak`P (c`, k). (32)

For the special case of distinct roots, i.e.,m1 = m2 = · · · = mN = 1, the exact-PEP is given

by

P(X → X̂) =
1

2

N∑

`=1

(
1−

√
c`

1 + c`

) N∏
n=1
n 6=`

(
c`

c` − cn

)
.

B. Partial Fraction Expansion via Eigenvalue Decomposition

The main difficulty with the above technique is finding the roots of anN -th order polyno-

mial. Here we provide a rather simple way to evaluate the exact-PEP in closed form using an

eigenvalue decomposition technique. However, this technique also makes use of the partial

fraction expansion technique given in [18, Appendix 5A].

Let Z̄ = γ̄
4
Z, whereZ is the matrix defined in (27). Suppose matrixZ̄ hasK non-zero

eigenvalues, including multiplicity,λ1, λ2, · · · , λK , and the decomposition̄Z = ADA−1,

whereA is the matrix of eigenvectors of̄Z andD is a diagonal matrix with the eigenvalues

of Z̄ on the diagonal. Then the integrand in (26) can be written as

[
det

(
I +

γ̄

4 sin2 θ
Z

)]−1

=

[
det

(
I +

1

sin2 θ
D

)]−1

,

=
K∏

`=1

(
sin2 θ

λ` + sin2 θ

)m`

(33)

wherem` is the multiplicity of eigenvalueλ`. Note that the RHS of (33) has the identical form

as the RHS of (28). Therefore, the partial-fraction expansion method, which we discussed in

Section IV-A can be directly applied to evaluate the exact-PEP results in closed form.

V. A NALYTICAL PERFORMANCEEVALUATION : AN EXAMPLE

As an example, we consider the 4-state QPSK space-time trellis code (STTC) with two

transmit antennas proposed by Tarokhet al. [1]. The 4-state STTC code is shown in Fig.1

where the labelling of the trellis branches follow [1]. The QPSK signal points are mapped
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to the edge label symbols as shown in Fig. 1. For this code, the exact-PEP results and

approximate BEP results fornR = 1 andnR = 2 were presented in [4, 6] for i.i.d. fast and

slow fading channels. In [7], the effects of spatial fading correlation on the average BEP

were studied fornR = 1 over a slow fading channel. In this work, we compare the i.i.d.

channel performance results (without considering antenna configurations) presented in [4, 6]

with our realistic exact-PEP results for different antenna spacing, antenna placements and

scattering distribution parameters.

00, 01, 02, 03


10, 11, 12, 13


20, 21, 22, 23


30, 31, 32, 33


0


1


2


3


Fig. 1. Trellis diagram for the 4-state space-time code for QPSK constellation.

In [4, 6], performances were obtained under the assumption that the transmitted codeword

is the all-zero codeword. Here we also adopt the same assumption as we compare our results

with their results. However, we are aware that space-time codes may, in general, be non-linear,

i.e., the average BEP can depend on the transmitted codeword.

For the 4-state STTC, we have the shortest error event path of lengthH = 2, as illustrated

by shading in Fig. 1 and

X =


 1 1

1 1


 , X̂ =


 1 −1

−1 1


 . (34)

Note thatX andX̂ in (34) will be used in our simulations.

VI. EFFECT OFANTENNA SEPARATION

First we consider the effect of antenna separation on the exact-PEP when the scattering

environment is uncorrelated, i.e.,F T = I2MT +1 and F R = I2MR+1 for the slow fading

channel andF T
n = I2MT +1 andF R

n = I2MR+1 for the fast fading channel.
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A. Slow Fading Channel

Consider the 4-state STTC withnT = 2 transmit antennas andnR = 1 receive antenna.

In this case, we place the two transmit antennas in a circular aperture of radiusr (antenna

separation =2r). SincenR = 1, there will only be a single communication mode available

at the receiver aperture. HenceJR = 1.

Fig.2 shows the exact pairwise error probability performance of the 4-state STTC forH = 2

and transmit antenna separations0.1λ, 0.2λ, 0.5λ andλ, whereλ is the wave-length. Also

shown in Fig.2 for comparison is the exact-PEP for the i.i.d. slow fading channel (Rayleigh)

corresponding toH = 2.

0 2 4 6 8 10 12 14 16 18 20
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lit
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−
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E
P

ideal channel−without antenna conf.
Tx antenna sep: 0.1λ
Tx antenna sep: 0.2λ
Tx antenna sep: 0.5λ
Tx antenna sep: λ

Fig. 2. Exact pairwise error probability performance of the 4-state space-time trellis code with 2-Tx antennas and 1-Rx

antenna: length 2 error event, slow fading channel.

As we can see from the figure, the effect of antenna separation on the exact-PEP is not

significant when the transmit antenna separation is0.5λ or higher. However, the effect is

significant when the receive antenna separation is small. For example, at0.2λ and 0.1λ

receive antenna separations, the realistic PEPs are 1dB and 3dB away from the i.i.d. channel

performance results, respectively. From these observations, we can emphasize that the effect
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of antenna spacing on the performance of the 4-state STTC is minimum for higher antenna

separations whereas the effect is significant for smaller antenna separations.

1) Loss of Diversity Advantage:We now consider the diversity advantage of a space-

time coded system as the number of receive antennas increases while the receive antenna

array aperture radius remains fixed. Fig.3 shows the exact-PEP of the 4-state STTC with two

transmit antennas andnR receive antennas, wherenR = 1, 2, · · · , 10. The two transmit

antennas are placed in a circular aperture of radius0.25λ (antenna separation5 = 0.5λ)

and nR receive antennas are placed in a uniform circular array antenna configuration with

radius 0.15λ. In this case, the distance between two adjacent receive antenna elements is

0.3λ sin(π/nR).

0 1 2 3 4 5 6 7 8 9 10
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−11

10
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−8
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Average Symbol SNR (dB)
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P

1−Rx
2−Rx
3−Rx
4−Rx
5−Rx
6−Rx
7−Rx
8−Rx
9−Rx
10−Rx

Diversity + Coding Advantage  

Coding Advantage Only 

Fig. 3. Exact PEP performance of the 4-state space-time trellis code with 2-Tx antennas and n-Rx antennas: length 2 error

event, slow fading channel.

5In a 3-dimensional isotropic scattering environment, antenna separation0.5λ (first null of the order zero spherical Bessel

function) gives zero spatial correlation, but here we constraint our analysis to a 2-dimensional scattering environment. The

spatial correlation function in a 2-dimensional isotropic scattering environment is given by a Bessel function of the first kind.

Therefore, antenna separationλ/2 does not give zero spatial correlation in a 2-dimensional isotropic scattering environment.
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The slope of the performance curve on a log scale corresponds to the diversity advantage

of the code and the horizontal shift in the performance curve corresponds to the coding

advantage. According to the code construction criteria given in [1], the diversity advantage

promised by the 4-state STTC is2nR. With the above antenna configuration setup, however,

we observed that the slope of each performance curve remains the same whennR > 5, which

results in zero diversity advantage improvement fornR > 5. Nevertheless, fornR > 5, we

still observed some improvement in the coding gain, but the rate of improvement is slower

with the increase in number of receive antennas. Here the loss of diversity gain is due to

the fewer number of effective communication modes available at the receiver region than the

number of antennas available for reception. In this case, from (44) in Appendix I, the receive

aperture of radius0.15λ corresponds toM = 2dπe0.15e + 1 = 5 effective communication

modes at the receive region. Therefore whennR > 5, the diversity advantage of the code

is determined by the number of effective communication modes available at the receiver

antenna region rather than the number of antennas available for reception. That is, the point

where the diversity loss occurred is clearly related to the size of the antenna aperture, where

smaller apertures result in diversity loss of the code for lower number of receive antennas,

as proved analytically in [19].

2) Effect of Antenna Configuration:We now compare the exact-PEP results of the 4-state

STTC for different antenna configurations at the receiver. For example, we choose UCA and

ULA antenna configurations.6 Consider a system with two transmit antennas and three receive

antennas. The two transmit antennas are placed half wavelength (λ/2) distance apart and the

three receive antennas are placed within a fixed circular aperture of radiusr(= 0.15λ, 0.25λ)

as shown in Fig.4. The exact-PEP performance for the error event of length two is also

plotted in Fig 4.

From Fig.4, it is observed that, the performance given by the UCA antenna configuration

outperforms that of the ULA antenna configuration. For example, at 10dB SNR, the perfor-

mance differences between UCA and ULA are 2.75dB with0.15λ receiver aperture radius

and 1.25dB with0.25λ receiver aperture radius. Therefore, as we illustrated here, one can use

the realistic PEP expressions (24) and (26) to determine the best antenna placement within a

given region which gives the maximum performance gain available from a space-time code.

6The exact-PEP expressions we derived in this work can be applied to any arbitrary antenna configuration.
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Fig. 4. The exact-PEP performance of the 4-state STTC with two transmit and three receive antennas for UCA and ULA

receive antenna configurations: length 2 error event, slow fading channel.

B. Fast Fading Channel

Consider the 4-state STTC with two transmit antennas and two receive antennas, where the

two transmit antennas are placed in a circular aperture of radius0.25λ (antenna separation

= 0.5λ) and the two receive antennas are placed in a circular aperture of radiusr (antenna

separation =2r).

Fig.5 shows the exact pairwise error probability performance of the 4-state STTC forH = 2

and receive antenna separations0.1λ, 0.2λ and0.5λ. Also shown in Fig.5 for comparison, is

the exact-PEP for the i.i.d. fast fading channel. Similar results are observed as for the slow

fading channel. For the fast fading channel, the effect of antenna separation is minimum

when the antenna separation is higher and it is significant when the antenna separation is

smaller (< 0.5λ). At 0.1λ receive antenna separation, the performance loss is 3dB and at

0.2λ the performance loss is 1dB. Note that the performance loss we observed here is mainly
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Fig. 5. Exact pairwise error probability performance of the 4-state space-time trellis code with 2-Tx antennas and 2-Rx

antennas-length two error event: fast fading channel.

due to the antenna spacing.7

VII. E FFECT OFMODAL CORRELATION

In Section VI, we investigated the effect of antenna spacing and antenna configurations

on the exact-PEP of space-time codes, assuming an uncorrelated scattering environment. In

this section, we study the scattering correlation effects or modal correlation effects on the

exact-PEP of space-time codes.

On a fast fading channel environment, we assume that the scattering gains change inde-

pendently from symbol to symbol. It is also reasonable to assume that the statistics of the

scattering channel remain constant over an interval of interest. Here we take the interval of

interest as the length of the space-time codeword. Then we have,Rn = R for n = 1, 2, · · · , L

in (14).

7Antenna spacing and scattering distribution parameters such as mean AOA/AOD and angular spread are the main

contributors to spatial fading correlation.
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Using (3), we can define the modal correlation between complex scattering gains as

γ`,`′
m,m′ , E

{
S`,mS∗

`′,m′
}

.

Assume that the scattering from one direction is independent of that from another direction

for both the receiver and the transmitter apertures. Then the second-order statistics of the

scattering gain functiong(φ, ϕ) can be defined as

E
{

g(φ, ϕ)g∗(φ
′
, ϕ

′
)
}

= G(φ, ϕ)δ(φ− φ
′
)δ(ϕ− ϕ

′
),

whereG(φ, ϕ) = E {|g(φ, ϕ)|2} with normalization
∫ ∫

G(φ, ϕ)dϕdφ = 1. With the above

assumption, the modal correlation coefficient,γ`,`′
m,m′ can be simplified to

γ`,`′
m,m′ =

∫ ∫
G(φ, ϕ)e−i(`−`′)ϕei(m−m′)φdϕdφ.

Then the correlation between the`-th and`′-th modes at the receiver region due to them-th

mode at the transmitter region is given by

γRx
`,`′ =

∫
PRx(ϕ)e−i(`−`′)ϕdϕ, (35)

wherePRx(ϕ) =
∫

G(φ, ϕ)dφ is the normalized azimuth power distribution of the scatterers

surrounding the receiver antenna region. Here we see that modal correlation at the receiver

is independent of the mode selected from the transmitter region.

Similarly, we can write the correlation between them-th andm′-th modes at the transmitter

as

γTx
m,m′ =

∫
PTx(φ)ei(m−m′)φdφ, (36)

wherePTx(φ) =
∫

G(φ, ϕ)dϕ is the normalized azimuth power distribution at the transmitter

region. As for the receiver modal correlation, we can observe that modal correlation at the

transmitter is independent of the mode selected from the receiver region. Note that, azimuth

power distributionsPRx(ϕ) andPTx(φ) can be modeled using all common azimuth power

distributions such as Uniform, Gaussian, Laplacian, Von-Mises, etc.

Denoting thep-th column of scattering matrixS asSp, the(2mR+1)×(2mR+1) receiver

modal correlation matrix can be defined as

F R , E
{
SpS

†
p

}
,
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where the(`, `′)-th element ofF R is given by (35) above. Similarly, we can write the

transmitter modal correlation matrix as

F T = E
{
S†

qSq

}
,

whereSq is theq-th row of S. The (m,m′)-th element ofF T is given by (36) andF T is a

(2mT + 1)× (2mT + 1) matrix.

The correlation matrix of the scattering channelS can be expressed as the Kronecker

product between the receiver modal correlation matrix and the transmitter modal correlation

matrix,

R = E
{
s†s

}
= F R ⊗ F T . (37)

As a result, the correlation between two distinct modal pairs can be written as the product

of corresponding modal correlations at the transmitter and the receiver, i.e.,

γ`,`′
m,m′ = γRx

`,`′γ
Tx
m,m′ . (38)

Note that (38) holds only for class of scattering environments where the power spectral

density of the modal correlation function satisfies [15, 16]

G(φ, ϕ) = PTx(φ)PRx(ϕ). (39)

Also note that, (39) is the necessary condition that a channel must satisfy in order to hold

the realistic exact-PEP (24) and (26) for the fast and slow fading channels, respectively.

It was shown in [20] that all azimuth power distribution models give very similar correlation

values for a given angular spread, especially for small antenna separations. Therefore, without

loss of generality, we restrict our investigation only to the Uniform limited azimuth power

distribution, which is defined as follows.

Uniform-limited azimuth power distribution (UL-APD): When the energy is arriving/departing

uniformly from/to a restricted range of azimuth angles±4 around a mean angle of ar-

rival/departureω0 ∈ [−π, π), the azimuth power distribution is defined as [21]

P(ω) =
1

24 , |ω − ω0| ≤ 4, (40)

where4 represents the non-isotropic parameter of the azimuth power distribution, which

is related to the angular spreadσ (standard deviation of the distribution). In this case,
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σ = ∆/
√

3.

Substituting (40) into (35) gives the receiver modal correlation coefficient

γRx
`,`′ = sinc((`− `′)∆r)e

−i(`−`′)ϕ0 , (41)

where ϕ0 is the mean AOA and∆r is the non-isotropic parameter of the azimuth power

distribution. Similarly, the modal correlation coefficient at the transmitter is found to be

γTx
m,m′ = sinc((m−m′)∆t)e

i(m−m′)φ0 , (42)

where φ0 is the mean AOD and∆t is the non-isotropic parameter of the azimuth power

distribution.

A. Fast Fading Channel

Consider the 4-state STTC with two transmit antennas and two receive antennas, where the

two transmit antennas are separated by a distance of0.5λ. In Section VI-B, we observed that

the performance loss due to antenna separation is minimum when the two receive antenna

elements are placed at a distance greater than0.5λ. Therefore, to study the modal correlation

effects on the exact-PEP over a fast fading channel,8 we set the receive antenna separation

to 0.5λ. For simplicity, here we only consider the modal correlation effects at the receiver

region and assume that the effective communication modes available at the transmitter region

are uncorrelated, i.e.,F T = I2MT +1.

Fig. 6 shows the exact-PEP performances of the 4-state code for various angular spreads

σ = {5◦, 30◦, 60◦, 180◦} about a mean AOAϕ0 = 0◦ from broadside, where the broadside

angle is defined as the angle perpendicular to the line connecting the two antennas. Note that

σ = 180◦ represents the isotropic scattering environment. The exact-PEP performance for the

i.i.d. fast fading channel (Rayleigh) is also plotted on the same graph for comparison.

Fig.6 suggests that the performance loss incurred due to the modal correlation increases

as the angular spread of the distribution decreases. For example, at 10dB SNR, the realistic

PEP performance results obtained from (24) are 0.25dB, 2.5dB, 3.25dB and 7.5dB away from

the i.i.d. channel performance results for angular spreads180◦, 60◦, 30◦ and5◦, respectively.

Therefore, in general, if the angular spread of the distribution is closer to180◦ (isotropic

8We omit the performance results over a slow fading channel for the sake of brevity.
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Fig. 6. Effect of receiver modal correlation on the exact-PEP of the 4-state QPSK space-time trellis code with 2-Tx

antennas and 2-Rx antennas for the length 2 error event. Uniform limited power distribution with mean angle of arrival0◦

from broadside and angular spreadsσ = {5◦, 30◦, 60◦, 180◦}; fast fading channel.

scattering), then the loss incurred due to the modal correlation is insignificant, provided that

the antenna spacing is optimal. However, for moderate angular spread values such as60◦

and30◦, the performance loss is quite significant. This is due to the higher concentration of

energy closer to the mean AOA for small angular spreads. It is also observed that for large

angular spread values, the diversity order of the code (slope of the performance curve) is

preserved whereas for small and moderate angular spread values, the diversity order of the

code is diminished.

Fig.7 shows the PEP performance results of the 4-state STTC for a mean AOAϕ0 = 45◦

from broadside. Similar results are observed as for the mean AOAϕ0 = 0◦ case. Comparing

Figs. 6 and 7 we observe that the performance loss is increased for all angular spreads as

the mean AOA moves away from broadside. This can be justified by the reasoning that, as

the mean AOA moves away from broadside, there will be a reduction in the angular spread

exposed to the antennas and hence less signals being captured.

July 8, 2004 DRAFT



24

0 2 4 6 8 10 12 14 16
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Average Symbol SNR (dB)

P
E

P

AOA−45° from broadside

ideal channel−w/o antenna conf.
zero modal correlation
σ = 5°
σ = 30°
σ = 60°
σ = 180°−Isotropic

Fig. 7. Effect of receiver modal correlation on the exact-PEP of the 4-state QPSK space-time trellis code with 2-Tx

antennas and 2-Rx antennas for the length 2 error event. Uniform limited power distribution with mean angle of arrival45◦

from broadside and angular spreadsσ = {5◦, 30◦, 60◦, 180◦}; fast fading channel.

Finally, we consider the exact-PEP results for the length two error event against the receive

antenna separation for a mean AOAϕ0 = 45◦ from broadside and angular spreadsσ =

[5◦, 30◦, 180◦]. The results are plotted in Fig.8 for 8dB and 10dB SNRs. It is observed that

for a given SNR, the performance of the space-time code is improved as the receive antenna

separation and the angular spread are increased. However, the performance does not improve

monotonically with the increase in receive antenna separation. We also observed that when

the angular spread is quite small (e.g.5◦), we need to place the two receive antenna elements

at least several wavelengths apart in order to achieve the maximum performance gain given

by the 4-state STTC.

Comparison of Figs. 6, 7 and 8 reveals that when the angular spread of the surrounding

azimuth power distribution is closer to180◦ (i.e., the scattering environment is near-isotropic),

the performance degradation of the code is mainly due to the insufficient antenna spacing.

Therefore, employing multiple antennas on a Mobile-Unit (MU) will result in significant
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Fig. 8. Exact-PEP of the 4-state QPSK space-time trellis code with 2-Tx antennas and 2-Rx antennas against the receive

antenna separation. Uniform limited power distribution with mean angle of arrival45◦ from broadside and angular spreads

σ = {5◦, 30◦, 60◦, 180◦}; fast fading channel

performance loss due to the limited size of the MU.

Furthermore, we observed that (performance results are not shown here) when there are

more than two receive antennas in a fixed receive aperture, the performance loss of the 4-state

STTC with decreasing angular spread is most pronounced for the ULA antenna configuration

when the mean AOA is closer to90◦ (inline with the array). But, for the UCA antenna

configuration, the performance loss is insignificant as the mean AOA moves away from

broadside for all angular spreads. This suggests that the UCA antenna configuration is less

sensitive to change of mean AOA compared to the ULA antenna configuration. Hence, the

UCA antenna configuration is best suited to employ a space-time code.

Using the results we obtained thus far, we can claim that, in general, space-time trellis

codes are susceptible to spatial fading correlation effects, in particular, when the antenna

separation and the angular spread are small.
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B. Extension of PEP to Average Bit Error Probability

An approximation to the average bit error probability (BEP) was given in [22] on the basis

of accounting for error event paths of lengths up toH as,

Pb(E) ∼= 1

b

∑
t

q(X → X̂)tP(X → X̂)t, (43)

whereb is the number of input bits per transmission,q(X → X̂)t is the number of bit errors

associated with the error eventt andP(X → X̂)t is the corresponding PEP. In [6], it was

shown that error event paths of lengths up toH are sufficient to achieve a reasonably good

approximation to the full upper (union) bound that takes into account error event paths of

all lengths. For example, with the 4-state STTC, error event paths of lengths up toH = 4

andH = 3 are sufficient for the slow and fast fading channels, respectively.

The closed-form solution for average BEP of a space-time code can be obtained by finding

closed-form solutions for PEPs associated with each error type, using one of the analytical

techniques given in Section IV. In previous sections, we investigate the effects of antenna

spacing, antenna geometry and modal correlation on the exact-PEP of a space-time code over

fast and slow fading channels. The observations and claims which we made there, are also

valid for the BEP case as the BEPs are calculated directly from PEPs. Therefore, to avoid

repetition, we do not discuss BEP performance results here.

VIII. C ONCLUSION

Using an MGF-based approach, we have derived analytical expressions for the exact-

PEP of a space-time coded system over spatially correlated fast and slow fading channels.

Two analytical techniques are discussed which can be used to evaluate the exact-PEPs in

closed form. The analytical expressions we derived fully account for antenna separation,

antenna geometry (Uniform Linear Array, Uniform Grid Array, Uniform Circular Array,

etc.) and surrounding azimuth power distributions, both at the receiver and the transmitter

antenna array apertures. In practice, these analytical expressions can be used as a tool to

estimate or predict the performance of a space-time code under any antenna configuration and

surrounding azimuth power distribution parameters. Based on these new PEP expressions, we

showed that space-time codes employed on multiple transmit and multiple receive antennas

are susceptible to spatial fading correlation effects, particularly for small antenna separations

and small angular spreads.
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APPENDIX I

TRANSMIT AND RECEIVE ANTENNA ARRAY CONFIGURATION MATRICES

Let up, p = 1, 2, · · · , nT be the position ofp-th transmit antenna relative to the transmit

antenna array origin andvq, q = 1, 2, · · · , nR be the position ofq-th receive antenna relative

to the receive antenna array origin. Then

JT =




J−mT
(u1) . . . JmT

(u1)

J−mT
(u2) . . . JmT

(u2)
...

. ..
...

J−mT
(unT

) . . . JmT
(unT

)




,

is the transmit antenna array configuration matrix and

JR =




J−mR
(v1) . . . JmR

(v1)

J−mR
(v2) . . . JmR

(v2)
...

. ..
...

J−mR
(vnR

) . . . JmR
(vnR

)




,

is the receive antenna array configuration matrix, whereJn(x) is the spatial-to-mode function

(SMF) which maps the antenna location to then-th mode of the region. The form which

the SMF takes is related to the shape of the scatterer-free antenna region. For a circular

region in 2-dimensional space, the SMF is given by a Bessel function of the first kind [9]

and for a spherical region in 3-dimensional space, the SMF is given by a spherical Bessel

function [10]. For a prism-shaped region, the SMF is given by a prolate spheroidal function

[23]. Here, we consider only the 2-dimensional scattering environment where antennas are

encompassed in scatterer-free circular apertures. Then the SMF is given by

Jn(w) , Jn(k‖w‖)ein(φw−π/2),

where Jn(·) is the Bessel function of integer ordern, vector w = (‖w‖, φw) in polar

coordinates is the antenna location relative to the origin of the aperture which encloses the

antennas,k = 2π/λ is the wave number withλ being the wave length andi =
√−1.

The number of effective communication modes(M) available in a region is given by [11]

M , 2dπer/λe+ 1, (44)

wherer is the minimum radius of the antenna array aperture ande ≈ 2.7183.
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APPENDIX II

PROOFS

The following three properties of Hermitian matrices will be used to prove thatGn in (10)

andG in (20) are Hermitian.

Property 1: If H is anym× n matrix, thenHH† andH†H are Hermitian.

Property 2: If A is a Hermitian matrix andH is any matrix, thenHAH† andH†AH

are Hermitian.

Property 3: Kronecker product between two Hermitian matrices are always Hermitian.

Proposition 1: MatricesGn = (J †
RJR)

T ⊗ (J †
T xn

∆JT ) andG = (J †
RJR)

T ⊗ (J †
T X∆JT )

are Hermitian, wherexn
∆ = (xn − x̂n)(xn − x̂n)† andX∆ = (X − X̂)(X − X̂)

†
.

Proof: From property-1, matricesJ †
RJR, xn

∆ andX∆ are Hermitian. Therefore,prop-

erty-2 implies thatJ †
T xn

∆JT andJ †
T X∆JT are Hermitian. Thus, fromproperty-3, Gn and

G are Hermitian.
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