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Abstract— New Results for the performance analysis of maxi-
mal ratio combining (MRC) using BPSK modulation in spatially
correlated Rayleigh fading channels with imperfect channel
knowledge are presented in terms of antenna array configu-
ration and parameters of scatterer distributions. The utility
of recently developed expressions for bit error probability is
enhanced by application of a spatial correlation formulation for
arbitrarily spaced antennas and general scatterer distributions.
The results of performance analysis give valuable insight into
the performance of MRC in realistic Rayleigh fading scenarios
with imperfect channel state information for both isotropic and
non-isotropic fading scenarios.

I. INTRODUCTION

Maximal ratio combining (MRC) represents a theoretically
optimal combiner over fading channels as a diversity scheme
in a communication system. Theoretically, multiple copies of
the same information signal are combined so as to maximize
the instantaneous SNR at the output [1]. It is a very effective
technique to mitigate the effects of severe fading in wireless
communications.

System designs often assume that the fading is independent
across multiple diversity channels of the combiner. Physical
constraints often restrain the use of antenna spacing that is
required for independent fading across multiple antennas [2].
Therefore it is necessary to consider spatial correlation char-
acteristics between the antennas when implementing MRC.

In addition, system designs often assume that the channel
coefficients are known at the receiver, and there are no channel
estimation errors; although, in practice the channel coefficients
need to be estimated at the receiver. These must be estimated
either by the use of known pilot signals or in a blind manner.
This can have a deleterious effect on the performance of MRC.

Recently analytical expressions for the bit error probability
with BPSK modulation have been derived for typical scenarios
where there is correlation with imperfect channel knowledge,
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accounting for distinct eigenvalues in the correlation matrix
[3], and closely spaced or non-distinct eigenvalues [4]. In
this paper, for the first time, both the physical characteristics
of scatterer distributions and the antenna array inputs to the
combiner, are related to the performance of MRC in typical
scenarios.

In [5] expressions are given for the spatial correlation of
distributions of scatterers which can be applied to various
non-isotropic scatterer distributions over multiple antennas. In
this contribution, the spatial correlation formulation in [5] is
applied with MRC of BPSK modulation to typical antenna
configurations for 4 to 6 receive antennas in two typical
non-isotropic Rayleigh fading environments, and a Rayleigh
isotropic scattering scenario where it is assumed that there is
imperfect channel knowledge at the receiver using the results
from [3] and [4].

This paper is organized as follows. The next section de-
scribes the system model used. The expressions for the bit er-
ror probability are described in Section 3. Section 4 describes
the spatial correlation formulation at arbitrarily spaced anten-
nas. Section 5 presents analysis of MRC with standard antenna
configurations as inputs for different scattering scenarios. The
final section provides some concluding remarks.

II. SYSTEM MODEL

The BPSK modulated symbols a
(d)
n ∈ {+σd,−σd} are

transmitted with ‖a(d)
n ‖2 = σ2

d and n denoting the time
index. Then the vector yn = [y0,n, . . . , yL−1,n]T comprising
the L spatio-temporal diversity branches, which are used for
maximal ratio combining (MRC) at the receiver, may be
modelled as

yn = a(d)
n h + vn (1)

where h denotes the effective vector of channel transmission
coefficients, h = [h1, . . . , hL]T , and vn denotes the noise
vector, vn = [v1,n, . . . , vL,n]T , respectively [4].

Incorporating the assumption of Rayleigh fading, the vector
of channel transmission coefficients h is assumed to have a



zero mean complex Gaussian distribution with covariance R,
with a distribution h ∼ NC(0,R). The noise is assumed to
be additive complex Gaussian noise with distribution vn ∼
NC(0, σ2

vIL), where IL is the identity matrix of size L.
We assume that the spatial correlation between two received

signals from any two of the combiner inputs from antennas
located at positions xk and x�, following from [5], is

ρk,l =
E{hkh∗

l }√
E{hkh∗

k}E{hlh∗
l }

. (2)

where (·)∗ denotes the conjugate. The spatial correlation ρk,l

make up the elements of R, if we assume that R is normalized.
Following from [4] yn also has a zero mean complex

Gaussian distribution with covariance matrix

Kyn
= E{ynyH

n } = σ2
dR + σ2

vIL (3)

where (·)H represents the conjugate transpose. The noise
samples and the channel coefficients are assumed to be in-
dependent.

Following from [3] and [4] we assume that the receiver
does not have perfect channel state information (CSI) and that
a noisy channel estimate ĥ is available. The channel estimate
is obtained by maximum-likelihood (ML) channel estimation
using a block of M pilot symbols a

(p)
t ∈ {+σp,−σp} with

variance σ2
p. This is given in [6];

ĥ = h +
1

Mσ2
p

M−1∑
t=0

a
(p)∗
t vm. (4)

As in [4] the additive noise in (1) and the channel estima-
tion noise in (4) are assumed to be independent giving the
covariance matrix of yn and ĥ as

Kynĥ = E{ynĥ
H} = σdR. (5)

The MRC decision variable of the diversity branches, dn,
is given as

dn = Re{ĥH
yn}. (6)

III. BIT ERROR PROBABILITY FOR IMPERFECT
CHANNEL KNOWLEDGE

In this section the bit error probability for BPSK is given
from the derivation in [3] and the subsequent derivation in [4].

If we define

rn =
[
ĥn

yn

]
, A =

1
2

[
0 1
1 0

]
⊗ IL, (7)

we obtain the 2L eigenvalues, λl, of AKr , where Kr =
E{rnrH

n } is the (2L × 2L) covariance matrix of rn. The
decision variable can be expressed as dn = rH

n Arn in
hermitian quadratic form. Then, assuming distinct eigenvalues,
the bit error probability is obtained from the pdf of dn by
integration as

Pb =
2L∑
l=1

λl<0

2K∏
k=1
k �=l

λl

λl − λk
. (8)

If there are non-distinct eigenvalues, or the eigenvalues are
very closely spaced and hence the evaluation of (8) becomes
numerically unstable, then the bit error probability (BEP) can
be calculated directly from the characteristic function of dn,
[4], as

Pb =
1
2
− 1

π

∫ ∞

0

Im

{
1

ω
∏2L−1

l=0 (1 − jωλl)

}
dω. (9)

The eigenvalues, λl, in (8) and (9) can be found from the
eigenvalue decomposition of[

R R + 1
γd

IL

R + 1
γp

IL R

]
, (10)

where

γd =
σ2

d

σ2
v

, γp =
σ2

p

σ2
v

, (11)

representing the average bit signal-to-noise ratio (SNR) and
the effective pilot-signal-to-noise ratio respectively.

IV. SPATIAL CORRELATION FORMULATION AT

ARBITRARILY SPACED ANTENNAS

A generalized spatial correlation, ρk,l, of antenna signals is
defined for any two inputs, antennas, of an L-branch MRC,
assuming that antennas are located in the azimuth plane.
Conversely the scattered fields arriving at each MRC input
are considered to be located in the azimuth plane only. Thus
following from (2) and [5] where the 2-D modal expansion in
[7] is

ρk,l =
∞∑

m=−∞
jmγmJm(k‖xk − xl‖)ejmφkl , (12)

where Jm(·) is the mth order Bessel function of the first kind,
k = 2π/λ, φk,l is the angle of the vector connecting xk and
xl, which are points in space, and

γm =
∫ 2π

0

P(φ)e−jmφdφ, (13)

where P(φ) can be considered to be the normalized average
power of a signal received from the direction φ. Note that if
L > 2, φk,l must be considered as non-zero, otherwise it can
be considered to be zero.

Each ρk,l thus formulated, can be used to form the covari-
ance matrix R, and then find the corresponding eigenvalues,
λl, of AKr using (10). These can be used to find the
corresponding BEP, Pb, using (8) or (9) as suitable.

V. ANALYSIS OF MRC WITH STANDARD ANTENNA

CONFIGURATION INPUTS AND IMPERFECT CHANNEL

KNOWLEDGE

In this section we analyze the performance of some standard
antenna configurations as inputs to an L = 4 and L = 6 branch
MRC in isotropic and some non-isotropic scattering scenarios
based on the results of the previous sections. Some general
performance guidelines are obtained on the basis of the BEP
for BPSK modulation with imperfect channel knowledge.



The standard antenna configurations acting as inputs to the
MRC are the uniform circular array (UCA) and the uniform
linear array (ULA). It is also possible to analyze other antenna
configurations with the formulation in this paper. The BEP is
derived for a range of antenna apertures in wavelengths (λ)
for the UCA, where the aperture is the diameter of the UCA,
and a range of antenna separations for the ULA. For the non-
isotropic distributions, various angular spreads, σa, defined as
the square root of the variance of the particular distribution, are
considered. The angular spread is related to the non-isotropy
parameter of the distribution.

In all analysis we consider Rayleigh fading where the
average data bit SNR on each of the L channels is assumed
to be the same, such that γd = 5 dB, l = 1, . . . , L. In all
analysis the angle of incidence from broadside β is 60o. Fig.
1 shows the BEP with BPSK for L = 4 branch and L = 6
branch MRC for different scattering scenarios for a UCA with
a noisy channel estimate represented by an effective pilot SNR
γp = 10 dB.

Even with a reasonable channel estimate represented by γp

= 10 dB there is still a significant effect on the BEP of MRC,
illustrated best by the difference between the uncorrelated line
and the I.I.D. line with perfect CSI in Fig. 1.

It is also clear that for both non-isotropic scattering sce-
narios over a range of angular spreads that there is a large
variation in the BEP. The BEP for L = 4 branch MRC
shown in Fig. 1(a) is significantly more than an order of
magnitude greater for an angular spread σa = 5o compared
with σa = 30o for both non-isotropic scatterer distributions at
a UCA antenna aperture of 1λ. The trend of degradation from
larger σa to smaller σa for Fig. 1(b) (L = 6), is even more
significant.

It is demonstrated in Fig. 1 for the non-isotropic scattering
scenarios, even with a large angular spread, there is degrada-
tion in the BEP when compared to that of a uniform isotropic
distribution.

An L = 4 and L = 6 branch MRC for a ULA with a range
of antenna separation (the distance in wavelengths, λ, between
adjacent elements of the ULA) is shown in Fig. 2. Similar
trends are displayed when compared with Fig. 1. However
there are two noteworthy differences. Firstly for smaller array
sizes, Fig. 2 shows a greater variation in BEP between the
non-isotropic scattering scenarios and the uniform scattering
scenario. Secondly, in Fig. 2 there is a uniform improvement
in the BEP when there is a uniform isotropic distribution for
the ULA when compared with the UCA.

The results for the variation of BEP with angular spread
in Fig. 1 and Fig. 2 for non-isotropic scatterer distributions
may be directly attributable to a decrease in the spatial
correlation. In [8] a decrease in spatial correlation is shown
as antenna spacing and/or angular spread increases for non-
isotropic distributions. The small variation of the BEP for the
same angular spread is also explained in [8] by the distribution
variance dominating correlation, and not the choice of non-
isotropic distribution.

In Fig. 3 and Fig. 4 the effect of various γp, i.e. levels of
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(a) L = 4 branch MRC

0 1 2 3 4 5 6
10

−5

10
−4

10
−3

10
−2

10
−1

B
E

P

Antenna aperture (λ)

Laplacian
Von Mises
Uniform Isotropic
Uncorrelated
I.I.D. Perf. CSI

σ =  5o 

σ = 15o 

σ = 30o 

(b) L = 6 branch MRC

Fig. 1. BEP with MRC for BPSK modulation for Laplacian and Von Mises
distributions of various σa, β = 60o, and a uniform isotropic distribution,
γd = 5 dB and γp = 10 dB. Inputs to the MRC are from a UCA. MRC for
uncorrelated channels, and also L I.I.D. channels with perfect CSI are shown
for reference

noisiness in the channel estimate, is shown for a Laplacian
scatterer distribution (which is non-isotropic) with an angular
spread, σa = 15o for L = 4 branch MRC, γd = 10 dB, with
a UCA as input in Fig. 3, and a ULA as input in Fig. 4. The
case for γp = ∞, perfect CSI, or a noiseless estimate, is also
shown. In both cases there is a clear, marked, degradation as
the estimate based on the pilot signal becomes noisier. It is
also clear that the trend of improvement related to increasing
antenna aperture is similar for all values of γp with the same
distribution.

Thus, with respect to the scenarios outlined in this section
the performance of MRC is optimised for larger antenna
apertures (or larger adjacent antenna separation). There is
little difference between using a ULA and a UCA as the
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Fig. 2. BEP with MRC of BPSK modulation for Laplacian and Von Mises
distributions of various σa, β = 60o, and an isotropic distribution, γd = 5 dB
and γp = 10 dB. Inputs to the MRC are from a ULA. MRC for uncorrelated
channels, and also 4 I.I.D. channels with perfect CSI are shown for reference

antenna configuration at the input, although for smaller array
sizes the ULA may be the preferable array. Furthermore, the
similar distribution variance of the Von Mises and Laplacian
distributions, the non-isotropic distributions analyzed herein, is
demonstrated as dominating the MRC performance, therefore
the performance shows very similar characteristics for these
different distributions.

VI. CONCLUDING REMARKS

The results in this paper give useful insight into aspects of
practical implementation of MRC in Rayleigh fading channels
with typical antenna configurations and BPSK modulation.
Understanding of the effects of non-isotropy, antenna shape
and size may lead to better implementations of receivers for
MRC in Rayleigh fading channels. Further investigation into
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Fig. 3. BEP with 4 branch MRC of BPSK modulation for Laplacian
distribution, σa = 15o, β = 60o, γd = 5 dB , various γp. Inputs to the
MRC are from a UCA. MRC for 4 I.I.D. channels with perfect CSI is shown
for reference
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Fig. 4. BEP with 4 branch MRC of BPSK modulation for Laplacian
distribution, σa = 15o, β = 60o, γd = 5 dB , various γp. Inputs to the
MRC are from a ULA. MRC for L I.I.D. channels with perfect CSI is shown
for reference

the performance of other modulation schemes with practical
implementations may give extra insight into the general per-
formance of MRC in Rayleigh fading channels.
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