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Abstract—It has been shown that the effects of multipath prop-
agation in a mobile wireless communications system can be miti-
gated if the receiver can make predictions about the multipath fad-
ing. In this paper, we introduce a novel scheme for extrapolating
multipath fields outwards in space, given field observations within
a limited region. Whereas previous work has concentrated on sim-
ple multipath propagation with a finite number of plane wave scat-
terers, we use a less restrictive continuous model of scattering. The
extrapolation scheme is based on a information-weighted modal
expansion of the field, where modes containing too little informa-
tion are penalized to minimize the extrapolation error. The per-
formance of this scheme is shown to be far better than pessimistic
error bounds derived in previous work.

I. INTRODUCTION

Multipath fading is a major factor limiting the performance
of wireless communications systems. Although progress has
been made in exploiting the properties of multipath fields us-
ing spatial diversity of antennas [1], there is still considerable
interest in multipath prediction schemes, particularly for mo-
bile applications. These schemes allow a mobile receiver to
extrapolate a multipath field outwards in space or time, allow-
ing improved power control schemes to be negotiated with the
transmitter based on future fading. In this paper, we propose a
novel spatial extrapolation scheme.

Traditional approaches to the extrapolation problem have
been based on simple models of multipath fading where a small
number of plane wave scatterers are used to represent multiple
paths [2]. In [3] and [4], extrapolation schemes were developed
which recover this plane wave model using direction-of-arrival
(DOA) algorithms. Other approaches to extrapolation have in-
volved building adaptive auto-regressive models of the field [5]
[6].

The problem with these schemes is that these simplistic scat-
tering models cannot represent more complex multipath fields,
such as fields generated from continuous scattering distribu-
tions [7] [8]. This means that these simpler schemes may give
overly optimistic estimates of performance.

In [9], Teal et al. take a different approach based on a more
complex physical model of wave propagation. Taking a fairly
pessimistic approach, they demonstrate that wave equation con-
straints cause a worst case extrapolation error which grows
rapidly with distance, and conclude that extrapolation beyond
a wavelength is not practically feasible.

In this paper we use a similar physical model of multipath
scattering, and show that the limitations imposed by the wave
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Fig. 1. The Geometry of the Multipath Extrapolation Problem

equation can actually be used to improve extrapolation perfor-
mance. We introduce an improved scheme for multipath extrap-
olation based on a modal expansion, which allows us to repre-
sent multipath fields using an infinite set of modal coefficients.
Given basic statistics of the signal and noise, we reconstruct the
entire field from these modes, penalizing ‘noisy’ coefficients
which we expect to contain little information about the field.
This modal technique generalizes similar work on the problem
of bandlimited extrapolation [10].

We show that the expected error of our extrapolation scheme
is far lower than the worst case error predicted by [9].

In section II, we introduce a physical model of multipath
scattering, and show that the resulting wavefields can be repre-
sented by an infinite modal expansion. In section III, we exam-
ine the effect of observing this field on a ring of radius rS in the
presence of spatially white noise. Importantly, the modal ex-
pansion coefficients can only be recovered approximately from
the noisy field. In section IV, we demonstrate a scheme for op-
timally recombining the recovered modal coefficients to mini-
mize the extrapolation error. The optimal combination involves
imposing an exponential penalty on modes containing too little
information about the multipath field.

II. MULTIPATH FIELDS

Consider a narrowband multipath field, f(x), in two-
dimensional space. As this field is a valid wavefield, it must
be a solution to the Helmholtz equation [11],

∇2f(x) + k2f(x) = 0, (1)

where k � 2π/λ is the wavenumber, ∇2 is Laplacian operator,
and λ is the wavelength.



We consider multipath wavefields generated by the farfield
scattering environment developed in [12], and represented in
Fig. 1. The farfield scattering distribution, F (φ), represents the
effective random complex gain of the scattered signal from di-
rection φ. The field at a point x = (x, θ) in polar coordinates
can then be represented as a linear combination of plane waves
from all directions:

f(x, θ) =
∫ π

−π

F (φ)ejkx cos(θ−φ)dφ. (2)

where x = |x| and θ = ∠x.
We can use the Jacobi-Anger expansion [13] to express the

field as an infinite modal summation

f(x, θ) =
∞∑

n=−∞
fnun(x, θ), (3)

where the modes are given by

un(x, θ) = jnJn (kx) ejnθ. (4)

The coefficients of the modal expansion are the Fourier Series
coefficients of the farfield distribution,

fn =
∫ π

−π

F (φ)e−jnφdφ. (5)

Assuming a zero-mean uncorrelated scattering environment,
these modal coefficients will be mutually independent, zero
mean, random variables with variance

Vf,n = E
{
fnfn

}
, (6)

where (·) denotes complex conjugation, and E {·} is the expec-
tation operator.

In this work, we will deal solely with scattering distributions
with a uniform, isotropic power density. Thus, we will always
have Vf,n equal to some constant, independent of n.

III. MEASUREMENT MODEL

Following [9], we allow the multipath field to be observed on
a ring of radius rS (see Fig. 1). In the absence of noise, we will
have the field observation

s(θ) = f(rS , θ). (7)

Wavefields on the ring can be represented by an infinite set
of orthonormal modes1

vn(θ) =
un(rS , θ)√

ηn
, (8)

where the normalizing coefficient

ηn = 2πrSJn (krS)2 , (9)

is chosen so that ∫ π

−π

vn(θ)vn(θ)rSdθ = 1. (10)

1As long as the radius rS is chosen such that Jn (krS) �= 0 for all n. This
constraint is not hard to fulfil.

We can now represent our observed field s(θ) as a modal
decomposition

s(θ) =
∞∑

n=−∞
snvn(θ), (11)

where the expansion coefficients are given by

sn =
∫ π

−π

s(θ)vn(θ)rSdθ. (12)

Comparing (3) and (11) we can perfectly reconstruct the
original field coefficients using the simple relationship

fn =
sn√
ηn

. (13)

Thus, in the absence of noise we could perfectly reconstruct the
entire field.

Now we consider the effect of a spatially white additive noise
field w(θ). Our field observation is

s̃(θ) = s(θ) + w(θ). (14)

We now examine how spatially white noise affects the modal
decomposition (11). Based on Gallager’s model for 1D noise
fields [14], we model the effect of white noise by its projec-
tion into a modal basis. This means that noise field, w(θ),
can be partitioned into a component representable by modal
expansion,wM (θ), and an orthogonal component, w⊥M (θ).

w(θ) = wM (θ) + w⊥M (θ) (15)

=
∞∑

n=−∞
wnvn(θ) + w⊥M (θ), (16)

where

wn �
∫ π

−π

w(θ)vn(θ)rSdθ. (17)

In Gallager’s model, white noise projects equally into or-
thonormal modes. We generalize this model for the spatial
case [15]. Where the Gallager model defines a noise power
independent of region size, we consider a noise field, w(θ) that
is spatially white with a homogeneous (albeit infinite) power
distribution in space. This means that the power projected into
each mode will grow with the area of the observation region,

Vw,n = E {wnwn} (18)

= σ(2πrS), (19)

where σ is the noise variance per unit area.
Using this noise model, the observed field (14) can be repre-

sented

s̃(θ) =
∞∑

n=−∞
(sn + wn)vn(θ) + w⊥M (θ). (20)

When we try to recover the modal coefficients using (12), we
will introduce a noise component,

s̃n = sn + wn (21)
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Fig. 2. Comparison of the behaviour of the normalizing constant ηn with
increasing order for three different region radii.

Thus, the optimal unbiased estimates of the original field coef-
ficients fn are

f̃n =
s̃n√
ηn

= fn +
wn√
ηn

. (22)

Using this noise model, the optimal estimator of the field co-
efficients fn will be a normally distributed Gaussian process

f̃n ∼ N
(

fn,
Vw,n

ηn

)
. (23)

Although the noise field is spatially white, its effect on the
modal coefficients is nonuniform with order, n. Fig. 2 shows
the value of ηn for three different observation ring radii. For
large |n| � krS , ηn decays rapidly according to [16]

ηn ∼ k2nr2n
S

(n!)24n
, as |n| → ∞. (24)

This means that our estimates of the higher order coefficients
will rapidly become noisy with 1/ηn.

Another way to consider the effect of the noise is the mutual
information between f̃n and fn. This is effectively the infor-
mation we can recover about fn from f̃n [17],

In(ηn) =
1
2

ln
(

1 +
ηnVf,n

Vw,n

)
. (25)

For |n| → ∞, ηn decays, and the information about fn that is
contained in f̃n rapidly approaches zero.

IV. MULTIPATH EXTRAPOLATION

We have seen so far that an entire multipath wavefield can be
represented using an infinite set of modal coefficients fn. Given
a noisy field observation on a ring of radius rS , we can use (12)
and (22) to recover estimates of the coefficients f̃n.

In this section, we deal with the problem of multipath extrap-
olation — reconstructing the entire multipath field from these
approximate coefficients.

A naive approach to extrapolation would be to use the recov-
ered coefficients in the modal expansion (3),

f̃(x, θ) =
∞∑

n=−∞
f̃nun(x, θ) =

∞∑
n=−∞

(
fn +

wn√
ηn

)
un(x, θ).

(26)
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Fig. 3. Comparison of the behaviour of the ratio αn/ηn with increasing order
for three different region radii. The observation radius is rS = 2λ

To test the quality of this extrapolation, we evaluate the
mean-squared extrapolation error (MSE) on some larger ring
of radius rR > rS ,

MSE = E
{∫ π

−π

|f̃(rR, θ) − f(rR, θ)|2rRdθ

}
(27)

=
E {wnwm}√

ηnηm

∫ π

−π

un(rR, θ)um(rR, θ)rRdθ (28)

=
∞∑

n=−∞

αn

ηn
Vw,n, (29)

where

αn =
∫ π

−π

un(rR, θ)un(rR, θ)rRdθ (30)

= 2πrRJn (krR)2 . (31)

The ratio αn/ηn is basically a ratio of squared bessel func-
tions with the same order. Fig. 3 shows how this ratio grows
rapidly with increasing order, n, for different extrapolation radii
rR. Thus, the error performance of this naive extrapolation
scheme will be extremely bad, even for small extrapolations,
due to the huge errors in the higher order modal coefficients.
These bad results tend to agree with the worst case predictions
made in [9].

As the statistics of the signal and noise are independent for
each mode, we can design a better extrapolation method by
introducing a set of coefficients, cn, into (26) to individually
weight each modal contribution:

f̃c(x, θ) =
∞∑

n=−∞
cnf̃nun(x, θ). (32)

In this case, the MSE is

MSEc = E
{∫ π

−π

|f̃c(rR, θ) − f(rR, θ)|2rRdθ

}
(33)

=
∞∑

n=−∞
(1 − cn)2αnVf,n + c2

n

αn

ηn
Vw,n (34)



We determine the optimal cn that will minimize the MSE.
Taking the derivative of the error function,

∂

∂cn
MSEc = 2

∞∑
n=−∞

αnVf,n(cn − 1) +
αn

ηn
Vw,ncn. (35)

We set the derivative to zero to obtain the optimal set of weight-
ing coefficients as

cn,opt =
ηnVf,n

ηnVf,n + Vw,n
= 1 − e−2In(ηn), (36)

where In(ηn) is the mutual information given in (25).
Thus, the optimal set of coefficients imposes an exponential

penalty on the higher-order approximate coefficients, f̃n, con-
taining too little mutual information about the original modal
coefficients, fn. Note that the optimal weighting coefficients,
cn,opt, are independent of rR - in effect we can use the same set
of coefficients to optimally extrapolate to any desired radius.
The coefficients do, however, depend on the observation radius
rS through the ηn.

The minimized MSE is

MSEc,opt =
∞∑

n=−∞

αnVw,nVf,n

Vw,n + ηnVf,n
(37)

To allow a fair comparison between different extrapolation
radii, we normalize the MSE by dividing by the signal power
we would expect to find on a ring of that radius. That is,

Normalized MSE =
MSE
SR

, (38)

where the expected signal power is given by

SR = E
{∫ π

−π

|f(rR, θ)|2rRdθ

}
(39)

=
∞∑

n=−∞
αnVf,n. (40)

This normalized error is plotted in Fig. 4. The figure shows
that the expected extrapolation error grows much more slowly
with rR than the exponential growth predicted in the worst
case scenario presented in [9], and the naive reconstruction (26)
which corresponds to cn = 1.

Fig. 4 also shows the effect on extrapolation performance of
increasing the radius of the observation region (rS). In or-
der to make a fair comparison between radii, we fix the ratio
Vf,n/Vw,n for all cases. As we would expect, as the observa-
tion radius is increased, more coefficients contain useful infor-
mation about the field and extrapolation performance improves.
Despite this, extrapolation performance is reasonably invariant
to the size of the observation region.

V. CONCLUSION

We have demonstrated a multipath extrapolation scheme
which uses knowledge of the signal and noise statistics, and
the physical properties of wavefields, to extrapolate multipath
fields in space. The expected extrapolation error is far better
than the worst case predictions made in previous work.

An extension of this work to nonuniform scattering distribu-
tions will be reported in a future journal article.
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