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With the recent emergence of surround sound technology, renewed interest has been shown in the
problem of sound field reproduction. However, in practical acoustical environments, the
performance of sound reproduction techniques are significantly degraded by reverberation. In this
paper, we develop a method of sound field reproduction for reverberant environments. The key to
this method is an efficient parametrization of the acoustic transfer function over a region of space.
Using this parametrization, a practical method has been provided for determining the transfer
function between each loudspeaker and every point in the reproduction region. Through several
simulation examples, the reverberant field designs have been shown to yield a reproduction accuracy
as good as conventional free-field designs, and better than multipoint least squares designs when
loudspeaker numbers are limited. The successful reproduction of sound over a wide frequency range
has also been demonstrated. This approach reveals the appropriate choices for fundamental design
parameters. ©2005 Acoustical Society of America.@DOI: 10.1121/1.1863032#

PACS numbers: 43.60.Dh, 43.38.Md, 43.55.Br@NX# Pages: 2100–2111
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I. INTRODUCTION

A problem relevant to emerging surround sound techn
ogy is a reproduction of a sound field over a region of spa
Using a set of loudspeakers, it is possible for listeners
spatialize sound and fully experience what it is actually l
to be in the original sound environment. Sound field rep
duction has been discussed since the 1960s. However, m
of the work so far does not directly address sound field
production in reverberant environments. In this paper, us
an efficient parametrization of the room transfer function
extend sound field reproduction to reverberant enclosure

Early work in sound field reproduction was perform
by Gerzon.1 With his ambisonics system, Gerzon reproduc
the first-order spherical harmonics terms of a plane w
sound field around a point in space. Ambisonics has si
been unified with holography,2,3 both of which rely upon the
Kirchoff–Helmholtz equation. Here, sound field reprodu
tion inside a control region is achieved by controlling t
pressure and its normal derivative over the boundary of
control region.4 In similar work, global sound field reproduc
tion techniques5,6 have been proposed that control sou
pressure over the boundary. By controlling sound at ad
tional points inside the control region, these techniques
viate the need for velocity microphones. Unfortunately, su
techniques require a large number of loudspeakers. F
lesser numbers of loudspeakers, Least squares techn
have been suggested by Kirkebyet al.7,8 Recently, using
spherical harmonic analysis, the theoretical minimum nu
ber of loudspeakers required for the accurate reproductio
a plane wave has been established.9

The reverberant case is made difficult by the rapid va
tion of the acoustic transfer functions over the room.10 The

a!Electronic mail: Thushara.Abhayapala@anu.edu.au
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standard approach has been to equalize the transfer func
over multiple points using least squares techniques.11,12

However, in such a case, equalization can be poor away f
the design points. In contrast, sound field reproduction wo
require the equalization to extend over the whole con
region.

Alternatively, the acoustic transfer functions can
measured and incorporated into the sound field reproduc
algorithm directly. Methods for estimating the acoustic tran
fer functions over a region have been established
Mourjopoulos13 and Bharitkar and Kyriakakis,14 which
sample the field at a number of points and use a spa
equalization library. However, for sound field reproduction
a reverberant room, these techniques do not determine tr
fer functions with sufficient accuracy.

In this paper, we present a method of performing sou
field reproduction in a reverberant room. This method
based on an efficient parametrization of the acoustic tran
function in the control region, where the acoustic trans
function is written as the weighted sum of a small number
orthogonal basis functions. Using this parametrization,
reconstruct a sound field accurately over the whole con
region. This approach exploits the standing wave structur
the reverberant field generated by each loudspeaker to re
duce the desired sound field. We also describe a prac
method for determining the acoustic transfer function b
tween each loudspeaker and the control region, by samp
sound pressure at a small number of points.

This paper is structured as follows. In Sec. II we ca
sound field reproduction into a least squares framework
introduce the basis function approach to gain insight into
fundamental parameters of the problem. In Sec. III, we
scribe a method of measuring the acoustic transfer funct
from each speaker to any point within the control regio
through measurement of the transfer function parameter
17(4)/2100/12/$22.50 © 2005 Acoustical Society of America
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the acoustic transfer functions. Separate methods have
derived for the narrow band and wide band cases. The e
of noisy pressure samples on measurement of the param
has also been analyzed. Finally, in Sec. IV we demonst
the performance of our sound field reproduction techniq
with several examples, including a comparison with the m
tiple point least squares technique.

II. SOUND FIELD REPRODUCTION

In this section, we devise a method of performing tw
dimensional 2-D sound field reproduction within a reverb
ant enclosure. This 2-D technique ensures good reproduc
in the plane of the loudspeakers, provided each loudspe
possesses a sizable vertical dimension. It is applicable
enclosures with highly sound-absorbing floors and ceiling

The theory we develop in this paper is readily extend
to 3-D space. The 2-D basis functions that are descri
below need only be replaced with 3-D basis functions. U
fortunately, in the case 3-D of reproduction over a volum
much larger numbers of speakers are required.9 We focus on
reproduction in the plane as it is more practical.

Below we formulate the problem in the frequency d
main. The objective is to determine the loudspeaker fi
weights required to reproduce a desired sound field in a
verberant room.

A. Problem definition

We aim to reproduce the pressurePd(x;v) of a desired
sound field at each pointx and angular frequencyv in the
source-free region of interestB2 using an array ofL loud-
speakers. The desired sound field could be a plane wav
field resulting from a monopole, a field measured in a re
life scenario or the field of a surround sound system.
purposes of simplifying the analysis in this paper, we cho
the control regionB2 to be the circle of radiusR centered
about the origin:

B25$xPR2:ixi<R%,

wherei•i denotes the Euclidean distance.
As shown in Fig. 1, each loudspeakerl transmits an

FIG. 1. Use ofL loudspeakers to reproduce a desired field in a con
region B2 with loudspeaker filtersGl(v) and acoustical transfer function
Hl(x,v) from the lth loudspeaker to a pointxPB2.
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output signalGl(v). This signal encapsulates both the inp
signal applied to loudspeakerl as well as any filtering of it.
To characterize the acoustic properties of the enclosure,
fine the acoustic transfer functionHl(x;v) as the frequency
response between loudspeakerl and pointx. Hl(x;v) sum-
marizes the effect of reverberant reflections from the surf
of the enclosure on any sound signal transmitted by e
loudspeaker. The sound pressure at any pointx due to loud-
speakerl is equal to

Pl~x;v!5Gl~v!Hl~x;v!. ~1!

From Fig. 1, the sound pressure in the reproduced field
sulting from theL loudspeakers is then equal to

P~x;v!5(
l 51

L

Pl~x;v!5(
l 51

L

Gl~v!Hl~x;v!. ~2!

The design task of sound field reproduction is to choo
filter weightsGl(v) to minimize the normalized reproduc
tion errorT over B2,

T5
1

E EB2
uP~x;v!2Pd~x;v!u2 da~x!, ~3!

where the normalizing factorE is the energy of the desire
sound field overB2:

E5E
B2

uPd~x;v!u2 da~x!, ~4!

da(x)5x dx dfx is the differential area element atx, x
5ixi , andfx is the polar angle ofx.

The popular approach to solving this problem is to wr
the least squares solution over a set of uniformly spa
points overB2. ~Refs. 7, 8!. A better approach is to perform
the design over the whole region. This approach is propo
by Asano and Swason15 for the related problem of equaliza
tion. Yet by discretizing, these authors end up implement
a multipoint method. Below we outline a model-based a
proach, which uses an efficient parametrization for acou
transfer functions to perform the design over the whole
gion. This model-based approach is more general than
approach of Asano and Swason15 and Santillan,16 which as-
sume that the room is of a rectangular shape. More insigh
gained into the design requirements for an accurate repro
tion through the model-based approach than through m
point least squares techniques.

B. Model-based approach

In the model-based approach, we express the so
pressure variablesPd(x;v), P(x;v), and the acoustic trans
fer functionsHl(x;v) in terms of the basis functions of th
sound field. Provided all sound sources~including image
sources produced by reflection! lie outside of B2, at any
point inside B2 the above variables can be written as
weighted sum of the inward-propagating solutions to
wave equation.17 We write the desired sound pressu
Pd(x;v) as

Pd~x;v!5 (
n52`

`

bn
~d!~v!Jn~kx!einfx, ~5!

l

2101nd Abhayapala: Sound field reproduction in reverberant rooms
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wherebn
(d)(v) is thenth-order sound field coefficient of th

desired sound field,Jn(•) is the Bessel function of ordern
and k5v/c52p/l is the wave number,c is the speed of
sound in air, andl is the acoustic wavelength. The function
$Jn(kx)einfx%nPZ are called the basis functions of the sou
field. An appropriate choice of sound field coefficients ge
erate any valid sound field insideB2.

Similarly, we write the reproduced sound pressu
P(x;v) as

P~x;v!5 (
n52`

`

bn~v!Jn~kx!einfx, ~6!

where bn(v) are the coefficients of the reproduced sou
field. A reproduction of the sound pressurePd(x;v) overB2

with P(x;v) is equivalent to a reproduction of the soun
field coefficients$bn

(d)(v)%nPZ with $bn(v)%nPZ .
Because the room response is equal to the sound

pressure generated by the unit input signalGl(v), we can
also write it as

Hl~x;v!5 (
n52`

`

an~ l ,v!Jn~kx!einfx, ~7!

wherean( l ,v) are the sound field coefficients of the roo
responses for loudspeakerl. These sound field coefficient
completely characterize the reverberant sound field gener
by each loudspeaker withinB2:

Observation 1: When the sound field coefficien
an( l ,v) for each loudspeaker are known for a given roo
the acoustic transfer function Hl(x;v) between each loud
speaker and any positionx insideB2 is also known, and is
given by Eq. (7).

Substituting Eq.~5! and Eq.~7! directly into Eq.~2!, the
coefficients of the reproduced sound field are related
an( l ,v) through

bn~v!5(
l 51

L

Gl~v!an~ l ,v!. ~8!

The sequences of coefficients@bn
(d)(v))n , (bn(v))n

and (an( l ,v)# associated with any wave field in a sourc
free region are shown to be bounded.18 ~These coefficients
are bounded in the following sense. Any field in the sour
free region can be represented as the superposition of p
waves. The coefficients are bounded by the sum of the m
nitudes of these plane waves.!

A benefit of the model-based approach is the ability
express key variables in terms of orthogonal functions. Us
the orthogonality property of exponential functions,

E
0

2p

e2 infeimf df52pdnm , ~9!

we derive an expression for the energyE and normalized
errorT of the reproduced sound field overB2 as a function of
the sound field coefficients. Starting with the field energy,
substitute Eq.~5! into Eq. ~4! to yield
2102 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 Bet
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E5E
B2
U (

n52`

`

bn
~d!~v!Jn~kx!einfxU2

da~x!.

It follows that

E5E
B2 (

n152`

`

@bn1

~d!~v!#* Jn1
~kx!e2 in1fx

3 (
n252`

`

bn2

~d!~v!Jn2
~kx!ein2fx da~x!

5 (
n152`

`

(
n252`

`

@bn1

~d!~v!#* bn2

~d!~v!

3E
0

2p

e2 in1fxein2fx dfx

3E
0

R

Jn1
~kx!Jn2

~kx!x dx,

where we have appliedda(x)5x dx dfx in the second step
Applying the orthogonality property, Eq.~9!, of the exponen-
tial functions, the field energy reduces to

E52p (
n52`

`

ubn
~d!~v!u2E

0

R

@Jn~kx!#2x dx

5K (
n52`

`

wn~kR!ubn
~d!~v!u2, ~10!

whereK52p/k2 and

wn~kR!,k2E
0

R

@Jn~kx!#2x dx5E
0

kR

@Jn~x!#2x dx. ~11!

The second step was performed with the variable substitu
x85kx. Similarly, substituting Eq.~5! and Eq.~6! into Eq.
~3!, the normalized error becomes

T5
1

E EB2
U (

n52`

`

@bn
~d!~v!2bn~v!#Jn~kx!einfxU2

da~x!.

Utilizing the orthogonality property, the normalized error r
duces to

T5
K

E (
n52`

`

wn~kR!ubn
~d!~v!2bn~v!u2. ~12!

We shall callwn(kR) in ~12! the coefficient weighting func-
tion.

Since the summations in Eq.~5!, Eq. ~6!, and Eq.~7!
have infinite numbers of terms, it may seem that the ab
parametrizations need an infinite number of coefficien
However, in the next section, we show that for any fin
control region, they need only a finite number of coefficien
to accurately represent a sound field or a room response

C. Active basis functions

Because of the high-pass character of Bessel functio
not all of the basis functions make a significant ener
contribution to the sound field insideB2. Studying
Eq. ~12!, because the sequences of sound field coefficie
@bn

(d)(v)#n and @bn(v)#n are bounded while from Fig. 2
lehem and Abhayapala: Sound field reproduction in reverberant rooms
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wn(kR) drop rapidly to zero past a threshold, the ener
contribution of each term to reproduction error is controll
by wn(kR).

Previous work9,18 asserts that only the basis function
of index up to N5 dkRe contribute significant energy
to the sound field insideB2. This result is supported
by Fig. 2, wherewunu(kR) is plotted againstunu. @Note
the coefficient weighting functions of negative index a
a mirror of those of positive indexw2n(kR)5wn(kR).
This can be seen by applying the Bessel functi
property Jn(x)5(21)nJ2n(x).] The weighting is seen to
be small past unu.N. The 2N11 basis functions,
J2N(kx)e2 iNfx,...,JN(kx)eiNfx are referred to asactive in
B2. The remaining basis functions are referred to asinactive
in B2. Such basis functions only contribute significant ener
to the sound field outside ofB2.

An accurate sound field reproduction requires the rep
duction of these active basis functions. Also, the acou
transfer functions mentioned in Observation 1 are accura
determined just by measuring the sound field coefficie
$an( l ,v)%n52N

N of the active basis functions.

D. Least squares solution

We now derive the least squares solution for the spea
filter weights that minimizes the reproduction error in E
~12!. This solution is expressed in terms of the sound fie
coefficients.

Because the weighting of terms in the normalized er
in Eq. ~12! rapidly diminish forunu>N, it can be truncated
to

TNT
5

K

E (
n52NT

NT

wn~kR!ubn~v!2bn
~d!~v!u2, ~13!

for NT>N. This truncated reproduction errorTNT
can be

written in matrix form, as follows. Defining the vector o
loudspeaker filter weightsg5@G1(v),G2(v),...,GL(v)#T,
where@•#T is the matrix transpose operator, the vector of t
coefficients of the reproduced sound fieldb

FIG. 2. A plot of the coefficient weighting functionwunu(kR) vs unu for
control regions with radiiR5@1l,2l,...,10l#. l is the acoustic wavelength
of interest, related to the wave number byk52p/l.
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 Betlehem a
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5@b2NT
(v),b2NT11(v),...,bNT

(v)#T, and the matrix of
the coefficients of the room responses of all loudspeaker

A5F a2NT
~1,v! a2NT

~2,v! ¯ a2NT
~L,v!

a12NT
~1,v! a12NT

~2,v! ¯ a12NT
~L,v!

] ] � ]

aNT
~1,v! aNT

~2,v! ¯ aNT
~L,v!

G ,

~14!

Eq. ~8! can be rewritten asb5Ag. Additionally, define the
vectors of the coefficients of the desired sound field,bd

5@b2NT

(d) (v),b2NT11
(d) (v),...,bNT

(d)(v)#T, and the diagonal

weighting matrix,

W5F w2NT
~kR! 0 ¯ 0

0 w2NT11~kR! ¯ 0

] ] � ]

0 0 ¯ wNT
~kR!

G .

Writing the numerator of Eq.~13! in matrix form:

(
n52NT

NT

wn~kR!ubn~v!2bn
~d!~v!u25~b2bd!HW~b2bd!,

where (•)H is the matrix Hermitian operator, the truncate
reproduction error can be written as

TNT
5

~b2bd!HW~b2bd!

bd
HWbd

.

Sinceb5Ag, we expand the truncated reproduction error
a quadratic form in the vector of loudspeaker filter weigh

TNT
~g!5

1

d
~gHBg2bHg2gHb1d!,

whereB5AHWA , b5AHWbd , d5bd
HWbd . This quadratic

form possesses it’s global minimum at15

ĝ5B21b5~AHWA !21AHWbd , ~15!

with the associated minimum in truncated reproduction er

TNT
~ ĝ!512

1

d
bHB21b.

Once (AHWA )21AHW is computed for the acoustical env
ronment, the reproduced sound field can be changed e
by modifying bd .

E. Multiple-point approach

For comparison, we describe the conventional le
squares approach, where the sound field is reproduce
several points. Here we aim to reproduce the desired so
field Pd(x;v) over M points x1 , x2 ,...,xM , positioned
within the region of interestB2 with M>L. Define the vec-
tor of desired sound pressure at each pointpd

5@Pd(x1 ;v),Pd(x2 ;v),...,Pd(xM ;v)#T, and the acoustic
transfer functions between the loudspeakers and con
points into the matrix,
2103nd Abhayapala: Sound field reproduction in reverberant rooms
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H5F H1~x1 ;v! H2~x1 ;v! ¯ HL~x1 ;v!

H1~x2 ;v! H2~x2 ;v! ¯ HL~x2 ;v!

] ] � ]

H1~xM ;v! H2~xM ;v! ¯ HL~xM ;v!

G .

The loudspeaker weights are determined from the~possibly
overdetermined! systemHg5p. The least squares solution
then given byĝ5H†p, where @•#† is the Moore–Penrose
inverse.

In Sec. IV, the multiple-point approach has been co
pared to the model-based approach. We shall see that s
the model-based approach targets reproduction over
whole control region, it yields superior performance to t
multiple-point approach.

In the next section we describe a method for measu
coefficients for the acoustic transfer function in matrixA for
the model-based approach.

III. ESTIMATION OF SOUND FIELD COEFFICIENTS

In this section we describe how to fully determine t
sound field inside a control regionB2 through measuremen
of the sound field coefficients. This task is important as i
required to calculate$an( l ,v)%nPZ that characterize the re
verberant field generated by each loudspeaker.

We write the sound pressureP(x;v) insideB2 generated
by a loudspeaker outsideB2 in a reverberant enclosure as th
basis function expansion:

P~x;v!5 (
n52`

`

bn~v!Jn~kx!einfx, ~16!

where bn(v) is the sound field coefficient of ordern. To
determine the field pressure insideB2, we describe a simple
means of measuringbn(v).

The method used to determine the sound field coe
cients varies depending on whether they are required
narrow range of frequencies~Sec. III A! or a wide range of
frequencies~Sec. III B!.

A. Narrow-band method

In the case that sound field reproduction is performed
a narrow frequency range for a choice ofR, away from any
zero of Jn(kR), good sound field coefficient estimates a
obtained by sampling pressure over a single circle of rad
R.

1. Computation of sound field coefficients

The sound field coefficients are obtained from the ana
sis equation,

bn~v!5
1

2pJn~kx!
E

0

2p

P~x;v!e2 infx dfx , ~17!

providedx is not a zero ofJn(kx). This equation is derived
by multiplying both sides of Eq.~16! by e2 in8f, integrating,
and applying the orthogonality property. Interpreting th
equation, the sound field coefficients and hence sound
can be known in the whole ofB2 just by measuring sound
pressure on a circle of radiusx.
2104 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 Bet
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In this paper we sample pressure atx5R, on the bound-
ary ofB2. Now at a radiusx, only basis functions of order up
to dkxe are active. Over the boundary all of the active ba
functions ofB2 are active, while the higher-order basis fun
tions are inactive. So heuristically this choice of sampli
radius makes sense.

Approximate sound field coefficientsb̂n(v) are ob-
tained by sampling sound pressure atM evenly spaced points
(R,fm), where fm52pm/M for m50,1,...,M21. Since
Eq. ~17! showsbn(v)Jn(kR) are the Fourier series coeffi
cients ofP(R,f;v) in variablef. Consequently, it can be
approximated with the discrete Fourier transform~DFT! re-
lationship:

b̂n~v!5
1

Jn~kR!
DFT$P~R,fm ;v!%~n!, ~18!

where DFT$ f (m)%(n) is theM-point DFT, defined by

DFT$ f ~m!%~n!5
1

M (
m50

M21

f ~m!e2 i ~2pmn/M !. ~19!

Coefficients b̂n(v) are recognized as the DFT of th
sampled field pressure around the circ
$P(R,2pm/M ;v)%m50

M21, weighted by the Bessel functio
term 1/Jn(kR) @Fig. 3~a!#.

An appropriate choice forM can be deduced by notin
that the sound field inB2 is the result of 2N11 active basis
functions. Since one equation is required for each sound fi
coefficient, we need at leastM52N11 pressure sample
whereN5 dkRe.

Due to the presence of 1/Jn(kR) in Eq. ~18!, if kR is
near one of the Bessel zeros, coefficient error is amplifi
This error amplification can be negated by oversampl
pressure, as is seen in the next section.

FIG. 3. Proposed methods for measuring the sound field coefficientsb̂n(v)
in ~a! the narrow band case where pressure is sampled at one radiusR and
~b! the wide band case where pressure is sampled at two radii,R1 andR2 .
lehem and Abhayapala: Sound field reproduction in reverberant rooms
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2. Approximation error

In Appendix A, we show the error in the approximate
sound field coefficientsb̂(v) is given by

b̂n~v!2bn~v!5
1

Jn~kR! (
q52`,Þ0

`

Jn1qM~kR!bn1qM~v!.

~20!

This equation reveals a type of aliasing, since the high
order coefficients$bn1qM(v)%q52`,Þ0

` are mapped onto
eachb̂n(v). It also shows the magnitude of the approxim
tion error is controlled by the size of 1/Jn(kR). We shall
refer to the summation term in Eq.~20! as thealiasing error
and the preceding 1/Jn(kR) term as theerror scaling. If
Jn(kR) is small, the error scaling is large.

From Eq. ~20!, each basis function of indexn1qM
makes a termwise contribution o
@Jn1qM(kR)/Jn(kR)#bn1qM(v) for qÞ0 to the approxima-
tion error in b̂n(v). We now identify a choice ofM that
ensures the termwise scale factorJn1qM(kR)/Jn(kR) arbi-
trarily small.

Definekn as the largesttermwise scale factorin bn(v):

kn, max
q52`,... ,̀ ,Þ0

UJn1qM~kR!

Jn~kR!
U, ~21!

for n52N,2N11,...,N. In Appendix B, the largest term
wise scale factor of all of the active basis functions is sho
to be bounded by

~22!

FIG. 4. Sample measurement parameterDN required for several values o
e8 ~in dB!. The curves show theDN required to ensure thatuJDN(kR)u is
upper bounded bye8. The total number of pressure samples required is th
N1 dDNe, whereN is the number of active basis functions.
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The first term in this bound is the maximum error scali
that we shall denote askes. The second term is a bound o
the Bessel functionJM2N(kR) obtained from Joneset al.18

We note in Eq.~22! that the largest termwise scaling fact
decays exponentially to zero asM is increased pastN
1 dekR/2e. This observation suggests choosingM'N
1 dekR/2e. However, a better procedure for the choice ofM,
motivated by the form of Eq.~22! is presented next.

3. Conservative estimate of M

This procedure allows a more accurate choice ofM.

~a! Choose the desired bounde on the termwise scale fac
tor; i.e., choose a bound for which maxn52N,...,N kn,e.

~b! Calculate the maximum error scaling:
kes5 max

n50,1,...,N
u1/Jn~kR!u.

~c! Determine DN5M2N to guaranteeuJN2M(kR)u is
upper bounded bye85e/kes through the relationship

1

A2p DN
F ekR

2 DNGDN

5e8. ~23!

Equation ~23! has been plotted in Fig. 4 for sever
values ofe8.

~d! The required number of samplesM5N1 dDNe.
A judicious choice of radiusR ensures thatkes is minimal.
Further, such a choice will result in minimizing the numb
of required pressure samples.

Interestingly, Fig. 4 shows a linear relationship betwe
DN andkR for largekR. Rearranging Eq.~23!:

DN5
e

2
~A2pDNe8!21/DNkR.

As DN→`, the term (A2p DNe8)21/DN→1, causing this
expression to reduce toDN'ekR/2. This relationship ex-
plains the linear section of the curves in Fig. 4 and is co
sistent with theN1 dekR/2e rule.

In summary, we require at leastM52N11 pressure
samples to measure the sound field coefficients of the ac
basis functions. An analysis of the error in approximat
sound field coefficients shows that for an accurate meas
ment of sound field coefficients more pressure samples
be required. The largerM is required to negate the effects o
error scaling. A conservative procedure for estimatingM is
summarized above.

B. Wide band method

In frequency ranges and sizes ofB2 of interest to prac-
tical problems, the Bessel termJn(kR) is guaranteed to be
zero at a number of frequencies. These zeros cause prob
when designing with the above method over a wide f
quency range. For each zero, a basis functions remains
measurable.

To illustrate the magnitude of the problem, consider t
asymptotic behavior~that is, the behavior for largekR) of
the Bessel function:17

Jn~kR!;A 2

pkR
cos~kR2np/22p/4!. ~24!

n

2105nd Abhayapala: Sound field reproduction in reverberant rooms
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One can see from this equation that each of the Bessel fu
tions has zeros spaced approximatelykR5p or f 5c/2R
apart. In a regionB2 with radius R50.3 m and speed of
soundc5342 m/s, eachJn(kR) has zeros spaced 570 H
apart. In a 0–4 kHz frequency range there are 58 ze
present~Fig. 5!. On average, one zero occurs every 69 H
with the larger concentration of zeros at higher frequenci

To combat this problem, we propose an alternat
method for the wide-band case. Instead of sampling ove
single radiusR we sample over two concentric circles o
radii R15R2dR andR25R @Fig. 3~b!#.

1. Computation of sound field coefficients

Multiplying both sides of Eq.~16! by basis function
Jn8(kx)e2 in8fx and integrating over the thin shell of thick
nessdR5R22R1 , $xPR2:R1<ixi<R2%, the orthogonality
property, Eq.~9!, is used to show that

bn~v!5
1

2p*R1

R2@Jn~kx!#2x dx

3E
R1

R2E
0

2p

P~x;v!Jn~kx!e2 infxx dx dfx .

For smalldR, we can approximate the integral inx with the
zeroth-order approximation:

E
R1

R2
f ~x!dx5

1

2
@ f ~R1!1 f ~R2!#dR. ~25!

Using Eq.~25!, we expressbn(v) as a sum of two weighted
Fourier series equations. Sampling the field withM evenly
spaced sensor pairs positioned at (R1 ,fm) and (R2 ,fm), the
sound field coefficientsbn(v) are estimated with

b̂n~v!5an~v!DFT$P~R1 ,fm ;v!%~n!

1bn~v!DFT$P~R2 ,fm ;v!%~n!, ~26!

where forR1'R2 , the DFTs are weighted by

FIG. 5. Bessel functionsJn(kR) that are active in a control region of radiu
0.3 m and frequencies up to 4 kHz. Each zero of the Bessel function
marked with a dot~•!.
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an~v!5
Jn~kR1!

@Jn~kR1!#21@Jn~kR2!#2
, ~27!

bn~v!5
Jn~kR2!

@Jn~kR1!#21@Jn~kR2!#2
. ~28!

The approximated sound field coefficients can hence be
tained through taking the DFT of the pressure samp
around each circle and calculating a weighted average.

Next we analyze the error in the approximated sou
field coefficients.

2. Approximation error

For the wide band method, the error in the approxima
sound field coefficients is

b̂n~v!2bn~v!5an~v! (
q52`,Þ0

`

Jn1qM~kR1!bn1qM~v!

1bn~v! (
q52`,Þ0

`

Jn1qM~kR2!bn1qM~v!.

~29!

This expression is proven by substituting Eq.~19! into Eq.
~26! and simplifying the resulting expression in a mann
similar to that in Appendix A. In contrast to the narrow ban
case in Eq.~20!, the wide band case possesses two er
scaling terms,an(v) and bn(v). Also, the presence o
@Jn(kR1)#21@Jn(kR2)#2 in the denominators of the erro
scaling terms@see Eq.~27! and Eq.~28!# improves the ro-
bustness at the zeros.

The critical parameter in the wide band technique isdR.
dR controls the maximum value of the error scaling term
an(v) andbn(v), as we will now show. When eitherkR1 or
kR2 is a zero of the Bessel function, approximation err
simplifies to the narrow band expression in Eq.~20!. In the
caseJn(kR1)50, the error scaling terms reduce toan(v)
50 andbn(v)51/uJn(kR2)u. For dR small,Jn(kR2) is also
small and the linear approximationJn(kR2)5kdRJn8(kR1)
can be made. By the derivative property of the Bessel fu
tion xJn8(x)5nJn(x)2xJn11(x), we see that Jn8(kR1)
5Jn11(kR1), so the nonzero error scaling term is

bn~v!'
1

k dRuJn11~kR1!u
.

From this equation, it seems advantageous to choosedR
large, as a largerdR implies a smaller error scaling. How
ever,dR cannot be too large, otherwiseJn(kR2) may coin-
cide with another zero of the same Bessel function. As th
Bessel functions are regularly spaced, we can selectdR to
avoid this case. From Eq.~24! the Bessel zeros ofJn(kR) are
spacedp apart, so setkdR,p/2 or dR,l/4. An appropriate
choice of dR is hence 1/4 of the smallest acoustic wav
length of interest.

C. Impact of measurement noise

In real rooms with background noise and sensor noise
is nontrivial to obtain clean measurements of the acoust

is
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is

-
c

es
at

th
ct
f

-
lt
x-

d

nb

id

th

al,
li-
nc-
-
he

all

o-
at a

s
er-

of
trate
r.
ker

ular
se
the
for
the
c-
t-to-

ov-

-

e

of

d be
transfer functions. In this section we study how such no
impacts measurement of the sound field coefficients.

Model the measurement noiseh~x;v! at each sensor po
sition x as additive white noise of zero mean and varian
s2(v). The noisy pressure is

P̃~x;v!5P~x;v!1h~x;v!. ~30!

Calculating the DFT of both sides of Eq.~30! and comparing
with Eq. ~18!, the noisy sound field coefficient estimat
b̃n(v) are shown to be related to the noiseless estim
b̂n(v) by

b̃n~v!5b̂n~v!1
1

Jn~kR!
DFT$h~R,fm ;v!%~n!.

Inserting the definition of the DFT in Eq.~19! and rearrang-
ing:

b̃n~v!2b̂n~v!5
1

Jn~kR!

1

M (
m50

M21

h~R,fm ;v!e2 i ~2pmn/M !.

~31!

Equation~31! is used to derive the mean and variance of
noisy sound field coefficient estimates. Taking the expe
tion of both sides of Eq.~31!, the zero mean property o
h(R,fm ;v) implies that

E$b̃n~v!2b̂n~v!%50,

or E$b̃n(v)%5b̂n(v). Measurement of the sound field co
efficients remains unbiased by noise with zero mean. Mu
plying Eq. ~31! by its complex conjugate and taking the e
pectation, the variance is given by

E$ub̃n~v!2b̂n~v!u2%5
1

@Jn~kR!#2

1

M2

3 (
m150

M21

(
m250

M21

E$h* ~R,fm1
;v!

3h~R,fm2
;v!%

3exp$ i2p~m12m2!n/M %.

In the case that noise is spatially uncorrelate
E$h* (R,fm1

;v)h(R,fm2
;v)%5s2(v)dm1m2

, and the vari-
ance reduces to

E$ub̃n~v!2b̂n~v!u2%5
1

M

s2~v!

Jn~kR!2
.

The variance is influenced by error scaling factor 1/uJn(kR)u.
In the wide band case, we can use a similar derivation
show that the sound field coefficient estimates are also u
ased and have a variance given by

E$ub̃n~v!2b̂n~v!u2%5
1

M

s2~v!

@Jn~kR1!#21@Jn~kR2!#2
.

~32!

The Bessel functions in the denominators of Eq.~32! show
that similar error scaling occurs in the noise error of the w
band case.

This error scaling of the measurement noise impacts
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measurability of the sound field coefficients. In gener
whenJn(kR) is small the error scaling causes a large amp
fication of measurement noise. For the inactive basis fu
tions, the Bessel termsJn(kR) are so small as to be effec
tively zero. The resulting error scaling is so large that t
sound field coefficients are unmeasurable, even for a sm
s2(v).

IV. SIMULATION EXAMPLES

In the following examples, we illustrate the sound repr
duction of a plane wave and a single monopole source
single frequency~Sec. IV A and Sec. IV B! and at a range of
frequencies~Sec. III D!. Single frequency reproduction i
performed at 1 kHz. Then in Sec. IV C we examine the p
formance of reproduction for the case that the numbers
loudspeakers are inadequate. In Sec. IV D we demons
the influence of measurement noise on reproduction erro

The reverberant room parameters and loudspea
placement are summarized in Fig. 6. The room is rectang
with a wall absorption coefficient of 0.3 Unless otherwi
stated, the control region has a radius of 0.3 m. Though
sound field reproduction design technique is applicable
any configuration and type of loudspeaker, we perform
sound field reproduction with a circular array of omnidire
tional loudspeakers. This setup yields an average direc
reverberant energy ratio from each loudspeaker of24.4 dB
at the center ofB2.

The loudspeaker requirements of this scenario are g
erned by the control region parameterN5 dkRe56, prompt-
ing the use of 2N11513 loudspeakers. Following the con
servative design procedure of Sec. IV A withe5220 dB, the
maximum error scaling isk525 dB, and from Fig. 4 the
dDNe corresponding tok85e/k is 14. We hence sample th
pressure atM5N1 dDNe520 points to measure the room
response coefficientsan( l ,v).

The reverberation is generated with a 2-D adaptation

FIG. 6. Layout of loudspeakers~s! and pressure sample points~d! for
sound field reproduction in the simulations. Though loudspeakers coul
arbitrarily placed, we set them on a circle of radius 2 m centered about@3.8
m, 2.4 m#.
2107nd Abhayapala: Sound field reproduction in reverberant rooms
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wave with 13 speakers and 20 pressu
samples in a 0.3 m radius circle, fo
~a! a free field,~b! the same free field
design in the reverberant room, and~c!
a reverberant field design in the reve
berant room. Reproduction errors ar
0.87%, 307%, and 0.85%, respec
tively.
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the image-source method.19 Each of the room frequency re
sponse functions is given by

H~x;v!5H0
~2!~kix2yi !1 (

n51

Ni

znH0
~2!~kix2yni !,

where H0
(2)(•) is the zeroth-order Hankel function of th

second kind,y is the source position, andzn andyn are the
position and accumulated reflection coefficient of thenth
image-source, respectively.@For the 2-D point source, or a
cylindrical source,H0

(2)(kr) gives the field at a distancer
from the source;20 for a 3-D point source, this is equal to th
more familiar expressionh0

(2)(kr)5 ie2 ikr /kr.] Image-
source positions are obtained through the repeated mirro
2108 J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 Bet
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about the walls of the enclosure.19 In simulations below, all
the image-sources of up to fifth order were included~totaling
Ni560 image sources!.

Sound field reproduction results are illustrated in Fig
7–9. Here the real and imaginary parts of the complex pr
sure of the reproduced field are displayed as density pl
Details of the sound field reproduction in each case are
scribed below.

A. Reproduction of a plane wave

First, the field pressure of a plane wave is reproduc
For a plane wave originating from directionŷ:

Pd~x;v!5e2 ikx"ŷ.
lehem and Abhayapala: Sound field reproduction in reverberant rooms
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pole in a 0.3 m radius circle of the
reverberant room with 13 speakers an
20 pressure samples. The reproducti
error is 2.12%. The position of the
monopole is marked with a ‘‘1.’’
ld

a

ve

e

n is
ell

free
is

of

nit
osi-
Through the Jacobi–Anger expression,20

e2 ikx"ŷ5 (
n52`

`

~2 i !ne2 infyJn~kx!einfx,

wherefy is the polar angle ofŷ, one sees that the sound fie
coefficients are given by

bn
~d!~v!5~2 i !ne2 infy.

Loudspeaker filter weights are chosen using the least squ
approach of Sec. IV D.

Figure 7 illustrates the reproduction of a plane wa
approaching from an angle offy5p/6. We provide a free
field design@Fig. 7~a!#, the same free field design in th
reverberant room described above@Fig. 7~b!#, and the rever-
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 Betlehem a
res

berant field design@Fig. 7~c!#. With a 307% reproduction
error, the reverberant performance of the free-field desig
poor. In contrast, the reverberant design performs as w
under such conditions as the free-field design does in a
field. Since the24.4 dB direct-to-reverberant ratio here
common in room environments, we see the importance
reverberant field design techniques.

B. Reproduction of a phantom monopole source

The pressure field of a 2-D monopole source of u
strength is now reproduced. For a monopole source p
tioned aty, the sound pressure is

Pd~x;v!5H0
~2!~kix2yi !.
d
ed

c-
FIG. 9. The reproduction of a plane
wave in a 0.6 m radius circle of the
reverberant room with 13 speakers an
35 pressure samples when design
over ~a! the whole region and~b! a
region of 0.3 m radius. Reproduction
errors are 26.0% and 84.1%, respe
tively.
2109nd Abhayapala: Sound field reproduction in reverberant rooms
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Through the addition property of the Hankel function,20

H0
~2!~kix2yi !5 (

n52`

`

Hn
~2!~ky!e2 infyJn~kx!einfx,

wherey,iyi , one sees that the sound field coefficients a
given by

bn
~d!~v!5Hn

~2!~ky!e2 infy.

Using the same design technique as for the plane wave
production, we simulate the reproduction of a monop
source just outside the region of interest, at (y,fy)
5(0.35 m,3p/4). Figure 8 shows a good reproduction of th
monopole source.

C. Reproduction with an inadequate numbers
of speakers

We now illustrate the result of designs with insufficie
numbers of speakers. Again a plane wave is reproduced
13 speakers, but over a region of interest of radius 0.6 m
this radius, 25 basis functions are active. For comparison,
show the design for a radius of 0.3 m, where only the
lowest-order basis functions are reproduced. Because of
larger radius, we require more pressure samples~35 samples!
for these designs.

The resulting sound fields are shown in Fig. 9. While t
0.3 m design reproduces accurately over where the
lowest-order basis functions are active@Fig. 9~b!#, the 0.6 m
design reproduces the sound field with better accuracy o
the whole region of interest@Fig. 9~a!#.

D. Wide band reproduction with measurement noise

Wide band sound field reproduction of a plane wave
performed with noisy pressure samples in the freque
range 100 Hz to 1 kHz,R150.3 m, andR250.27 m. The
reproduction error is plotted in Fig. 10 for several noi

FIG. 10. Wide band reproduction of a plane wave in a 0.3 m radius ci
with 13 speakers and using 40 pressure samples, using the model-b
method~solid lines! and multiple-point method~broken lines!. Reproduction
error curves have been averaged over 40 trial runs.
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SNRs averaged over 40 trial runs. This figure shows tha
least 30 dB SNR is required for an accurate reproduct
over the whole frequency range.

For comparison the multiple-point method has been
plotted. As can be seen, the model-based method, by
forming the least squares design over the whole region
interest, consistently outperforms the multiple-point meth
typically up to 5 dB.

The general trend in this curve is that error increa
with frequency. This trend is due to the linear increase
demand for loudspeakers and sensors with frequency.
design uses the same number of loudspeakers and pre
samples for all frequencies. If we desire to flatten the cur
we could use less pressure samples and loudspeake
lower frequencies where less basis functions are active.

Also observe the peaks in Fig. 10. These peaks occu
the vicinity of the zeros of the Bessel functionsJ0(kR) and
J1(kR). Zeros of these Bessel functions at 460 and 730
respectively. These peaks are hence a direct result of
error scaling mentioned in Sec. IV C. To flatten such pea
more pressure sampling should be performed about th
frequencies, or the sensor pairs further separated~i.e., dR
5R12R2 should be increased!.

V. CONCLUSION

We have described a novel method of performing sou
field reproduction in reverberant enclosures. The key to
method is an efficient parametrization of the acoustical tra
fer functions. Using this parametrization, we have outline
practical technique to precisely measure the acoustical tr
fer functions from a loudspeaker to each point in the reg
of sound reproduction. This approach allows full sound
production without prior knowledge of the loudspeaker p
sitions nor the transmission characteristics of each lo
speaker. Through simulation, the reverberant field metho
shown to perform as well in a reverberant room as free-fi
techniques do in a free field, and up to 5 dB better th
multipoint least squares designs. The practical impleme
tion of this soundfield reproduction scheme and its subjec
performance remain as open questions and shall be addre
in future research.

APPENDIX A: PROOF OF EQ. „20…

Substituting Eq.~19! into Eq. ~18! yields

b̂n~v!5
1

Jn~kR!

1

M (
m50

M21

P~R,fm ;v!e2 i ~2pmn/M !,

~A1!

where fm52pm/M . Evaluating the basis function expan
sion of the sound field Eq.~16! at theM points (R,fm):

PS R,
2pm

M
;v D5 (

q52`

`

bq~v!Jq~kR!ei ~2pmq/M !. ~A2!

Substituting Eq.~A2! into Eq. ~A1! and interchanging sum
mations:

b̂n~v!5
1

Jn~kR!

1

M (
q52`

`

bq~v!Jq~kR! (
m50

M21

ei @2pm~q2n!#/M.

e
sed
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Now the summation of the complex exponential is given

(
m50

M21

ei @2pm~q2n!#/M5H M , if q2nuM ,

0, otherwise.

Hence

b̂n~v!5
1

Jn~kR! (
s52`

`

bn1sM~v!Jn1sM~kR!.

Rearranging,

b̂n~v!2bn~v!5
1

Jn~kR! (
s52`,Þ0

`

bn1sM~v!

3Jn1sM~kR!.
QED.

APPENDIX B: BOUND ON THE TERMWISE SCALING
FACTOR kn

For the following discussion, we viewJn(kR) as a func-
tion of its ordern. Forn>N5 dkRe, Jn(kR) is observed to be
a monotone decreasing function inn, decaying exponentially
toward zero.~This property can be observed in Fig. 5 forn
up to 20.! Similarly for n>N, uJ2n(kR)u is also monotone
decreasing inn.

From Eq. ~21!, the largest termwise scaling factor fo
coefficientb̂(v) is

kn5
1

Jn~kR!
max

q52`,... ,̀ ,Þ0
uJn1qM~kR!u.

Now sinceM.2N, for n52N,2N11,...,N and q561,
62,..., we haveun1qMu.N. Each of these Bessel function
Jn1qM(kR) is hence sampled over the above-mention
monotone decreasing interval. Consequently,kn is maxi-
mized whenun1qMu is minimized:

kn5H J2~M2n!~kR!/Jn~kR!, n>0,

JM1n~kR!/Jn~kR!, n,0.

Calculating now the maximumkn over the active basis func
tions of positive index, the termwise scaling factor
bounded by

max
n50,...,N

kn5 max
n50,...,N

UJ2~M2n!~kR!

Jn~kR!
U

< max
n50,...,N

1/uJn~kR!u3 max
n50,...,N

uJ2~M2n!~kR!u.

Again, due to the monotone decreasing property of
Bessel function:

max
n50,...,N

kn5 max
n50,...,N

1/uJn~kR!u3uJ2~M2N!~kR!u.

Similarly, due to the Bessel function propertyJ2n(x)
J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 Betlehem a
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5(21)nJn(x), the bound is the same for maxn52N,...,21kn .
Then applying the Bessel function bound from Ref. 18,

max
n52N,...,N

kn5 max
n50,...,N

1/uJn~kR!u

3
1

A2p~M2N!
F ekR

2~M2N!G
M2N

.

QED.
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