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With the recent emergence of surround sound technology, renewed interest has been shown in the
problem of sound field reproduction. However, in practical acoustical environments, the
performance of sound reproduction techniques are significantly degraded by reverberation. In this
paper, we develop a method of sound field reproduction for reverberant environments. The key to
this method is an efficient parametrization of the acoustic transfer function over a region of space.
Using this parametrization, a practical method has been provided for determining the transfer
function between each loudspeaker and every point in the reproduction region. Through several
simulation examples, the reverberant field designs have been shown to yield a reproduction accuracy
as good as conventional free-field designs, and better than multipoint least squares designs when
loudspeaker numbers are limited. The successful reproduction of sound over a wide frequency range
has also been demonstrated. This approach reveals the appropriate choices for fundamental design
parameters. €2005 Acoustical Society of AmericdDOI: 10.1121/1.1863032

PACS numbers: 43.60.Dh, 43.38.Md, 43.55[RIX] Pages: 2100-2111

I. INTRODUCTION standard approach has been to equalize the transfer functions
over multiple points using least squares technidtiés.

A problem relevant to emerging surround sound technolHowever, in such a case, equalization can be poor away from
ogy is a reproduction of a sound field over a region of spacethe design points. In contrast, sound field reproduction would
Using a set of loudspeakers, it is possible for listeners tgequire the equalization to extend over the whole control
spatialize sound and fully experience what it is actually likeregion.
to be in the original sound environment. Sound field repro-  Alternatively, the acoustic transfer functions can be
duction has been discussed since the 1960s. However, mugheasured and incorporated into the sound field reproduction
of the work so far does not directly address sound field realgorithm directly. Methods for estimating the acoustic trans-

production in reverberant environments. In this paper, usinger functions over a region have been established by
an efficient parametrization of the room transfer function wemourjopoulo$® and Bharitkar and Kyriakaki' which
extend sound field reproduction to reverberant enclosures. sample the field at a number of points and use a spatial

Early work in sound field reproduction was performed equalization library. However, for sound field reproduction in
by Gerzon' With his ambisonics system, Gerzon reproduceds reverberant room, these techniques do not determine trans-
the first-order spherical harmonics terms of a plane wavger functions with sufficient accuracy.
sound field around a point in space. Ambisonics has since |p this paper, we present a method of performing sound
been unified with holograpHy? both of which rely upon the  fig|q reproduction in a reverberant room. This method is
Kirchoff—Helmholtz equation. Here, sound field reproduc-pased on an efficient parametrization of the acoustic transfer
tion inside a control region is achieved by controlling the fynction in the control region, where the acoustic transfer
pressure and its normal derivative over the boundary of the,nction is written as the weighted sum of a small number of
control regiort In similar work, global sound field reproduc- orthogonal basis functions. Using this parametrization, we
tion technique$® have been proposed that control soundyeconstruct a sound field accurately over the whole control
pressure over the boundary. By controlling sound at addiegion. This approach exploits the standing wave structure of
tional points inside the control region, these techniques obge reverberant field generated by each loudspeaker to repro-
viate the need for velocity microphones. Unfortunately, suchy,ce the desired sound field. We also describe a practical
techniques require a large number of loudspeakers. FOr @ethod for determining the acoustic transfer function be-

lesser numbers of loudspeakers, Le?gt squares techniqUgisen each loudspeaker and the control region, by sampling
have been suggested by Kirkelgf al."® Recently, using gond pressure at a small number of points.

spherical harmonic analy_sis, the theoretical minimum NUM-  This paper is structured as follows. In Sec. Il we cast

ber of loudspeakers required for the accurate reproduction Qo ng field reproduction into a least squares framework and
a plane wave has been egtabllsﬂed: . _ _ introduce the basis function approach to gain insight into the
_ The reverbera_nt case is made.dlfﬁcult by the rapid varias,ngamental parameters of the problem. In Sec. Ill, we de-
tion of the acoustic transfer functions over the robfthe  gcyine a method of measuring the acoustic transfer functions
from each speaker to any point within the control region,

dElectronic mail: Thushara.Abhayapala@anu.edu.au through measurement of the transfer function parameters of
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output signalG,(w). This signal encapsulates both the input

Gi1(w) Q/_ Gilw) signal applied to loudspeakeias well as any filtering of it.
jv \\\\ To characterize the acoustic properties of the enclosure, de-
// . fine the acoustic transfer functidth (x;w) as the frequency
. response between loudspeakemd pointx. H,(X; w) sum-
c- . marizes the effect of reverberant reflections from the surface
> of the enclosure on any sound signal transmitted by each
Hy(z;w) loudspeaker. The sound pressure at any poidtie to loud-
' speaket is equal to
/" Pi(X;0)=G(w)H (X o). @
\\ B @ From Fig. 1, the sound pressure in the reproduced field re-
J& G(w) sulting from theL loudspeakers is then equal to
Gr(w) . . .
. P(x;0)= 2 Piw)=2, Gi(0)H(Xw). 2)
FIG. 1. Use ofL loudspeakers to reproduce a desired field in a control
region B? with loudspeaker filters3,(w) and acoustical transfer functions The design task of sound field reproduction is to choose
Hi(x,®) from thelth loudspeaker to a pointe . filter weights G,(w) to minimize the normalized reproduc-

tion error7 over B2,
the acoustic transfer functions. Separate methods have been 1
derived for the narrow band and wide band cases. The effect 7= Ef IP(Xw)— Py(x;0)|?da(x), (€©)
of noisy pressure samples on measurement of the parameters .
has also been analyzed. Finally, in Sec. IV we demonstratéhere the normalizing factaf is the energy of the desired
the performance of our sound field reproduction techniqueound field ovei?:
with several examples, including a comparison with the mul-
tiple point least squares technique. &= JB2|Pd(X§w)|2da(X), (4)

da(x)=x dx d¢, is the differential area element at x
=||x||, and ¢, is the polar angle ok.

In this section, we devise a method of performing two- The popular approach to solving this problem is to write
dimensional 2-D sound field reproduction within a reverber-the least squares solution over a set of uniformly spaced
ant enclosure. This 2-D technique ensures good reproductigpoints overB?. (Refs. 7, 8. A better approach is to perform
in the plane of the loudspeakers, provided each loudspeak#ie design over the whole region. This approach is proposed
possesses a sizable vertical dimension. It is applicable tby Asano and Swasdnfor the related problem of equaliza-
enclosures with highly sound-absorbing floors and ceilings.tion. Yet by discretizing, these authors end up implementing

The theory we develop in this paper is readily extendeda multipoint method. Below we outline a model-based ap-
to 3-D space. The 2-D basis functions that are describegroach, which uses an efficient parametrization for acoustic
below need only be replaced with 3-D basis functions. Un4ransfer functions to perform the design over the whole re-
fortunately, in the case 3-D of reproduction over a volumegion. This model-based approach is more general than the
much larger numbers of speakers are requiréte focus on  approach of Asano and Swasomnd Santillart® which as-
reproduction in the plane as it is more practical. sume that the room is of a rectangular shape. More insight is

Below we formulate the problem in the frequency do-gained into the design requirements for an accurate reproduc-
main. The objective is to determine the loudspeaker filtetion through the model-based approach than through muilti-
weights required to reproduce a desired sound field in a repoint least squares techniques.
verberant room.

IIl. SOUND FIELD REPRODUCTION

A. Problem definition

We aim to reproduce the pressu?g(x; w) of a desired B. Model-based approach

sound field at each point and angular frequency in the In the model-based approach, we express the sound
source-free region of intere§t® using an array oL loud-  pressure variableBy(x; w), P(X; ), and the acoustic trans-
speakers. The desired sound field could be a plane wave,fer functionsH,(x; w) in terms of the basis functions of the
field resulting from a monopole, a field measured in a realsound field. Provided all sound sourcéacluding image

life scenario or the field of a surround sound system. Fosources produced by reflectijolie outside of B2, at any
purposes of simplifying the analysis in this paper, we choosgoint inside B?> the above variables can be written as a
the control regionB? to be the circle of radiufR centered weighted sum of the inward-propagating solutions to the

about the origin: wave equatiod! We write the desired sound pressure
B?={xe R?%||x|<R}, Pq(X; ) as

where||-|| denotes the Euclidean distance. P (X @) = (D )3 (kx) el b 5
As shown in Fig. 1, each loudspeakietransmits an a(X@) n;oc B (@) Inkx) ' ®
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> BP(w)d(kx)e" da(x).

n=-—

where 8% (w) is thenth-order sound field coefficient of the

desired sound field),(-) is the Bessel function of order E=
and k= w/c=27x/\ is the wave number is the speed of

sound in air, and is the acoustic wavelength. The functions It follows that

{J.(kx)e"%x}, _, are called the basis functions of the sound o

field. An appropriate choice of sound field coefficients gen- 5:J 2 [BY(@)]* 3y (ke Mt
erate any valid sound field insidé?. B2y == ! '

B2

Similarly, we write the reproduced sound pressure %
P(x;w) as X > m?(w)anz(kx)ei“z%da(x)
np=—ox
POiw)= 3 Ba(w) (ke ®) CS S (A0 BYw)

np=—% Ny=—o 1 2

where B8,(w) are the coefficients of the reproduced sound T inidaingg
field. A reproduction of the sound pressiRg(x; w) over B2 X JO e Mhel2%de,
with P(x;w) is equivalent to a reproduction of the sound
field coefficients{ 8% (w)}ney With {Bn(®)}ney.

Because the room response is equal to the sound field
pressure generated by the unit input sig8a{w), we can
also write it as

R
X j Jnl(kx).]nz(kx)x dx,
0

where we have applieda(x) =x dx d¢, in the second step.
Applying the orthogonality property, E¢Q), of the exponen-
* _ tial functions, the field energy reduces to
HiGw)= 2 an(l,0)3n(kx)e"?, v *

e=27 3 1B00)] | 1ok x ox
s 0

where a(l,w) are the sound field coefficients of the room -
responses for loudspeakkerThese sound field coefficients —K kR)| 3@ 2 10
completely characterize the reverberant sound field generated n;w (kR (@)l 19
by each loudspeaker withii?: _ 2

Observation 1 When the sound field coefficients whereK =2m/k" and )
an(l,w) for each loudspeaker are known for a given room, W (kR)ékZJR[J (kx)]zxdxzf R[J ()] dx. (12)
the acoustic transfer function k;w) between each loud- " o " o "
speaker and any positiox inside B? is also known, and is
given by Eq. (7) X =kx. Simil o :

o . . =kx. arly, substituting Eq(5) and Eq.(6) into Eq.

Substituting Eq(5) and Eq.(7) directly into Eq.(2), the (3). the normali;/ed error becgom(e]z(s) a.(6) q

coefficients of the reproduced sound field are related to "’

The second step was performed with the variable substitution

2

|,w) through 1 . '
(1, 0) throug T2 S 180wk darx).
L = —00
Bn(®)=2, Gi(w)ay(l,0). (8)  Utilizing the orthogonality property, the normalized error re-
I=1
duces to
. K <
The sequences of coefficienfs'?(w))n, (Bn(®))n T== > Wy(kR)|BP(w)— Bn(w)|2 (12)
and (a,(l,w)] associated with any wave field in a source- Ene

free region are shown to be boundédThese coefficients g ghall callw,(kR) in (12) the coefficient weighting func-
are bounded in the following sense. Any field in the SOUrceyign.

free region can be represented as the superposition of plane  gjce the summations in E), Eq. (6), and Eq.(7)

waves. The coefficients are bounded by the sum of the mag;,ye infinite numbers of terms, it may seem that the above

nitudes of these plane waves. _ __ parametrizations need an infinite number of coefficients.
A benefit of the model-based approach is the ability 0, ever, in the next section, we show that for any finite

express key variables in terms of orthogonal functions. Using,ntro| region, they need only a finite number of coefficients
the orthogonality property of exponential functions, to accurately represent a sound field or a room response.

27
—ingaime¢ _
fo e "?eM?dp=276,n, 9 ¢. Active basis functions

Because of the high-pass character of Bessel functions,
we derive an expression for the enerfyand normalized not all of the basis functions make a significant energy
error 7 of the reproduced sound field ovéf as a function of ~ contribution to the sound field insideB2. Studying
the sound field coefficients. Starting with the field energy, weEq. (12), because the sequences of sound field coefficients
substitute Eq(5) into Eq. (4) to yield [B9(w)], and[Bn(w)], are bounded while from Fig. 2,
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oar =[B-n(®).Bn;+1(®),...Bn (®)]T, and the matrix of

vasl the coefficients of the room responses of all loudspeakers,

‘4‘/ e a_NT(l,w) a_NT(Z,w) a_NT(L'w)
03 VAL S S
alfNT(lvw) al—NT(Z:w) al—NT(L’w)
0.25 A= ’
g‘: 02fF aNT(law) aNT(Z!w) aNT(Llw)
] (14
T e @ o o 100 Eg. (8) can be rewritten a@=Ag. Additionally, define the

vectors of the coefficients of the desired sound figld,
=[BR(@), BN +1(®),...8L(@)]", and the diagonal

01

005 weighting matrix,
AN . . W kR0 0
00 10 20 30 40 50 60 70

" 0 Wy.akR 0

FIG. 2. A plot of the coefficient weighting functiow,(kR) vs |n| for W= : : :

control regions with radiR=[1\,2\,..., 1Q\]. A is the acoustic wavelength :
of interest, related to the wave number ki 277/ \. 0 0 - Wy (kR)

T

w,(KR) drop rapidly to zero past a threshold, the energyWriting the numerator of Eq(13) in matrix form:

contribution of each term to reproduction error is controlled Nt

by wy(kR). 2 Wy(kR)[Bn(0) = B (w)[2= (B~ By)"W(B—Ba),
Previous worR'® asserts that only the basis functions "~ T

of index up to N=[kR] contribute significant energy where ()" is the matrix Hermitian operator, the truncated

to the sound field insideB?. This result is supported reproduction error can be written as

by Fig. 2, wherew),(kR) is plotted againsin|. [Note H

the coefficient weighting functions of negative index are _ (B—Ba) " W(B—Ba)

a mirror of those of positive indexv_,(kR)=w,(kR). N BEYWB4

This can be seen by applying the Bessel function )
property J,(x)=(—1)"J_,(x).] The weighting is seen to Since=Ag, we expand the truncated reproduction error as
be small past|n|>N. The N+1 basis functions a quadratic form in the vector of loudspeaker filter weights:

J_n(kx)e ™Nex Iy (kx)eN?x are referred to asctive in

BB2. The remaining basis functions are referred tonastive In(9)= H(QHBQ— b"g—g'b+d),

in B2. Such basis functions only contribute significant energy

to the sound field outside d#2. whereB=A"WA, b=A"WB,, d=BgWp,. This quadratic
An accurate sound field reproduction requires the reproform possesses it's global minimum‘at

duction of these active basis functions. Also, the acoustic  g=B~1h=(AHWA) AW, (15)

transfer functions mentioned in Observation 1 are accurately _ o ) _
determined just by measuring the sound field coefficientdVith the associated minimum in truncated reproduction error:
{an(l,®)}N__, of the active basis functions. R 1
T, (9)=1— abHB‘lb.
D. Least squares solution

Once A™"WA) AMW is computed for the acoustical envi-

_ We now derive the least squares solution for the speakelynment the reproduced sound field can be changed easily
filter weights that minimizes the reproduction error in Eq.by modifying B

(12). This solution is expressed in terms of the sound field
coefficients.
Because the weighting of terms in the normalized error
in Eq. (12) rapidly diminish for|n|=N, it can be truncated E. Multiple-point approach

to For comparison, we describe the conventional least
Nt @ 5 squares approach, where the sound field is reproduced at
=% _EN Wi (KR)|Bn(@) = By ()]%, (13)  several points. Here we aim to reproduce the desired sound

- T

field Py(x;w) over M points X;, Xo,....Xy, Ppositioned
for Ny=N. This truncated reproduction errdfy can be  within the region of interesB? with M=L. Define the vec-
written in matrix form, as follows. Defining the vector of tor of desired sound pressure at each poip}
loudspeaker filter weightg=[G;(w),G,(®),...,G (»)]T, =[Py(X1;®),Pyg(Xs;),....,Pa(xm;®)]", and the acoustic
where[ - T is the matrix transpose operator, the vector of thetransfer functions between the loudspeakers and control
coefficients of the reproduced sound fieldd  points into the matrix,
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Hi(X1;0)  Ha(Xp ) - Hi(X;0)

Hi(Xg;0)  Ha(Xp,w) -+ Hi(Xp;0)

Hi(Xu;®) Ho(Xy ;o) - Hi(Xy ;o)

The loudspeaker weights are determined from (fhassibly
overdeterminedsystemHg=p. The least squares solution is
then given byg=HT'p, where[-]" is the Moore—Penrose
inverse.

In Sec. IV, the multiple-point approach has been com-
pared to the model-based approach. We shall see that since
the model-based approach targets reproduction over the
whole control region, it yields superior performance to the
multiple-point approach.

In the next section we describe a method for measuring
coefficients for the acoustic transfer function in matixor
the model-based approach.

IIl. ESTIMATION OF SOUND FIELD COEFFICIENTS

In t!’]IS s.ec.tlon we descnbe. how to fully determine theFIG. 3. Proposed methods for measuring the sound field coeﬁiq&mts)
sound field inside a control regdﬁ? through measurement in (a) the narrow band case where pressure is sampled at one Rdiod
of the sound field coefficients. This task is important as it iS(b) the wide band case where pressure is sampled at two RydindR, .
required to calculat¢a,(l,w)},.7 that characterize the re-
verberant field generated by each loudspeaker.

We write the sound pressuR{x; ) insideB? generated
by a loudspeaker outsid#? in a reverberant enclosure as the
basis function expansion:

In this paper we sample pressurexatR, on the bound-
ary of B?. Now at a radiu, only basis functions of order up
to [kx] are active. Over the boundary all of the active basis
- functions ofB? are active, while the higher-order basis func-
P(X @)= J.(kx)eindx, 16 tions are inactive. So heuristically this choice of sampling

(@) n:z_w Pl @) In(kx) (16 radius makes sense. A
Approximate sound field coefficient8,(w) are ob-
determine the field pressure insi#é, we describe a simple tained by sampling sound pressurdvbevenly spaced PO'”tS
(R, ), where ¢,=27mm/M for m=0,1,...M —1. Since

means of measuring,(w). . : '
The method used to determine the sound field coeffi-Eq' (17) shows3,(w)Jn(kR) are the Fourier series coeffi-

cients varies depending on whether they are required in 8ients QfP(R’d’;_w) in va_riable ¢. Co_nsequently, It can be
narrow range of frequencigSec. 111 A) or a wide range of approximated with the discrete Fourier transfofl@T) re-

frequenciegSec. Il B). lationship:

where B,(w) is the sound field coefficient of order. To

- 1
A. N -band hod =—— ;
arrow-band metho Br(w)= kR DFT{P(R, ¢pm;w)}(n), (18

In the case that sound field reproduction is performed in
a narrow frequency range for a choiceRfaway from any where DFTf(m)}(n) is the M-point DFT, defined by

zero of J,(kR), good sound field coefficient estimates are M-—1
gbtained by sampling pressure over a single circle of radius  pFT{f(m)}(n)= MmZO f(m)ei(27mM), (19)

Coefficients Bn(w) are recognized as the DFT of the
sampled field pressure around the circle
The sound field coefficients are obtained from the analy{p(R,27m/M;w)}M_}, weighted by the Bessel function

1. Computation of sound field coefficients

sis equation, term 10,(kR) [Fig. 3@)].
1 2m ing An appropriate choice foM can be deduced by noting
Bn(w)= 273, (k%) L P(X;w)e " ?xddy, (17 that the sound field 2 is the result of N+ 1 active basis

functions. Since one equation is required for each sound field
providedx is not a zero ofl,(kx). This equation is derived coefficient, we need at lead =2N+1 pressure samples
by multiplying both sides of Eq.16) by g in'e, integrating, whereN=[kR].
and applying the orthogonality property. Interpreting this Due to the presence of I{(kR) in Eq. (18), if kR is
equation, the sound field coefficients and hence sound fieldear one of the Bessel zeros, coefficient error is amplified.
can be known in the whole df? just by measuring sound This error amplification can be negated by oversampling
pressure on a circle of radius pressure, as is seen in the next section.
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FIG. 4. Sample measurement parametét required for several values of
€ (in dB). The curves show thAN required to ensure thafd,y(kR)| is

upper bounded by’. The total number of pressure samples required is then

N-+[ANT], whereN is the number of active basis functions.

2. Approximation error

In Appendix A, we show the error in the approximated
sound field coefficient®(w) is given by

©

Bn(w)— Bn(

1
- Jn(kR) quzxﬁ&o ‘]n+qM(kR)ﬂn+qM(w)-
(20

This equation reveals a type of aliasing, since the highe
order_coefficients{ B, qu(®)}q- - -0 are mapped onto
eachB,(w). It also shows the magnitude of the approxima-
tion error is controlled by the size of I{kR). We shall
refer to the summation term in ERO) as thealiasing error
and the preceding 34(kR) term as theerror scaling If
Jn(kR) is small, the error scaling is large.

From Eq. (20), each basis function of inder+qM
makes a termwise contribution of
[Jn+qm(KR)/In(KR)]Bn+ qu(w) for g#0 to the approxima-
tion error in B,(w). We now identify a choice oM that
ensures the termwise scale facty, u(kR)/J,(kR) arbi-
trarily small.

Definek, as the largesermwise scale factan B, (w):

‘Jn+qM(kR)’

Jn(kR)
for n=—N,—N+1,...N. In Appendix B, the largest term-

)

A
Kn=

max (22)

q=—%,...,0,#0

wise scale factor of all of the active basis functions is shown

to be bounded by

max k,< max 1/|J,(kR)|
n=—N,..., N n=0,..N
A
y 1 [ ekR M-N
27(M—N)|2(M—N)

upper bound on |/, _ y(kR)|

(22
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The first term in this bound is the maximum error scaling
that we shall denote ag.;. The second term is a bound on
the Bessel functiord,,_n(kR) obtained from Jonest al®
We note in Eq.(22) that the largest termwise scaling factor
decays exponentially to zero ad is increased pasiN
+[ekR2]. This observation suggests choosing~N
+[ekR2]. However, a better procedure for the choicevyf
motivated by the form of Eq22) is presented next.

3. Conservative estimate of M
This procedure allows a more accurate choicé/of

(@ Choose the desired bourdbn the termwise scale fac-
tor; i.e., choose a bound for which max, N xn<<e.
(b) Calculate the maximum error scaling:
Kes= Max |1/1J,(kR)|.
n=0,1,...N
(c) DetermineAN=M—N to guarantegJy_y(kR)| is
upper bounded by’ = €/ k¢ through the relationship
1 [ekR]AN 03
J2w AN[2AN < @3

Equation (23) has been plotted in Fig. 4 for several
values ofe€’.
(d) The required number of sampl&=N+[AN].
A judicious choice of radiuRk ensures thak,.g is minimal.
Further, such a choice will result in minimizing the number
of required pressure samples.
Interestingly, Fig. 4 shows a linear relationship between
AN andkR for largekR. Rearranging Eq(23):

e
AN=E(\/277AN6’)_1/ANkR.

As AN—ox, the term (27 ANe’) " YAN_1, causing this
expression to reduce tAN~ekR2. This relationship ex-
plains the linear section of the curves in Fig. 4 and is con-
sistent with theN+[ekR2] rule.

In summary, we require at lead =2N+1 pressure
samples to measure the sound field coefficients of the active
basis functions. An analysis of the error in approximated
sound field coefficients shows that for an accurate measure-
ment of sound field coefficients more pressure samples may
be required. The largevl is required to negate the effects of
error scaling. A conservative procedure for estimatihgs
summarized above.

B. Wide band method

In frequency ranges and sizes ot of interest to prac-
tical problems, the Bessel terdy(kR) is guaranteed to be
zero at a number of frequencies. These zeros cause problems
when designing with the above method over a wide fre-
quency range. For each zero, a basis functions remains un-
measurable.

To illustrate the magnitude of the problem, consider the
asymptotic behaviofthat is, the behavior for largkR) of
the Bessel functiof’

[ 2
Jn(kR)~ 7_rWQcoskR— nw/2— ml4).

(29)
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- Jn(kRy)
 [In(kR) PP+ [In(kRy) T2’
Jn(kRy)
[3n(kR) 12 +[Jn(kRy) ]*

The approximated sound field coefficients can hence be ob-
tained through taking the DFT of the pressure samples
around each circle and calculating a weighted average.

Next we analyze the error in the approximated sound
field coefficients.

an(w) (27)

by(w)=

(28)

2. Approximation error

For the wide band method, the error in the approximated
sound field coefficients is

FIG. 5. Bessel functiond,(kR) that are active in a control region of radius .

0.3 m and frequencies up to 4 kHz. Each zero of the Bessel functions is

marked with a dot-). Bn(@) = Bn(w)= an(w)q: ; o Jn+qm(KR1) By gm(@)
Qne can see from this equation t.hat each of the Bessel func- +hy(w) 2 In+qm(KR2) B qm(@).
tions has zeros spaced approximat&lRR=m or f=c/2R q=—2,#0

apart. In a regionB? with radius R=0.3m and speed of (29)

soundc=342m/s, eachl,(kR) has zeros spaced 570 Hz _ . L - .
his expression is proven by substituting Ef9) into Eq.

apart. In a 0—4 kHz frequency range there are 58 zero o . B

present(Fig. 5. On average, one zero occurs every 69 Hz, 26). and S|mp.I|fy|ng the' resulting expression in a manner

with the larger concentration of zeros at higher frequencies.S'm'la,r to that in Appen(jlx A. In contrast to the narrow band
To combat this problem, we propose an alternativec@se in Eq.(20), the wide band case possesses two error

method for the wide-band case. Instead of sampling over §¢2/n9 tezrms,an(w) 2n_d by(w). Also, the presence of
single radiusR we sample over two concentric circles of LIn(KR1)1°+[Jn(kRp)]" in the denominators of the error

radii R,=R— 6R andR,=R [Fig. 3b)]. scaling termgsee Eq.(27) and Eq.(28)] improves the ro-

bustness at the zeros.

The critical parameter in the wide band techniquéks

SR controls the maximum value of the error scaling terms
1. Computation of sound field coefficients a,(w) andb,(w), as we will now show. When eith&R; or
kR, is a zero of the Bessel function, approximation error
simplifies to the narrow band expression in E20). In the
caseJ,(kR;)=0, the error scaling terms reduce &Q(w)
=0 andb,(w)=1/J,(kRy)|. For 5R small,J,(kRy,) is also
small and the linear approximatial,(kR,) =ksR J; (kR;)

Multiplying both sides of Eq.(16) by basis function
Jn,(kx)e“”""X and integrating over the thin shell of thick-
nessSR=R,—R;, {xe RZR;=<||x|<R,}, the orthogonality
property, Eq.(9), is used to show that

3 1 can be made. By the derivative property of the Bessel func-
Bn(w)= 2 [ (k0 Px dx tion xJ'(X)=nJy(X)—XJns1(X), we see thatd!(kR;)
Ryt ™l =Jn+1(KRy), so the nonzero error scaling term is
J’szz’ﬁ |n(b b ) 1
X P(X;w)Jn(kx)e™ " dx dey . W)~ .
e Jo UG x ) ORI 2 KRy
For smallSR, we can approximate the integralrwith the ~ From this equation, it seems advantageous to chase
zeroth-order approximation: large, as a largesR implies a smaller error scaling. How-
R 1 ever, R cannot be too large, otherwisk(kR,) may coin-
f zf(x)dX: Z[f(Ry) +f(Ry)]SR. (25)  cide with another zero of the same Bessel function. As these
Ry 2 Bessel functions are regularly spaced, we can seiBcto

avoid this case. From E¢R4) the Bessel zeros df,(kR) are
spacedr apart, so sekSR< /2 or SR<\/4. An appropriate
choice of SR is hence 1/4 of the smallest acoustic wave-
length of interest.

Using Eq.(25), we expres@,(w) as a sum of two weighted
Fourier series equations. Sampling the field withevenly
spaced sensor pairs positioned B (¢,,) and R,, ¢.), the
sound field coefficient@,(w) are estimated with

Bu(®)=2,(@)DFT{P(Ry, ;@) }(N)
+by(@)DFT{P(Ry, s ) }(1), (26)

C. Impact of measurement noise

In real rooms with background noise and sensor noise, it
where forR;~R,, the DFTs are weighted by is nontrivial to obtain clean measurements of the acoustical
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transfer functions. In this section we study how such noise ¥
impacts measurement of the sound field coefficients.

Model the measurement noisgx;w) at each sensor po- Speakers .o
sition x as additive white noise of zero mean and variance '
o?(w). The noisy pressure is

P(x0)=P(x0)+ 7(Xw). (30
Calculating the DFT of both sides of E@O) and comparing  sm

with Eq. (18), the noisy sound field coefficient estimates
Bn(w) are shown to be related to the noiseless estimates

Balw) by
- . 1 o,
Bl @)= B ©)+ 315y DFT(R o ) () o g
Inserting the definition of the DFT in Eq19) and rearrang-  x—
ing: e 4m |
- N M—1 ) FIG. 6. Layout of loudspeaker€D) and pressure sample point®) for
Bn(w)—Bp(w)= ——= — 2 (R, ém; w)e_'(zwm”/M)_ sound field reproduction in the simulations. Though loudspeakers could be
Jn(kR) M m=o arbitrarily placed, we set them on a circle of radius 2 m centered dBdt
(3) m,24m.

Equation(31) is used to derive the mean and variance of the
noisy sound field coefficient estimates. Taking the expecta- . i .
tion of both sides of Eq(31), the zero mean property of measurability of the sound field coefficients. In general,

7(R, b @) implies that whenJ,(kR) is small the error scaling causes a large ampli-
T - fication of measurement noise. For the inactive basis func-
E{Bn(w)— Bn(w)}=0, tions, the Bessel termd,(kR) are so small as to be effec-

tively zero. The resulting error scaling is so large that the

or B{ (@)} =Bn(w). Measurement of the sound field co- sound field coefficients are unmeasurable, even for a small

efficients remains unbiased by noise with zero mean. Multi

"2
plying Eg. (31) by its complex conjugate and taking the ex- o ().
pectation, the variance is given by
~ A ) 1 IV. SIMULATION EXAMPLES
E w)—Byw) |t —
UAn(w)= Bulw)Y [Jn(kR)]? M? In the following examples, we illustrate the sound repro-
M—1 M—1 duction of a plane wave and a single monopole source at a

single frequencySec. IV A and Sec. IV Band at a range of
frequencies(Sec. llID). Single frequency reproduction is
performed at 1 kHz. Then in Sec. IV C we examine the per-
Xn(R, ¢mz;“’)} formance of reproduction for the case that the numbers of
. loudspeakers are inadequate. In Sec. IVD we demonstrate
X exp{i2m(m;—my)n/M}. . . )
the influence of measurement noise on reproduction error.
In the case that noise is spatially uncorrelated, The reverberant room parameters and loudspeaker
E{ 77*(R,¢ml;w) 17(R,¢>m2;w)}=02(w) Om, my; and the vari- placement are summarized in Fig. 6. The room is rectangular
ance reduces to with a wall absorption coefficient of 0.3 Unless otherwise
) stated, the control region has a radius of 0.3 m. Though the
E{|,~8n(w)—f8n(w)|2}= i o (w) . sound field reproduction design technique is applicable for
M J,(kR)? any configuration and type of loudspeaker, we perform the
) o ) sound field reproduction with a circular array of omnidirec-
The variance is influenced by error scaling factddd(kR)|.  tional loudspeakers. This setup yields an average direct-to-

In the wide band ca;e, we ca.n. use a.similar derivation t?everberant energy ratio from each loudspeaker-df4 dB
show that the sound field coefficient estimates are also unbgt the center of2.

ased and have a variance given by

X 2 2 E{7"(Rgnio)

m;=0 my=

The loudspeaker requirements of this scenario are gov-
1 (o) erned by the control region parametér=[kR]=6, prompt-
v . ing the use of A+ 1=13 loudspeakers. Following the con-
M [3n(kR) T+ [In(kR,)1? 32 servative design procedure of Sec. IV A wits —20 dB, the
(32 maximum error scaling isc=25 dB, and from Fig. 4 the

The Bessel functions in the denominators of E2R) show [AN] corresponding toc’' =€/« is 14. We hence sample the
that similar error scaling occurs in the noise error of the widepressure atl =N+[AN]=20 points to measure the room
band case. response coefficients, (I, ).

This error scaling of the measurement noise impacts the  The reverberation is generated with a 2-D adaptation of

E{|Bn(®) — Bn()|2} =

J. Acoust. Soc. Am., Vol. 117, No. 4, Pt. 1, April 2005 Betlehem and Abhayapala: Sound field reproduction in reverberant rooms 2107



Real Imaginary

06 06
04, 0.4
0.2 0.2
E E o
> >
-0.2 02
-0.4 -0.4
_0.6 i % A i _OAB » AR : A ke R HE
06 -04 02 0 02 04 06 -04 -02 0 02 04
X (m) (a) X (m)
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FIG. 7. The reproduction of a plane
wave with 13 speakers and 20 pressure
samples in a 0.3 m radius circle, for
(a) a free field,(b) the same free field
design in the reverberant room, afol

a reverberant field design in the rever-
berant room. Reproduction errors are
0.87%, 307%, and 0.85%, respec-
tively.

y (m)
y(m)

06 -04 02 0 02 04
(b) x(m)

Imaginary

)

y (m)

6 ) . : ;
-06 -04 -02 0 02 04 06 -04 -02 0 02 04

x (m) (© x(m)

the image-source methdd Each of the room frequency re- about the walls of the enclosut2ln simulations below, all

sponse functions is given by the image-sources of up to fifth order were includedaling
N;=60 image sources

i Sound field reproduction results are illustrated in Figs.

H(x;0)=Hg (KIx—y|) + 21 L MG (KIx=yal), 7-9. Here the real and imaginary parts of the complex pres-

"~ sure of the reproduced field are displayed as density plots.

where H{?)(-) is the zeroth-order Hankel function of the Details of the sound field reproduction in each case are de-

second kindy is the source position, angj, andy,, are the  scribed below.

position and accumulated reflection coefficient of tita

image-source, respectivelpor the 2-D point source, or a p Reproduction of a plane wave

cylindrical source,H{?(kr) gives the field at a distance _ _ _

from the sourcé? for a 3-D point source, this is equal to the First, the field pressure of a plane wave is reproduced.

more familiar expressionhgz)(kr):ie’”“/kr.] Image- For a plane wave 0r|g|nat|ng from direction

source positions are obtained through the repeated mirroring  Py(x;w)=e" "V,

N
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Real Imaginary

y (m)
y (m)

-1 -0.5 ' 0 . 0.5 1 FIG. 8. The reproduction of a mono-
@) X (m) pole in a 0.3 m radius circle of the
reverberant room with 13 speakers and

Imaginary 20 pressure samples. The reproduction
: error is 2.12%. The position of the
monopole is marked with a+.”

y (m)
y(m)

X {m) (b) X (m)
Through the Jacobi—Anger expressfan, berant field desigiFig. 7(c)]. With a 307% reproduction
@ error, the reverberant performance of the free-field design is
e kY= (—j)ne Nty (kx)e"%, poor. In contrast, the reverberant design performs as well
n=—o

under such conditions as the free-field design does in a free
Whered)y is the polar angle o}, one sees that the sound field field. Since the—4.4 dB direct-to-reverberant ratio here is

coefficients are given by common in room environments, we see the importance of
- reverberant field design techniques.
By (@)=(—i)"e""%. g a

Loudspeaker filter weights are chosen using the least squar@s Reproduction of a phantom monopole source
approach of Sec. IV D.

Figure 7 illustrates the reproduction of a plane wave The pressure field of a 2-D monopole source of unit

approaching from an angle @b, = 7/6. We provide a free zgﬁggtgt 1S tﬂgvlorjr?(;()drue(;esi.relzizr a monopole source posi-
field design[Fig. 7(@], the same free field design in the Y P

reverberant room described abdwég. 7(b)], and the rever- Pq(x; @) =M (K[x—yl).

Real Imaginary

FIG. 9. The reproduction of a plane
wave in a 0.6 m radius circle of the
reverberant room with 13 speakers and
35 pressure samples when designed
over (a) the whole region andb) a
region of 0.3 m radius. Reproduction

errors are 26.0% and 84.1%, respec-
tively.

y(m)
¥ (m)

06 03 0 03 06
X (m)
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0 : : : : : : : : SNRs averaged over 40 trial runs. This figure shows that at
A it least 30 dB SNR is required for an accurate reproduction
over the whole frequency range.

For comparison the multiple-point method has been co-
plotted. As can be seen, the model-based method, by per-
forming the least squares design over the whole region of
interest, consistently outperforms the multiple-point method,
typically up to 5 dB.

The general trend in this curve is that error increases
4008 SNR with frequency. This trend is due to the linear increase in
] demand for loudspeakers and sensors with frequency. Our
design uses the same number of loudspeakers and pressure
samples for all frequencies. If we desire to flatten the curve,

30dB SNR

Reproduction Error (dB)
|
>
o

— model-based
-45 1 we could use less pressure samples and loudspeakers at
o , , , , , , , , lower frequencies where less basis functions are active.
0. 200 300 400 500 EOD 700 800 SO0 1000 Also observe the peaks in Fig. 10. These peaks occur in

Frequency (Hz)

the vicinity of the zeros of the Bessel functiodg(kR) and
FIG. 10. Wide band reproduction of a plane wave in a 0.3 m radius circle] (kR)_ Zeros of these Bessel functions at 460 and 730 Hz,
with 13 speakers and using 40 pressure samples, using the model-basreé]lspectively These peaks are hence a direct result of the
method(solid lineg and multiple-point metho¢broken line$. Reproduction e . .
error curves have been averaged over 40 trial runs. error scaling mentioned in Sec. IV C. To flatten such peaks,
more pressure sampling should be performed about these
frequencies, or the sensor pairs further separéted SR

Through the addition property of the Hankel functf$n, =R;— R, should be increasad

@)l — vl = () —ing ind,
H (Kx—y= 2 HP (ky)e™ " udq(koe s, v CONCLUSION
wherey=|y||, one sees that the sound field coefficients are  We have described a novel method of performing sound
given by field reproduction in reverberant enclosures. The key to this

Bﬁd)(w) :Hg)(ky)efinqsy_ method is an efficient parametrization of the acoustical trans-

) . . fer functions. Using this parametrization, we have outlined a

Using the same design technique as for the plane wave resa tical technique to precisely measure the acoustical trans
production, we simulate the reproduction of a monopole, nctions from a loudspeaker to each point in the region
source just outside the region of interest, al.dk) o sound reproduction. This approach allows full sound re-
=(0.35m,37/4). Figure 8 shows a good reproduction of this production without prior knowledge of the loudspeaker po-
monopole source. sitions nor the transmission characteristics of each loud-
speaker. Through simulation, the reverberant field method is
shown to perform as well in a reverberant room as free-field
techniques do in a free field, and up to 5 dB better than
multipoint least squares designs. The practical implementa-

We now illustrate the result of designs with insufficient tion of this soundfield reproduction scheme and its subjective
numbers of speakers. Again a plane wave is reproduced witperformance remain as open questions and shall be addressed
13 speakers, but over a region of interest of radius 0.6 m. Ain future research.
this radius, 25 basis functions are active. For comparison, we
show the design for a radius of 0.3 m, where only the 13\pPENDIX A: PROOF OF EQ. (20)
lowest-order basis functions are reproduced. Because of the
larger radius, we require more pressure sam{@gsamples Substituting Eq(19) into Eq. (18) yields
for these designs. R 1 1Mt _

The resulting sound fields are shown in Fig. 9. While the  Bp(w)= ————= — > P(R, ¢y w)e 2ZTmVM)
0.3 m design reproduces accurately over where the 13 Jn(kR) M=o

. : / (A1)

lowest-order basis functions are acti\ég. 9(b)], the 0.6 m
design reproduces the sound field with better accuracy ovewhere ¢,,=27m/M. Evaluating the basis function expan-
the whole region of interegfig. 9a)]. sion of the sound field Eq16) at theM points R, ¢,,):

2 - .
R,%m;w)=q=2x By @)Ig(KR)EETMIM)  (A2)

C. Reproduction with an inadequate numbers
of speakers

D. Wide band reproduction with measurement noise

Wide band sound field reproduction of a plane wave is>uPStituting Eq(A2) into Eq. (A1) and interchanging sum-

performed with noisy pressure samples in the frequechat'onS: Vo1

_ _ ~ 1 1 & :
range 100 Hz to 1 kHzR;=0.3m, andR,=0.27m. The _ - J.(KR eil2mm(g—m /M
reproduction error is plotted in Fig. 10 for several noise’B”(w) Jn(kR) M q;w Ba(@)3q( )mE=O '
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M-1

, M, if g—n|M,
2 e|[21-rm(qfn)]/M= )
m=0 0, otherwise.
Hence

- 1 ”
Bn(w)= Jn(—kF\’)s:E_oo Bn+sm(@)Inism(KR).

Rearranging,

o

- 1
Bu(w@)=Fa(@)= 3Ry 2 Brrou(@)

X Jn+sM(kR)-
QED.

APPENDIX B: BOUND ON THE TERMWISE SCALING
FACTOR k,

For the following discussion, we view,(kR) as a func-
tion of its ordem. Forn=N=[kR], J,,(kR) is observed to be
a monotone decreasing functionrindecaying exponentially
toward zero(This property can be observed in Fig. 5 for
up to 20) Similarly for n=N, |J_,(kR)| is also monotone
decreasing im.

From Eq.(21), the largest termwise scaling factor for
coefficientB(w) is

1

== max
Jn(kR)_ _

®,...,2,#0

Kn

|‘]n+qM(kR)|-

Now sinceM>2N, for n=—N,—N+1,...N andq==*1,

Then applying the Bessel function bound from Ref. 18,

max «,= max 1/J,(kR)|

n=-—N,..., N n=0,..N
" 1 ekR M-N
V2m(M—=N)[2(M—=N)

QED.
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