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Craḿer-Rao Lower Bounds for the Synchronization
of UWB Signals

J. Zhang, R. A. Kennedy, T. D. Abhayapala

Abstract— In this paper, we present Craḿer-Rao lower bounds
(CRLBs) for the synchronization of UWB signals which should
be tight lower bounds for the theoretical performance limits of
UWB synchronizers. The CRLBs are investigated for both single
pulse systems and time-hopping systems in AWGN and multipath
channels. Insights are given into the relationship between CRLBs
for different Gaussian monocycles. An approximation method
of the CRLBs is discussed when nuisance parameters exist.
CRLBs in multipath channels are studied and formulated for
three scenarios depending on the way multipath interference is
treated. We find that larger number of multipath implies higher
CRLBs and inferior performance of synchronizers, and multipath
interference on CRLBs can not be eliminated completely except
in very special cases. As every estimate of time delay could not
be perfect, the least influence of synchronization error on the
performance of receivers is quantified.

Index Terms— Ultra Wideband, Synchronization, Cramér-Rao
lower bounds

I. I NTRODUCTION

Ultra Wideband (UWB) is a promising technique in the
application of short-range high-speed wireless communication
and precise location tracking. Typically, ultra narrow pulses,
such as Gaussian monocycles [1], are modulated to transmit
information. These pulses could be narrower than1 nanosec-
ond. This brings very stringent synchronization requirements.

A UWB signal is basically a baseband signal without phase
and carrier information, hence time delay estimation is the
main task of a synchronizer. This synchronizer could be one in
a simple single-pulse UWB system, however, due to the power
limitation imposed by FCC [2], UWB pulses are generally
combined with spread spectrum techniques, especially time-
hopping (TH), to achieve multiuser access, to ensure suffi-
cient received energy and to mitigate interference to existing
wireless systems. Similar to traditional spread spectrum sys-
tems, the synchronization of a time-hopping UWB system is
accomplished in two steps:code acquisitionfollowed bycode
tracking. The former, involving the optimization of search
strategies, tries to determine the phase of the incoming pseudo-
noise (PN) sequence within a fraction of chip width. The
latter refers to the process of achieving and maintaining fine
alignment of the chip boundaries of the incoming and locally
generated PN sequences.

As UWB pulses are very narrow, very stringent synchroniza-
tion requirements are incurred, and timing errors usually imply
marked degradation of receiver performance [3]. Abundant
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research on the design and performance of synchronization
systems have been reported in the literature, e.g., [4]–[6].
These techniques can be transplanted into UWB systems with
some modifications to meet the stringent timing requirement,
as discussed in [7]–[10]. Different to them, in this paper, we
try to find some general performance limitations for UWB
synchronizers, and provide guidelines for the system design
within acceptable performance region.

It is known that in the presence of noise, perfect synchro-
nization cannot be achieved. For UWB systems with stringent
timing requirements, it is of special interest to characterize
this synchronization error and its influence on the performance
of detectors. This task becomes even more urgent when we
realize that the radiated power of UWB signals is so low
that the channel estimates could contain large errors and the
performance of synchronizers could be largely deteriorated.
Under these conditions, is it still possible for UWB synchro-
nizers to reach a satisfying accuracy of timing locking? Some
common performance parameters to evaluate synchronizers are
tracking time, S-curve behaviorand probability of success.
However, in order to provide benchmarks for actual UWB
synchronizers, we are more interested in understanding their
theoretical performance limits. In the theory of parameter
estimation, Craḿer-Rao Lower Bound (CRLB) is most widely
used in evaluating the performance of estimates.

The CRLB [11] is a fundamental lower bound on the
variance of any unbiased estimator. The analysis of CRLB
for traditional systems is well founded [5], [12]–[19], but for
UWB, there is no systematic work reported yet to our knowl-
edge. The evaluation of the CRLB is generally mathematically
quite difficult when the observed signal contains, besides the
parameter to be estimated, also some nuisance parameters that
are unknown [14], [19]. These nuisance parameters could be
the transmitted data and sometimes, multipath gains and delays
which arise in fading channels. When the nuisance parameters
are present, the modified CRLB (MCRB) [13]–[15], and the
asymptotic CRLB (ACRLB) [14], are good approximations
to the true CRLB at higher signal-to-noise ratio (SNR), and
the lower-SNR limit of the CRLB is approximated in [18] by
applying a Taylor Series expansion.

This paper is concerned with evaluating the CRLB for
UWB signals. Both single-pulse systems and time-hopping
systems are considered. For time-hopping, the CRLB should
be a lower bound for the performance of code tracking. The
structure of this paper is as follows. In Section II, the problem
is formulated. In Section III, considering AWGN channels,
the CRLBs for single-pulse systems are investigated in both
cases of known and unknown transmitted data. Some insights
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into the relationship between CRLBs for different Gaussian
monocycles are given explicitly. We also highlight an oversight
in the lower-SNR approximation method [18] and provide a
possible solution to remedy this problem by tightly locating
the range of SNRγs. These results can be readily extended to
a TH UWB system in AWGN channels with minor modifica-
tions. In Section IV, we extend this work to more practical
multipath channels while considering an unmodulated TH
system. Depending on the way multipath interference is treated
in a practical synchronizer, three scenarios are analyzed when
multipath interference contributes as an increase of noise
variance or multiple synchronization parameters. In Section
V, the influence of synchronization error on the performance
of receiver is quantified, which may be the least influence a
UWB correlator receiver can expect. Finally, numerical results
are given in Section VI to verify some analytical results and
illustrate the effect of pulse truncation on CRLBs.

II. PROBLEM FORMULATION

Binary pulse position modulation (BPPM) and binary phase
shift keying modulation (BPSK, or antipodal modulation) are
considered here. Lets(t) be the transmitted UWB signal. In
a single-pulse system,s(t) =

∑
i biω(t− iTs) for BPSK, and

s(t) =
∑

i ω(t − iTs − biTd) for BPPM, whereω(t) is a
UWB pulse, bi ∈ {−1, +1} is the ith transmitted data,Ts

is the symbol period, andTd is the time offset of BPPM.
In a unmodulated time-hopping system,s(t) =

∑
i si(t) =∑

i

∑Nf

j=1 ω(t − iTs − jTf − cjTc) where si(t) is the ith
transmitted symbol,Tf is the frame width,Nf is the number
of frames in a symbol,Tc is the chip width, andcj are the
time-hopping codes.

The UWB pulses considered are series of Gaussian monocy-
clesω(t; n, tp), which are scaled and/or differentiated versions
of the basic Gaussian waveformω0(t) = exp(−2πt2), that is,
ω(t; n, tp) = ω

(n)
0 (t/tp), where the superscript(n) stands for

n-order differentiation with respect tot, andtp parameterizes
the width of the pulse.

To ensure equal energy of monocycles, a coefficientε(n, tp)
is introduced, and letω(t) = ε(n, tp)ω(t; n, tp). Denote the
energy ofω(t) as Ep and symbol SNR asγs, then ε(n, tp),
depending onn and tp, satisfies

ε2(n, tp) =
Ep∫ +∞

−∞ ω2(t; n, tp)dt
. (1)

When passing through a pure AWGN channeln(t), the
received signalr(t) becomes

r(t) = s(t− τ) + n(t), (2)

where every sample ofn(t) is Gaussian distributed with zero
mean and varianceσ2

0 , and τ is the timing delay to be
estimated.

When passing through a frequency selective fading channel,
h(t) =

∑L
`=1 a`δ(t− τ`), the received signal is given by

r(t) =
L∑

`=1

a`s(t− τ`) + n(t), (3)

wherea` and τ` are real multipath gains and delays, respec-
tively. Note the time delayτ between transmitter and receiver
is merged intoτ`.

Due to the low duty cycle of UWB signals, we assume the
received signal is free of intersymbol interference (ISI) unless
indicated otherwise. For the effect of ISI and the design of
training sequence accordingly, the readers can refer to [20],
[21].

For the AWGN model in (2), for the purpose of forming
estimates based onK independent observations, the received
signal can be represented as a vector model

r = s(b, τ) + n, (4)

where r = [r1, · · · , rK ], s = [s1, · · · , sK ] and n =
[n1, · · · , nK ] are the sample vectors of the received signal
r(t), the transmitted signals(t − τ) and the noisen(t),
respectively, andb = {bi} are the transmitted data sequence.

Suppose an unbiased estimateτ̂ of the time delayτ can be
generated from (4), then the estimation error variance is lower
bounded by the CRLB Er[(τ̂ − τ)2] ≥ CRLB(τ), where

CRLB(τ) =
(

Er|τ
[− d2

dτ2
ln(p(r|τ))

])−1

. (5)

In (5), the conditional pdfp(r|τ) is the likelihood function of
τ , and the expectation Er|τ [·] is with respect top(r|τ).

The likelihood functionp(r|τ) can be obtained by averag-
ing the joint likelihood functionp(r|b, τ) over thea priori
distribution of the datab: p(r|τ) = Eb[p(r|b, τ)]. Whenb is
known, p(r|τ) = p(r|b, τ).

Since the additive noisen(t) is white and zero mean, the
joint conditional pdfp(r|b, τ) can be expressed as

p(r|b, τ) =
K∏

k=1

1√
2πσ0

exp(− 1
2σ2

0

(rk − sk)2)

= (
1√

2πσ0

)K exp(− 1
2σ2

0

K∑

k=1

(rk − sk)2). (6)

Applying the signal orthogonal expressions [6, p.335] or
letting the number of samplesK go to infinity [11, p.274]
(or from the standpoint of generating sufficient statistics), we
have

K∑

k=1

(rk − sk)2 =
∫

To

[r(t)− s(t− τ)]2dt, (7)

whereTo is the observation period.
Now, a continuous-time equivalent ofp(r|b, τ) can be

developed. Considering the subsequent operations of logarithm
and differentiation, only terms related tob and τ will be
retained. Then the evaluation ofp(r|b, τ) is equivalent to
evaluating the likelihood function

Λ(b, τ) = exp
( 1
2σ2

0

(2
∫

To

r(t)s(t− τ)dt−
∫

To

s2(t− τ)dt)
)
.

(8)

The process from (4) to (8) can be applied to the multipath
model (3) with minor modifications.
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III. CRLB FOR SINGLE-PULSE SYSTEMS INAWGN
CHANNELS

A. CRLB with Known Transmitted Data

The CRLB with known b, further derived from (8) or
directly from [15], has the form

CRLB(τ ;b) =
σ2

0∫
To

ṡ2(t− τ)dt
, (9)

whereṡ(t−τ) denotes first partial differentiation with respect
to τ .

Assuming that the pulse is strictly restricted within a symbol
period, andTo = NTs, whereN is the number of symbols
contained in the observation period (one pulse per symbol in
this case), then for both BPSK and BPPM, the denominator
in (9) equalsN

∫
Ts

ω̇2(t−τ)dt. For a specific monocycle, the
lower variance bound becomes

CRLB(τ ;b) =
1

Nγs

∫
Ts

ω2(t− τ ; n, tp)dt∫
Ts

ω̇2(t− τ ; n, tp)dt
, (10)

where the symbol SNR isγs = Ep/σ2
0 .

If the symbol periodTs is large enough so that most of the
energy of the pulse concentrates withinTs, we can express
(10) in frequency domain

CRLB(τ ;b) =
1

Nγs

∫ +∞
−∞ |W (f ; n, tp)|2df∫ +∞
−∞ f2|W (f ; n, tp)|2df

, (11)

whereW (f ;n, tp) is the Fourier Transform ofω(t;n, tp).
According to the properties of the Fourier Transform of

derivatives of functions, we find explicit relationships exist
between the CRLBs of monocycles with differentn but same
tp, that is,

CRLB(τ ;b)n

CRLB(τ ;b)n+1

=

∫ +∞
−∞ |W (f ;n, tp)|2df ·

∫ +∞
−∞ f4|W (f ; n, tp)|2df( ∫ +∞

−∞ f2|W (f ;n, tp)|2df
)2 (12)

> 1, (13)

where the inequality follows from an application of Schwarz’s
inequality. This inequality implies that monocycles with higher
order differentiation have the potential for better performance
in the sense of lower synchronization error variance.

For monocycles with differenttp but samen, the ratio
between their CRLBs can be found as

CRLB(τ ;b)tp1

CRLB(τ ;b)tp2

=
( tp1

tp2

)2

, (14)

which implies that monocycles with smallertp (narrower
effective pulse width) have the potential for better synchro-
nization performance.

B. CRLB with Unknown Randomly Transmitted Data

For PPM, the uncertainty of time jitter introduced by
modulation will cause large synchronization error when the
transmitted data is random and unknown. When further meth-
ods are adopted to solve this problem, the CRLB analysis in

these cases will usually be based on a system model similar
to the one with known data. Hence we only consider BPSK
UWB signals in this subsection.

For BPSK, the likelihood function in (8) becomes

Λ(b, τ) = exp
( N∑

i=1

1
σ2

0

(
biy(τ)− b2

i γs

))
, (15)

wherey(τ) =
∫

Ts
r(t)ω(t− τ)dt.

Dropping the constant termγs

∑N
i=1(b

2
i ) = Nγs, we obtain

the log-likelihood function ofp(r|τ) as

L(r; τ) = ln p(r|τ) = ln Eb

[
Λ(b, τ)

]

=
N∑

i=1

ln Ebi

[
exp(

1
σ2

0

biy(τ))
]

= N ln cosh(
1
σ2

0

y(τ)). (16)

By differentiatingL(r; τ) twice with respect toτ , we get

∂2L(r; τ)
∂τ2

=
N

σ2
0

tanh(
y(τ)
σ2

0

)ÿ(τ)+

N

σ4
0

(
1− tanh2(

y(τ)
σ2

0

)
)
ẏ2(τ), (17)

whereẏ(τ) andÿ(τ) denote first and second derivative ofy(τ)
with respect toτ .

Due to the nonlinear functiontanh(·) in (17), an analytical
solution for Er|τ [∂2L(r; τ)/∂τ2] is infeasible.

Since the pulse energy is restricted to be very low by the
FCC [2] (the maximum power of a transmitted pulse with
bandwidth7GHz is only0.5mW), one can refer to the lower-
SNR limit of CRLB in [18], applying a Taylor extension of
the likelihood functionp(r|b, τ), to obtain a similar result
for UWB. One thing we wish to emphasize here is, in [18],
the statistical property of the likelihood functionL(u, τ)
(original notation in [18]) is somewhat ignored. Due toL(u, τ)
containing Gaussian variables with variance comparable to the
reciprocal of symbol SNR, more care is needed when dropping
the higher order terms in Taylor extension according to the
lower symbol SNR assumption. A similar problem arises in an
alternative method we introduce below, where this ambiguity
is revealed further, and resolved by tightly locating the value
of the symbol SNR.

The alternative method we suggest is also based on approx-
imation. The basic idea is to find best-fitting functions for
ln(cosh(·)) in a piecewise fashion. To make analysis tractable,
these functions are polynomials with order smaller than3.
But they should not be constructed by only considering the
goodness of fit due to the succeeding expectation operation.
This is because,y(τ) is a random variable and when we
deal with the expectation operation, we have to make sure
that all the possible samples ofy(τ) are involved. Although
integrating these polynomials in segments is feasible, it can
not produce a closed form result and is still a numerical
method. Instead, we try to construct each polynomial in which
the variable space supports the sampling space. It seems
impossible as the pdf ofy(τ) distributes in the entire one-
dimension real space. We overcome this obstacle by assuring
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that most of samples (say, 99%) are located in the interval of
interest.

With this criterion in mind, we find a three-segments
approximation is a good choice by studying the shape of
the waveformln(cosh(x)). A detailed discussion is shown
in Appendix A. Examples of such three lower order (≤ 2)
polynomials are

ln(cosh(x)) ≈



0.3x2 + 0.14x− 0.018, |x| < 1.5
0.000034x2 + x− 0.69, 1.5 ≤ |x| ≤ 2.5
x− 0.69, |x| > 2.5.

(18)

The root mean squared approximation errors are0.0081,
0.0091, 0.0031 for the three pieces, respectively. The ranges
of corresponding SNRγs are [−∞,−6.25]dB, [10.3, 10.8]dB
and [10.8, +∞]dB, respectively, which can be determined
according to the way addressed in Appendix A.

Due to non-existence of a polynomial with goodness of fit
and a fully covered sampling space simultaneously, an appro-
priate interval corresponding to SNR range of(−6.25, 10.3)dB
can not be found.

Represent a general2-order polynomial function as
ln(cosh(x)) ≈ f(x) = ax2+b|x|+c |x=y(τ)/σ2

0
, |x| ∈ [x1, x2],

where0 ≤ x1 < x2, we derive the CRLB based on it below.
The reciprocal of the CRLB can be calculated as

−Er|τ [
∂2L(r; τ)

∂τ2
] = −N Er|τ [2axẍ + 2aẋ2 + bẍ], (19)

where we utilize

d2 |x|
d τ2

=
d2

d τ2
(
√

x2) =
d

d τ
ẋ = ẍ. (20)

As shown in Appendix B, these expectations are given by

Er|τ [ẋ2] =
1
σ2

0

∫

Ts

ω̇2(t− τ)dt, (21)

Er|τ [xẍ] = −γs + 1
σ2

0

∫

Ts

ω̇2(t− τ)dt, (22)

Er|τ [ẍ2] = − 1
σ2

0

∫

Ts

ω̇2(t− τ)dt. (23)

Then for a specific monocycleω(t;n, tp), the CRLB is

CRLB(τ) =
1

N(2aγs + b)γs

∫
Ts

ω2(t− τ ;n, tp)dt∫
Ts

ω̇2(t− τ ;n, tp)dt
. (24)

By substitutinga and b with the coefficients of polynomials
in (18), the CRLBs for differentγs are readily obtainable. It
is clear that the relationship between CRLBs for monocycles
with differentn or tp is identical to that when the transmitted
data is known.

By comparing (10) and (24), we find
CRLB(τ ;b)/CRLB(τ) = 2aγs + b. Referring to (18),
it is obvious that the CRLB with unknown data is always
larger than that with known data for the lower SNR case,
and converges to CRLB(τ ;b) in the higher SNR case, which
coincides with the attributes of ACRB given in [14].

IV. CRLB FOR TIME-HOPPINGUWB SYSTEMS IN

SELECTIVE-FADING CHANNELS

When the channel is AWGN, the analysis and results in
Section III can be applied to time-hopping UWB systems
with minor modifications. The change can be merged into the
symbol SNRγs, that is, γs equals to the ratio between the
energy ofNf pulses and the noise varianceσ2

0 for TH UWB
systems. In this section, we will focus on selective fading
channels.

Synchronization in selective fading channels is a challeng-
ing task. The performance largely depends on the schemes and
algorithms. Based on the way multipath signals are treated,
these systems can be divided into three categories. Accord-
ingly, we consider the CRLB for each of them. Since CRLB
with unknown data is straightforward but computationally
complex as derived in Section III, we only consider the case
of known datab here.

A. Passive methods: Regarding Multipath signals as Interfer-
ence

This refers to methods that apply general synchronizers,
such as early/late gates, while treating multipath signals as
interference [22], [23], or partly utilizing multipath energy
[24], or using a whitening filter before a synchronizer [25].
The effect of multipath interference on synchronizers has been
studied in [22], [23], [26]–[29]. From the viewpoint of CRLB,
all these methods can be generalized to a model in which
only a specific multipath is of interest. Mathematically, we
can represent this model as

r(t) = ams(t− τm) +
L∑

`=1,` 6=m

a`s(t− τ`)

︸ ︷︷ ︸
interference

+n(t), (25)

wheream andτm are the parameters to be estimated.
Generally, the received signalr(t) first passes through a

PN code correlatorsi(t− τ̂m), whereτ̂m is the pre-estimated
delay, so that the energy of all pulses in a symbol are collected
to make an estimation. Then the model in (25) can be further
written as

rf (τ̂m) = am

N∑

i=1

φ(τ̂m + iTs − τm)+

N∑

i=1

L∑

`=1,` 6=m

a`φ(τ̂m + iTs − τ`)

︸ ︷︷ ︸
na

+nf (τ̂m),

(26)

where

rf (τ̂m) =
N∑

i=1

∫

iTs

r(t)si(t− τ̂m)dt, (27)

φ(v) =
∫

iTs

s(t− v)si(t)dv, (28)

nf (τ̂m) = N

∫

iTs

n(t)si(t− τ̂m)dt. (29)
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Successful detection requires samplingrf (t) at τ̂m = iTs+τm

accurately.
Each sample ofnf (τ̂m) is Gaussian distributed with zero

mean and varianceσ2
nf

= NNfEpσ
2
0 . The componentna,

containing interchip interference and ISI, is hard to model and
evaluate without prior knowledge of TH codes and multipath
delay. To make the analysis mathematical tractable, here we
assumena is Gaussian distributed1 with mean mna and
varianceσ2

na
. In Appendix C, more information is given on

the parameters of this distribution.
Recall that when considering the CRLB for TH UWB

synchronizers in the phase of code tracking, it is reasonable to
assumeφ(t − τm)|t=τ̂m

is restricted in an interval[−Tφ, Tφ]
whereTφ is smaller than half of the frame period (Tφ < Tf/2),
then the sum ofφ(t− τm) for N symbols,

∑N
i=1 φ(t + iTs −

τm), equals toNφ(t− τm). Now, the estimation problem can
be reformed as

rf (t) = amNφ(t− τm) + na + nf (t), (30)

which is a problem of multiple parameters estimation in a
Gaussian interference.

Although am and τm are correlated via the mean power
profile of fading, they are usually treated as unknown and
deterministic parameters and nonrandom parameter estimation
techniques are applied, as the statistical relationship between
them are hardly predictable. This means they are not a function
of each other any more. Strictly speaking,τm is the only
synchronization parameter, and CRLB(τm) can be obtained
when regardingam as a nuisance parameter. However, it is
known that joint estimation ofτm andam usually gives lower
CRLB for τm than that in a separate-estimation case [11], [14],
[19]. Hence we will focus on joint estimation and generate
CRLB(am) as a byproduct.

Representing (30) as a vector formrf = amNΦ +na +nf

and applying the similar process from (6) to (8), the joint log-
likelihood functionL(rf ; am, τm) = ln p(rf ; am, τm) can be
obtained as

L(rf ; am, τm) = − N

2(σ2
na

+ σ2
nf

)

∫

2Tφ

(
Na2

mφ2(t− τm)

− 2amrf (t)φ(t− τm) + 2mnaamφ(t− τm)
)
dt. (31)

Lower bounds on the variances of estimates for the compo-
nents ofam andτm are given in terms of the diagonal elements
of the inverse of the Fisher information matrixJ−1 [11]. In
this example, the elements ofJ equal

J =

(
−E[∂2L(rf ;am,τm)

∂a2
m

] −E[∂2L(rf ;am,τm)
∂am∂τm

]

−E[∂2L(rf ;am,τm)
∂am∂τm

] −E[∂2L(rf ;am,τm)
∂τ2

m
]

)
, (32)

where the expectation E[·] is with respect top(rf ; am, τm).
Note φ(t − τm) and am are mutually independent, the

1In [11, p309], a general equation is provided for the CRLB of any unbiased
estimate in colored noise. But a closed form solution is not readily available.

elements ofJ can be calculated as

J11 = C

∫

2Tφ

φ2(t− τm)dt, (33)

J12 = J21 = Cam

∫

2Tφ

φ(t− τm)φ̇(t− τm)dt, (34)

J22 = Ca2
m

∫

2Tφ

φ̇2(t− τm)dt, (35)

whereC is a constant defined asC , N2/(σ2
na

+ σ2
nf

).
The cross termsJ12 and J21 will vanish if we extend the

observation periodTφ till φ(Tφ) ≈ 0. Then the CRLBs forτm

andam are

CRLB(τm) = 1/J22 =
(
Ca2

m

∫

2Tφ

φ̇2(t− τm)dt
)−1

, (36)

CRLB(am) = 1/J11 =
(
C

∫

2Tφ

φ2(t− τm)dt
)−1

. (37)

It is clear that the estimation of time delayτm depends on
the amplitude of the multipath given thatC is the same
for all multipath signals, while the estimation ofam could
be independent ofτm supposing we extend the observation
period appropriately. For the performance of synchronizer,
the multipath interference contributes as an increased estimate
variance2.

Depending on the Gaussian approximation for the multipath
interferencena, C may be related to a specific monocycle,
hence the relationship between CRLB for different monocycles
can not be claimed directly.

Finally, we wish to say a little more on the relationship
between our model in this section and practical systems. In the
literature on synchronizers for spread spectrum systems such
as CDMA, we can always find the terms offading bandwidth,
tracking loop bandwidthand predetection bandwidthand
discussions on how the relationship between them affecting
the performance of synchronizers in a multipath channel (e.g.
[26]–[28]). Briefly, the relationship between these bandwidths
determines the degree of multipath interference entering the
final decision part of the synchronizer. Considering our model,
the effect can be regarded as a reduction of noise varianceσ2

na
.

B. Positive Joint-Detection of Multipath Signals

We refer to the method of jointly detecting fading amplitude
and delay of all the multipath signals as a positive one.
For CDMA, this method has been well studied in literature
such as [16], [17], [25]. And the derivation of CRLB for
CDMA systems can been found in [16], [17], [30]. Here,
following the process in Section III, we study the CRLB
using joint detection for a UWB system where the parameters
a = [a1, . . . , a`, . . . , aL]1×L andτ = [τ1, . . . , τ`, . . . , τL]1×L

to be estimated, are treated as unknown but deterministic.

2The multipath interference also very much likely cause a biased estimation
according to [27].
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Beginning with (3), similar to the derivation from (4) to (8),
we can obtain the log-likelihood functionL(r; τ ,a) as

L(r; τ ,a) =
1
σ2

0

∫

To

r(t)
∑

`

a`s(t− τ`)dt−

1
2σ2

0

∫

To

[
∑

`

a`s(t− τ`)]2dt. (38)

After some manipulation, the Fisher Information MatrixJ
has the structure

J =
(

Jττ Jτa

Jaτ Jaa

)
, (39)

where Jττ , Jτa, Jaτ and Jaa are all L × L matrices with
[`,m]th elements

Jττ [`,m] =
1
σ2

0

∫

To

a`amṡ(t− τ`)ṡ(t− τm)dt, (40)

Jaa[`,m] =
1
σ2

0

∫

To

s(t− τ`)s(t− τm)dt, (41)

Jτa[`,m] = Jaτ [m, `] = − 1
σ2

0

∫

To

a`ṡ(t− τ`)s(t− τm)dt,

(42)

respectively.
The CRLB for τm is just themth diagonal element of the

inverse ofJ. Usem = 1 as an example and rewrite the matrix
J as

J =
(

J11 B
C D

)
, (43)

we have

CRLB(τ1) = J−1
11 + J−1

11 B(D−CJ−1
11 B)−1CJ−1

11 (44)

= J−1
11 + J−2

11 BJ̃11

−1
C (45)

≥ J−1
11 (46)

whereJ̃11 is called theSchur complementof J11 [31, p.175].
SinceJ is nonnegative definite, the Schur complement matrix

J̃11 is also nonnegative definite, so is̃J11

−1
. At the same

time, B is the transpose ofC sinceJ is a symmetric matrix
in this case. Thus we getBJ̃11C ≥ 0 and the inequality in
(46) follows immediately. WheneverJ11 > 0, we can get the
inequality in (46) more readily according to

CRLB(τ1) = (J11 −BD−1C)−1 > J−1
11 . (47)

As J−1
11 can be regarded as the CRLB in an AWGN channel

with a known scalar of amplitude, this inequality implies the
CRLB in joint detection is always larger than that in the single
parameter estimation in an AWGN channel. Then an inter-
esting question arises, whether more multipath means higher
CRLB and inferior performance of synchronizer accordingly?

Let us consider a channel withL−1 multipath signals. The
Fisher Information MatrixJ′ can be written as

J′ =
(

J11 B
C D′

)
, (48)

with

D′ =
(

D1 0
0† 0

)
, (49)

where0 is a (L−2)×1 zero vector and† stands for transpose
operation. Then the CRLB withL− 1 multipath is

CRLB(τ1)L−1 = (J11 −BD′−1C)−1. (50)

ComparingBD−1C andBD′−1C gives

BD−1C−BD′−1C = B
(
D−1 −

(
D1

−1 0
0† 0

) )
C (51)

≥ 0, (52)

where the inequality in (52) yields from thatD−1 −D′−1 is
a nonnegative definite matrix as can be proven according to
the property of partitioned nonnegative definite matrices (e.g.,
see [31, p178] and letD−1 = A in equation (6.10)).

SinceJ11 > 0, we have

CRLB(τ1)L > CRLB(τ1)L−1, (53)

which shows that more multipath does lead to higher CRLB
and inferior performance of synchronizer. Since the number of
multipath is closely relevant to the bandwidth of monocycles,
we conclude that narrower monocycles will very likely cause
larger CRLBs. We did not say “absolutely” because all other
variables besidesD during this derivation are assumed un-
changed, but it could be unrealistic when different monocycles
are applied.

Another key factor with influence on CRLB is the choice
of TH codes. When the autocorrelation of TH codes is ideal,
both the CRLBs in this subsection and last subsection will be
the same and similar to the one in an AWGN channel.

C. Active methods: Cancellation of interference?

From the last two subsections, we have seen that the
performance of synchronizers is deteriorated by the multipath
interference. It is natural to ask whether the multipath inter-
ference can be mitigated or fully eliminated before entering
the decision part of a synchronizer?

As shown for CDMA systems in [27], it is possible to
remove part of multipath interference in UWB systems. How-
ever, unless the correlation of TH codes is ideal, the total
removal of multipath interference is impossible due to the
existence ofn(t). This is because, from Section IV-B, we
see that any estimate of parameters, including amplitude and
delay, even though unbiased, may still have a nonzero variance
in the present of noise. The CRLB can generally be achieved
by Maximum Likelihood estimation asymptotically (when the
number of observation samples goes to infinity), and the
estimation error becomes Gaussian distributed with zero mean
and variance equivalent to the CRLB [5], [11]. Therefore,
the final signal with a pair of synchronization parameters of
interest contains the sum of2(L−1) Gaussian variables, which
has a variance larger than the variance ofn(t). Since CRLB
is proportional to the variance of (interference and) noise,
the CRLBs for this pair of parameters will be larger than
those in a single path channel. So no matter how perfect the
structure and algorithm to remove multipath signal are, the
effect of multipath interference can only be mitigated but can
not be cancelled thoroughly. This result also partly explains
why more multipath generally leads to higher CRLBs.
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However, there are some special cases when multipath inter-
ference becomes negligible. For example, when the maximal
multipath delay is smaller than the frame period in a single
pulse system, multipath signals do not interfere with each other
due to the low duty cycle of UWB signal structure.

V. I NFLUENCE OFSYNCHRONIZATION ERROR ONBER

As every estimate of time delay could not be perfect, we
use an example to show the influence of synchronization error
on the performance of receivers in UWB systems.

We consider a BPSK modulated single-pulse signal in an
AWGN channel like that in Section III. A correlator receiver
[32], [33] is used to detect the signal.

The conditional bit-error-ratio (BER), depending on the
synchronization erroreτ , is given by

Pe(eτ ) = Q
( ρ(eτ )√

Epσ0

)
, (54)

where we have assumed that the observation period
equals a symbol period such thatN = 1, Q(x) ,∫ +∞

x
exp(−t2/2)/

√
2πdt andρ(eτ ) =

∫
Ts

ω(t)ω(t− eτ )dt.
Recall that the best theoretically achievableeτ is Gaus-

sian distributed with zero mean and variance equivalent
to the CRLB (denoted byσ2

c ). In the best case,σ2
c =

σ2
0/(N

∫
Ts

ω̇2(t − τ)dt) from (9) is the smallest. Averaging
Pe(eτ ) over eτ , we get the mean BER

Pe = E[Pe(eτ )]

=
∫ +∞

−∞

1√
2πσc

Q
(√

ρ2(eτ )
Epσ2

0

)
exp

(−e2
τ

2σ2
c

)
deτ . (55)

Statistically, this is the best achievable performance under
certain SNR. This equation can be evaluated numerically
by Monte Carlo simulation which requires high computa-
tional complexity. Alternatively, we invoke the Hermite-Gauss
quadrature [34], andPe can be accurately approximated by

Pe ' 1√
π

Nh∑
n=1

HxnQ
(ρ(

√
2σcxn)√
Epσ0

)
, (56)

where Nh is the order of the Hermite polynomialHNh
(·),

xn and Hxn are the zeros (abscissas) and weight factors of
Nh-order Hermite polynomial, respectively. These values are
tabulated in many mathematical handbooks (e.g., [35]). In
experiments, we find16 coefficients (Nh = 16) are enough
to generate accurate approximation results.

Further define a variableη as thedegrading ratiobetween
Pe and Pe(0) = Q(

√
γs), which is the BER in the case of

perfect synchronization. We show the values ofη for different
monocycles in Section VI to compare the synchronization
error robustness of monocycles.

VI. N UMERICAL RESULTS

Since for multipath channels, the CRLBs depend on the
time-hopping codes and detailed fading channel models, we
only show numerical results on the CRLBs in pure AWGN
channels in this paper.

In Fig. 1 - Fig. 3, the CRLBs for different monocycles in
the case of known datab are demonstrated. Since in practice,
a transmitted monocycle is usually the truncated portion of a
whole pulsew(t; n, tp), this effect of truncation is considered
by varying the actual width of pulse in (10).

From Fig. 1, we can see CRLBs are inversely proportional
to symbol SNR and the observation periodNTs. The relation-
ship between CRLBs for monocycles with different ordern
coincides with the analytical results in (13). This can be further
observed in Fig. 2, which also depicts the effect of truncated
pulses on CRLB. The CRLBs change little even when the
truncated portion narrows to1.6tp (symmetric with respect to
t = 0). However, with the width of truncated pulse decreasing
further, the CRLBs become orderless. Fig. 3 shows the effect
of tp on the CRLBs, and is a direct verification of (14).

Fig. 4 demonstrates the influence of synchronization error
on the performance of receivers. It is plotted from (56) using
Hermite Gaussian approximation. The influence is notable
when the observation window in the stage of synchronization
has small width (NTs), and weakens withN increasing
(CRLBs decreasing). The figure also indicates that synchro-
nization errors of different monocycles have very close in-
fluence on BER, although the data in experiments shows the
influence of monocycles with largern is a little worse when
SNR γs is small, and changes toward opposite with SNR
increasing.

VII. C ONCLUSIONS

We have derived the Craḿer-Rao lower bounds (CRLBs)
for the synchronization of UWB signals for both single pulse
systems and time-hopping systems in AWGN and multipath
channels. Insights are given on the relationship between
CRLBs for different Gaussian monocycles. The CRLBs in
AWGN channels are discussed in both cases of known and
unknown transmitted data. An approximation method of the
CRLB is introduced when nuisance parameters, unknown
transmitted data, exist. An oversight in the lower-SNR approx-
imation method [18] is highlighted, and a possible solution
is provided by tightly locating the range of SNRγs. The
CRLBs in multipath channels are studied for three scenarios
depending on the way multipath interference treated in a prac-
tical synchronizer, where multipath interference contributes
as an increase of noise variance or multiple synchronization
parameters. It is found that larger number of multipath implies
higher CRLBs and inferior performance of synchronizers,
and multipath interference on CRLBs can not be eliminated
completely except in very limited cases. The least influence
of synchronization error on the performance of receivers is
quantified. The influence is notable when observation window
(NTs) in the stage of synchronization is small, and weak-
ens withN increasing (CRLBs decreasing). Synchronization
errors of different monocycles have very close influence on
BER.
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APPENDIX A: A PPROXIMATION OF ln(cosh(y(τ)/σ2
0))

Here we show how to approximateln(cosh(y(τ)/σ2
0)) as

low order polynomials in a piecewise fashion and determine
the corresponding range of symbol SNRγs.

From y(τ) =
∫

Ts
r(t)ω(t − τ)dt, y(τ) has Gaussian

distribution N (E1, γsσ
4
0), where |E1| = Ep in the case

of perfect synchronization, otherwise|E1| < Ep. As the
estimate is usually clustered tightly around the true value in
our case, andE1 changes smoothly for UWB monocycles,
we assume|E1| ≈ Ep (This can also be obtained from the
assumption of unbiased estimation ofτ ). Theny(τ)/σ2

0 is also
Gaussian distributedN (γs, γs) or N (−γs, γs). For Gaussian
distribution, we know that when the distance between a sample
and the mean is larger than about2.6

√
variance, the probability

of appearance can be assumed to be zero. Let the interval of
interest be[x1 ≤ y(τ)/σ2

0 ≤ x2], to ensure most of samples
be in this interval,γs should satisfy the following equations




−2.6
√

γs + γs ≥ |x1|
2.6
√

γs + γs ≤ |x2|
|x1|+ 5.2

√
γs ≤ |x2|.

(A-1)

Briefly, two guidelines for determining interval[x1, x2] are:
1. to ensure this variable space be larger than the sampling
space for a specific polynomial and SNRγs, and cover the
range ofγs as widely as possible; 2. Although two intervals
can overlap, each interval should be fully covered by a single
polynomial.

Considering the waveform ofln(cosh(x)), from x = 0 to a
samll x2, it has a very different shape with other segments
and has to be approximated separately by a polynomial.
This implies there is only one interval covering the segment
containing the point zero. For this interval, onlyx2 need
be determined sinceln cosh(·) is an even function, and the
distributionsN (γs, γs) andN (−γs, γs) are symmetric with
respect to0. For the same reason, it is enough to consider the
positive value ofx1 andx2 for other segments hereafter. Note
γs should be at least6.76 for x1 > 0, this impliesx2 > 13.52.

A well known fact is thatln(cosh(x)) can be accurately
approximated byx2/2 when |x| ¿ 1, and by |x| − 0.69
when |x| À 1. But this simple scheme is not good enough
to be realistic. For example, for a valuex2 as large as0.5, the
approximation error is already0.005, while the corresponding
maximum SNRγs is only 0.0324 = −15dB which is of little
interest in practice.

Summarize the description above, we find a three-segments
approximation is a good choice. Although the construction of
these approximations is not unique, they can be represented
as a general2-order polynomial functionf(x), which leads to
a general CRLB expression as shown in (24).

APPENDIX B: DERIVATION OF Er|τ [·]
First we derive the autocorrelation ofr(t) which will be

used in subsequent calculation.

Er|τ [r(t1)r(t2)]
= Er|τ [(s(t1 − τ) + n(t1))(s(t2 − τ) + n(t2))]

= Er|τ [s(t1 − τ)s(t2 − τ)] + σ2
0δ(t1 − t2), (B-1)

where in the last equality, we utilize the assumption that signal
and noise are mutually independent andn(t) is AWGN with
zero mean and covarianceσ2

0δ(t1 − t2). Note the expectation
with respect top(r|τ) is equivalent to average over the datab
and noisen(t). Recall that the convolution betweenr(t) and
ω(t) in y(τ) is only within one symbol periodTs, in the case
of ISI-free, we have

Er|τ [s(t1 − τ)s(t2 − τ)] = ω(t1 − τ)ω(t2 − τ), (B-2)

and

Er|τ [r(t1)r(t2)] = σ2
0δ(t1 − t2) + ω(t1 − τ)ω(t2 − τ).

(B-3)

Then expectations ony(τ) can be calculated as

Er|τ [y(τ)ÿ(τ)]

=
∫

Ts

∫

Ts

Er|τ [r(t1)r(t2)]ω(t1 − τ)ω̈(t2 − τ)dt1dt2

= [
∫

Ts

ω2(t)dt + σ2
0 ] ·

∫

Ts

ω(t− τ)ω̈(t− τ)dt

= (γs + 1)σ2
0

∫

Ts

ω(t− τ)ω̈(t− τ)dt, (B-4)

Er|τ [ÿ(τ)]

=
∫

Ts

Er|τ [r(t)]ω̈(t− τ)dt

=
∫

Ts

ω(t− τ)ω̈(t− τ)dt, (B-5)

and

Er|τ [ẏ2(τ)]

=
∫

Ts

∫

Ts

Er|τ [r(t1)r(t2)]ω̈(t1 − τ)ω̇(t2 − τ)dt1dt2

= σ2
0

∫

Ts

ω̇2(t− τ)dt + [
∫

Ts

ω(t− τ)ω̇(t− τ)dt]2. (B-6)

Assume that the energy of a pulse outsideTs is negligible,
these results can be further simplified due to

∫

Ts

ω(t− τ)ω̇(t− τ)dt = 0 (B-7)

and
∫

Ts

ω(t− τ)ω̈(t− τ)dt

= −
∫

Ts

ω(t− τ)d(ω̇(t− τ))

= −ω(t− τ)ω̇(t− τ)|Ts︸ ︷︷ ︸
=0

−
∫

Ts

ω̇2(t− τ)dt

= −
∫

Ts

ω̇2(t− τ)dt. (B-8)

According to the linear relationship betweenx andy(τ), the
expectations in terms ofx are straightforward.
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APPENDIX C: GAUSSIAN APPROXIMATION OF MULTIPATH

INTERFERENCE

The key assumption we make is, for each multipath with
index ` 6̀=m, φ(t)t 6=0 is identically independently distributed
with meanmφ and varianceσ2

φ. As the number of multipath
L in a dense UWB channel is very large, we invoke the
Central Limit Theoremso that every sample variable ofna(t)
is Gaussian distributed with

mean mna
=

∑L
`=1,` 6=m a`mφ

variance σ2
na

=
∑L

`=1,` 6=m a2
`σ

2
φ.

(C-1)

The distribution ofφ(t)t 6=0 and the values ofmφ andσ2
φ can

be determined according to a general model describing each
sample and probability in detail or some specifically chosen
TH codes and multipath delays.
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Fig. 1. CRLB versus symbol SNRγs for n-order monocycles withtp = 2ns,
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