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ABSTRACT
Previous results have shown significant capacity gains by
employing multiple antennas at both transmitter and receiver,
however, due to physical size restraints (particularly at the
receiver) these may not be obtained. In this paper we con-
sider the capacity behaviour of multi-antenna systems when
the receiver sampling is constrained to a finite region of
space. By characterizing the wavefield generated at the re-
ceiver due to transmitted signals and the scattering environ-
ment, a theoretically derived sampling threshold is shown
to exist, at which the capacity growth is reduced from linear
to logarithmic with increasing number of sampling outputs.
Furthermore, this threshold is shown to be linearly depen-
dent on the receiver region radius within which the sampling
is constrained, and is independent of the sampling character-
istics such as the antenna properties, array geometry, and/or
array signal processing.

1. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) communications
systems using multi-antenna arrays simultaneously during
transmission and reception have generated significant in-
terest in recent years. Theoretical work of [1] showed the
potential for significant capacity increases in wireless chan-
nels via spatial multiplexing with sparse arrays. However,
in reality the capacity is significantly reduced when the an-
tennas are constrained to within finite regions as the signals
received by different antennas become correlated [2]. Pre-
vious studies have given insights into asymptotic capacity
(w.r.t. the number of antennas) of fixed length linear ar-
rays [3,4], and arrays within fixed volumes [5], however, of
significant interest is the limits to capacity for finite num-
bers of antennas in spatially constrained arrays.
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In [6] it was shown that there is a saturation point for a
spatially constrained circular array of fixed radius, at which
there is no further increase in capacity with increasing num-
ber of antennas. In this paper we extend this result to arbi-
trary sampling of a fixed radius aperture and demonstrate a
saturation point which is independent of the method of sam-
pling (directional antennas, coupled or uncoupled antenna
arrays, multimode antennas, etc).

We approach the MIMO capacity from a physical wave-
field perspective. By using the underlying physics of free-
space wave propagation we explore fundamental spatial sam-
pling limits imposed by the basic laws governing wavefield
behavior. In particular, using a modal expansion for free-
space wave propagation we show that there exists a thresh-
old in sampling, which depends on the radius of the aper-
ture being sampled, at which the capacity scaling is reduced
from linear to logarithmic. This result is shown to be inde-
pendent of the sampling method and provides a threshold
for future MIMO system designs.

2. WAVEFIELD SAMPLING

In a narrowband MIMO system with no polarization diver-
sity the signals arriving at the receiver generate a multipath
field (scalar wavefield), which is sampled in space using an
antenna array. Consider a 2D receiver where the incoming
signals from direction ψ are given by the complex valued
density g(ψ) ∈ L2(S1). Let r ∈ R

2 with r = (r, θ) then
a Hilbert space H of wavefields f(r) satisfying the source-
free Helmholtz equation

∇2f(r) + k2f(r) = 0, (1)

where k = 2π/λ is the wavenumber, can be written as

f(r) =
∞∑

n=−∞
〈f, φn〉Hφn, (2)
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where {φn ≡ φn(r)} is a complete and orthogonal basis set
in H, with the natural inner product

〈f1, f2〉H =
∫

R2
f1(r)f2(r)dr. (3)

Consider a device which samples the wavefield f and
returns Q outputs y = [y1, y2, · · · , yQ]′, given by

y = Af, (4)

where A is a sampling operator, which describes the sam-
pling of the wavefield f(r). Let αn = 〈f, φn〉H and as-
suming the sampling operator is linear, the output can be
expressed as

y = Af (5a)

=
∑

n

αnAφn (5b)

= Aα (5c)

where A is defined as the sampling matrix with columns
given by vectors an � Aφn, which represents the output
of the sampler due to the field φn(r). The vector α corre-
sponds to the coefficients of the wavefield expansion (2).

Note that the outputs of the sampler are now separated
into the product of the independent properties of the spa-
tial sampling matrix, A, and that of the coefficients of the
wavefield, αn. It is important to note that the sampling ma-
trix is general and independent of the field, and can describe
the sampling via a number of means. For example, an ar-
ray of Q uncoupled omnidirectional antennas located at po-
sitions rq gives Apq = φp(rq). Other examples include
multi-mode antennas which allow for the excitation of sev-
eral modes of the same frequency on a single antenna, of-
fering the diversity characteristics similar to those of an an-
tenna array [7, 8]. In this paper we focus on the outputs of
such devices rather than the properties of each implementa-
tion, this leads to results which are independent of sampling
characteristics such as the antenna properties, array geome-
try, and/or array signal processing.

3. CONVERGENCE OF ERGODIC CAPACITY

Consider a narrowband MIMO system with transmit and re-
ceive devices consisting of S inputs and Q outputs, let the
transmitted signals be statistically independent equal power
components each with a Gaussian distribution, then the er-
godic mutual information of the system is given by [1],

Ĩ = E
{

log2

∣∣∣IQ +
η

S
HH†

∣∣∣} bits/s/Hz, (6)

where H is the normalized Q×S random flat fading chan-
nel matrix describing the gains from the S inputs to the Q
outputs and assumed known at the receiver, η is the average

signal-to-noise ratio (SNR) at each output , IQ is the Q×Q
identity matrix, | · | is the determinant operator, and † the
Hermitian operator.

Assuming a large number of uncorrelated inputs the er-
godic mutual information converges to the deterministic quan-
tity I [6, 9],

lim
S→∞

Ĩ = I � log |IQ + ηRQ| , (7)

where RQ is the Q × Q receiver correlation matrix. This
mutual information expression will be accurate for many
practical wireless scenarios, where the receiver is often size
limited, whilst the base station is less restricted in geometri-
cal size and is able to provide a sufficient number of uncor-
related transmit branches [9].

For a given received wavefield sampler A the receiver
correlation matrix can be written as

RQ = E
{
yy†} (8a)

= E
{

Aαα†A†
}

(8b)

= AE
{
αα†} A† (8c)

= AΓA†, (8d)

where Γ = E
{
αα†} is the covariance matrix of the wave-

field coefficients αn. The receiver output correlation matrix
decomposition (8d) separates the correlation into two dis-
tinct parts: the field coefficient correlation matrix Γ giving
the statistics of the wavefield, and the deterministic sam-
pling matrix A which describes how the wavefield is sam-
pled and is independent of the field.

Assuming we can sample the field such that all Q out-
puts are uncorrelated then RQ = IQ, giving

Imax = Q log(1 + η), (9)

therefore, in the idealistic situation of zero correlation at
both transmitter and receiver we see the maximum capac-
ity scaling is linear in the number of receiver outputs. In
this case, the system achieves the equivalent of Q indepen-
dent nonfading subchannels, each with SNR η. This re-
sult agrees with the traditional capacity formulation [10]
which is widely used to advocate the use of MIMO sys-
tems. However, as shown in the follow sections, if the re-
gion over which we can sample (the sampling aperture) is
constrained to a finite region of space then once the number
of outputs reaches a threshold the scaling is reduced to log-
arithmic growth. This logarithmic growth is due to an effec-
tive increase in the average SNR, caused by the assumption
of independent noise at each output, and is widely known as
a receiver diversity array gain effect.

4. CHANNEL MODEL

Consider the 2D scattering environment shown in Fig. 1,
where the receiver is constrained to sampling within a aper-
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ture of radius R, i.e., r ∈ B
2
R. Let gs(ψ) represent the effec-

tive random complex gain of the scatterers for a transmitted
signal xs arriving at the receiver region from direction ψ
via any number paths through the scattering environment.
The receiver region B

2
R is contained within a scatterer free

region whose radius RS is assumed large enough such that
any scatterers are farfield to all points within B

2
R.

Since the scatterers are assumed farfield, the wavefield
within the aperture can be written as a linear combination
of planewaves,

f(r) =
∫

S1
g(ψ)e−ikr cos(θ−ψ)dψ, (10)

where g(ψ) =
∑

s xsgs(ψ) represents the total signal from
direction ψ at the receiver. Consider the 2D Jacobi-Anger
modal expansion of plane waves [11],

e−ikr cos(θ−ψ) =
∞∑

n=−∞
Jn(kr)ein(θ−π/2)e−inψ, (11)

then the wavefield (10) can be written in the general form
of (2) with

φn(r) = Jn(kr)ein(θ−π/2), (12)

αn =
∫

S1
g(ψ)e−inψdψ, (13)

with Bessel functions of the first kind Jn(·).
The elements of the covariance matrix Γ of the wave-

field coefficients can now be expressed as

γn,n′ = E {αn, αn′} (14a)

=
∫∫

E
{

g(ψ)g(ψ′)
}

e−inψein′ψ′
dψdψ′ (14b)

=
∫

G(ψ)e−i(n−n′)ψdψ (14c)

assuming a zero-mean uncorrelated scattering environment
where G(ψ) = E

{|g(ψ)2|} is the average power density
of the scatterers, normalized such that

∫
S1 G(ψ)dψ = 1.

5. SATURATION OF CAPACITY SCALING

To isolate the effects of spatially constraining the array from
those of the scattering environment we assume the scatter-
ers have uniform power spectral density G(ψ) = 1/2π,
generating an isotropic diffuse field (often referred to as a
rich scattering environment) corresponding to independent
modes γn,n′ , giving modal correlation matrix Γ = I . The
mutual information (7) is then given by

I = log
∣∣∣IQ + ηAA†

∣∣∣ , (15)

which is a function of SNR η and the properties of the sam-
pling matrix A only.
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Fig. 1. Two dimensional scattering model for a flat fading
MIMO system.

Theorem 1 (sampling saturation point). For an aperture
of radius R define

Qsat � 2�πeR/λ� + 1, (16)

as the aperture sampling threshold, then for Q ≥ Qsat the
mutual information for optimal sampling is well approxi-
mated by

Isat 	 Qsat log(1 + Q
η

Qsat
). (17)

Before giving a proof of Theorem 1 we give the follow-
ing interpretation:

For a MIMO system within a 2D isotropic diffuse field
there exists a saturation point in the number of outputs,
which is dependent only on the radius of the sampling aper-
ture, after which further sampling gives only logarithmic
mutual information gain.

Proof (sketch). Let µm, m = {0, 1, . . . , Q − 1} denote the
singular values of the aperture sampling matrix A, ordered
such that µm ≥ µm+1, then we can express the mutual in-
formation (7) as

I =
Q−1∑
m=0

log
(
1 + ηµ2

m

)
. (18)

Consider two independent sampling matrices A1 and A2 op-
erating on an aperture of radius R, giving Q1 and Q2 out-
puts respectively. Denoting {µm,Q1} and {µm,Q2} as the
set of singular values of the aperture sampling matrix for
each aperture, and observing that∑

m

µ2
m = trace(AA†) = Q, (19)
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then

1
Q1

Q1−1∑
m=0

µ2
m,Q1

=
1

Q2

Q2−1∑
m=0

µ2
m,Q2

. (20)

Bessel functions Jn(z), |n| > 0 exhibit spatially high
pass behavior, that is, for fixed order n, Jn(z) starts small
and becomes significant for arguments z ≈ O(n). There-
fore, for a fixed argument z, the Bessel function Jn(z) ≈ 0
for all but a finite set of low order n ≤ N . In [12] it was
shown that Jn(z) ≈ 0 for n > �ze/2�, with �·� the ceiling
operator, therefore, assuming a null response of the sam-
pling device from the zero wavefield, e.g., an = 0, n >
N � �πeR/λ�, then

rank(A) = min{2N + 1, Q}. (21)

Let Q1, Q2 ≥ 2N + 1, and assuming we can optimally
sample the aperture such that rank(A) = 2N+1 outputs are
uncorrelated, giving constant and equal non-zero singular
values, then,

µ2
m,Q1

Q1
=

µ2
m,Q2

Q2
, m ∈ [0, 2N ]. (22)

Therefore, letting Q1 = Qsat � 2N + 1, and Q2 = Q ≥
Qsat, we have µ2

m,Qsat
= 1,∀m and (18) becomes

Isat = Qsat log
(

1 + Q
η

Qsat

)
, Q ≥ Qsat, (23)

which scales logarithmically with Q, hence the maximum
capacity growth is reduced from linear to logarithmic once
the number of outputs reaches the saturation point Qsat =
2N+1, which scales linearly with the radius of the aperture.

Fig. 2 shows the mutual information Imax for an increas-
ing number of outputs for the optimal sampler with SNR
10dB and sampling aperture radius R = 0.5λ, giving Qsat =
2�πe0.5� + 1 = 11. For comparison the capacity of a uni-
form linear array (ULA) of fixed length 2R, and a uniform
circular array (UCA) of fixed radius R are also shown (e.g.
arrays constrained within the fixed region of radius R). As
expected from [6] the UCA also saturates around Qsat, how-
ever, due the array symmetry of the ULA, it saturates much
earlier than optimal sampling due to a much lower sampling
matrix rank.
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