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Abstract— In this paper, we demonstrate that the performance
of a direction of arrival (DOA) estimator is fundamentally limited
by the size of the region over which we measure a wavefield.
That is, even assuming continuous field measurements across
the region, we still cannot achieve perfect performance. We
use an approach based on modal decomposition of a spatially
truncated field, and completely independent of sensor geometry,
to derive the Cramér-Rao Bound (CRB) for spatially-limited
DOA estimators. The model is validated by comparison with
results from a uniform circular array (UCA) as the number of
sensors goes to infinity. Simulations of the spatial CRB show how
DOA performance improves as the measurement region expands.
Simulations of the bound also indicate thatP sources can only
be effectively resolved once a certain threshold region size is
reached.

Index Terms— Direction of arrival estimation, spatial limits on
resolution, sensor array processing.

I. I NTRODUCTION

Direction of arrival (DOA) estimation is an important
problem in signal processing with direct applications in
radar, imaging, and wireless communications. Conventional
approaches to examining the performance limitations of DOA
estimators have focussed on deriving resolution bounds based
on sensor array geometry (size, shape and number of sensors).

In [1], the Craḿer-Rao Bound (CRB) is derived for an
array with arbitrary known geometry in white noise. The CRB
lower bounds the covariance of any unbiased DOA estimator.
This result has since been extended to a variety of other,
more complicated, noise models [2], [3]. The weakness of
this approach is that, due to the focus on the geometry of
the sensor array, it is difficult to investigate more fundamental
limitations on DOA performance.

In this paper, we disregard array geometry and show that
DOA performance is fundamentally limited by the spatial
extent of the array - in effect the size of the region in which we
have knowledge of a wavefield. That is, even if the noisy field
could be measured continuously over the region, there would
still a limit to the DOA resolution that could be achieved.

Some limited work has been done in the area of spatial
limits for DOA by Birkenes [4], [5]. These studies used
a uniform circular array (UCA) with a fixed number of
sensors, and examined the effect of changing array radius on
DOA resolution. Whilst the study identifies the important role
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of spatial extent on DOA performance, the results are still
affected by array geometry and inter-sensor spacing.

Our approach is based on a modal decomposition of the
field. All of the information in a spatially limited field can
be expressed using an infinite set of modal coefficients. We
show that additive white field noise causes a variance in these
coefficients which increases rapidly with order, and limits the
information we can extract from the truncated field. Using
this model, we derive a CRB which is dependent only on the
spatial extent of the array.

The paper is organized as follows. Section II introduces
a modal decomposition for wavefields. Section III presents
a spatial measurement model for the DOA problem, and
section IV presents a modal noise model. From these models,
the spatially limited CRB is derived in section V. In section VI,
the bound is simulated for varying source distributions and
region sizes, and compared with the CRB for a uniform
circular array (UCA) as the number of sensors is increased.

II. M ODAL DECOMPOSITION

Consider the 2D DOA problem, wherex ∈ R2 is a
position vector. LetF (x) denote a wavefield generated by
P farfield narrowband sources, effectively plane waves. Then,
F (x) satisfies the 2D Helmholtz equation (the reduced wave
equation)

∇2F (x) + k2F (x) = 0, (1)

wherek , 2π/λ is the wavenumber,∇2 is Laplacian operator,
andλ is the wavelength [6].

We can use this equation to define the space of valid
Helmholtz wavefields,H, a linear subspace ofL2

(
R2
)
:

H ,
{
F (x) ∈ L2

(
R2
)

: ∇2F (x) + k2F (x) = 0
}
. (2)

Any field in H can be expressed using a modal expansion
[7],

F (x) =
∞∑

n=−∞
fnun (x) , (3)

where the modes are defined using a polar coordinate repre-
sentation of positionx ≡ (|x|, θx) as,

un (x) = jnJn (k|x|) ejnθx , (4)

andJn (·) is the integer ordern Bessel function [8].
For fields made up ofP distinct farfield sources, the

expansion coefficients take a special form [9]

fn =
P∑

p=1

γpe
−jnφp , (5)

0-9580345-6-7/05/$20.00c©2005 IEEE



whereγp andφp are, respectively, the amplitude and direction
of the farfield sources.

In the spatially limited DOA problem, we only have knowl-
edge of the wavefield within some small circular region of
space,S, with radiusrS . This restriction of the knowledge is
modeled using the spatial truncation operatorPS . This opera-
tor is defined such that for any functionM (x) ∈ L2

(
R2
)
,

(PSM) (x) =
{
M (x) for x ∈ S

0 otherwise.
(6)

We define the spaceG of functions which are valid
Helmholtz wavefields withinS, and zero outside. The operator
PS is a projection operator fromH ontoG. Any functionG (x)
in G can be expressed using the modal expansion,

G (x) =
∞∑

n=−∞
gnvn (x) , (7)

wherevn (x) is an orthonormal basis forG defined by

vn (x) =
{
α
−1/2
n jnJn (k|x|) ejnθx for x ∈ S

0 otherwise,
(8)

andαn is the normalizing constant defined by

αn =
∫

S

‖un (x) ‖2dx

=
∫ 2π

0

dθx

∫ rS

0

|x|Jn (k|x|)2 d|x|

= πrS
2
[
Jn (krS)2 − Jn+1 (krS) Jn−1 (krS)

]
. (9)

Combining equations (4), (6) and (8) we can derive a
relationships betweenun (x) andvn (x),

√
αnvn (x) = (PSun) (x) . (10)

III. M EASUREMENTMODEL

Consider the wavefieldF (x). We assume a measurement
model whereby our observations of the field can only be made
over a regionS, and field is corrupted with noise,

G (x) =
{
F (x) +W (x) x ∈ S
0 otherwise

(11)

= (PSF ) (x) +W (x) (12)

As (PSF ) (x) ∈ G, we can express it using a modal
expansion with the form of (7):

(PSF ) (x) =
∞∑

n=−∞
fn (PSun) (x) =

∞∑
n=−∞

fn
√
αnvn (x) .

(13)
The noise fieldW (x) is not a valid wavefield, and so

(PSW ) (x) /∈ G. We split the noise onS into two parts -
the projection ontoG (the part of the noise field which looks
like a valid wavefield) and the projection onto⊥G (the rest of
the noise field):

W (x) = WG (x) +W⊥G (x)

=
∞∑

n=−∞
wnvn (x) +W⊥G (x) . (14)

Substituting (13) and (14) into (12), we get,

G (x) = W⊥G (x) +
∞∑

n=−∞
(fn

√
αn + wn) vn (x) (15)

We allow continuous information of the observed field
G (x) which allows us to extract modal coefficientshn from
the field,

hn =
∫

S

G (x) vn (x)dx = fn
√
αn + wn. (16)

Thus, the optimal unbiased estimates of the original field
coefficientsfn are

f̃n =
hn√
αn

= fn +
wn√
αn

(17)

Once we know how noise is projected into thewn, we will
have a model for how much information we can extract from
a spatially limited field.

IV. N OISE MODEL

In trying to represent noise in our measurement model, we
have the problem that white noise is not anL2 function. The
solution presented by Gallager in [10], is to model white noise
by its projection intoL2 (R). Under this model, the projection
of the noise field,N (x), onto any normalized function,ψ (x),
is:

z ,
∫

S

N (x)ψ (x)dx, (18)

where z is a zero mean, Gaussian random variable with
variance given by

E
{
|z|2
}

=
N0

2

∫
S

|ψ (x) |2dx =
N0

2
. (19)

The constantN0/2 is chosen to normalize the spatial power
spectral density.

We generalize this model for the spatial case. Where the
Gallager model defines a noise power independent of region
size, we consider a noise field,W (x) that is spatially white
with a constant (albeit infinite) power per unit space. Thus, as
the region expands, the noise variance will increase with the
area of the region,

wn ,
∫

S

W (x) vn (x)dx, (20)

where wn is a zero mean, Gaussian random variable with
variance

E
{
|wn|2

}
= E

{∣∣∣∣∫
S

W (x) vn (x)dx
∣∣∣∣2
}

(21)

=
N0πr

2
S

2
. (22)

It is easy to confirm that, using this formulation, the noise
field is spatially invariant. That is, the noise fieldW (x) exists
for all R2, but is observable only withinS.
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Fig. 1: Comparison of the behaviour of the normalizing constantαn with
increasing order for two different region radii.

Using this noise model, the optimal estimator of the field
coefficientsfn from (17) will be a normally distributed Gaus-
sian process,

f̃n ∼ N
(
fn,

N0πr
2
S

2αn

)
. (23)

As has been shown, the coefficients̃fn contain all of the
information that can be extracted from the field. This means
that the problem of estimating directions of arrival from
the spatially limited field can be reduced to the problem of
estimating theφp from the infinite series̃fn.

Note that although the noise fieldW (x) is spatially white,
the variance in the coefficients̃fn is clearly not white, and
varies with 1/αn. Fig. 1 shows the value ofαn from (9)
for two different region sizes. Note in each case thatαn is
basically zero forn > N = dπerS/λe [9]. This means that the
higher order coefficient will rapidly become extremely noisy,
and not very useful for DOA estimation. This idea is discussed
more in the next section.

V. THE CRAMÉR-RAO BOUND

In this section we derive the Cramér-Rao Lower Bound
(CRB) for the spatially limited DOA problem. The derivation
is based on how well we can estimate the directions of arrival,
φp, from the noisy field coefficients̃fn.

This problem is similar to the problem of estimating com-
plex sine wave frequencies from single experiment data [1].
To make this clear, we put our problem into a particular matrix
form, where we have infinite matrices forn = [−∞, . . . ,∞]

F̃ = A (Φ)X + W, (24)

where
F̃ , [. . . , f−1, f0, . . . , fn, . . .]

T
, (25)

Φ , [φ1, . . . , φP ] , (26)

A (Φ) , [a (φ1) , . . . ,a (φP )] , (27)

a (φ) ,
[
. . . , ejφ, 1, . . . , e−jnφ, . . .

]T
, (28)

X , [γ1, . . . , γP ]T , (29)

and

W , [. . . , w−1, w0, . . . , wn, . . .]
T
. (30)

From (23), we know that the noise in the coefficients is
independent and non-uniform. Thus covariance matrix ofW
is diagonal,

Q = E
{
WWH

}
=
N0πrS

2

2
diag

{
. . . ,

1
α−1

,
1
α0
, . . . ,

1
αn

, . . .

}
. (31)

The deterministic CRB for this problem is derived in [3]:

CRBSpatial =
1
2

{
Re
[(

D̃HP⊥
Ã
D̃
)
� P̂T

]}−1

, (32)

where� stands for the Schur-Hadamard matrix product,

P⊥
Ã

= I− Ã
(
ÃHÃ

)−1

ÃH, (33)

Ã = Q−1/2A, (34)

D̃ = Q−1/2D, (35)

D ,

[[
da (φ)
dφ

]
φ=φ1

, . . . ,

[
da (φ)
dφ

]
φ=φP

]
, (36)

and

P̂ = XXH. (37)

Equation (32) is the spatial CRB - a performance bound for
any unbiased DOA estimator with limited spatial extent.

The transformations (34) and (35) pre-whiten the non-
uniform noise in the coefficients. This has the effect of
‘blocking’ the noisier high order coefficients asαn goes to
zero. From Fig. 1 and the discussion in the previous section, we
see that coefficients forn > N = dπerS/λe will have almost
no effect on the performance of DOA estimation. Previous
work [9] models this effect through a truncation of coefficients
for n > N . Here we see that we can avoid the need for this
truncation by incorporating a more accurate noise model for
coefficients.
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A. Single Source

If there is only a single source (P = 1), the CRB represents
a lower bound on the variance with which a single direction
can be estimated. In this case, we can make considerable
simplifications using the addition and recurrence relations for
integer order Bessel functions [8],

ÃHÃ =
2

πrS2N0

∞∑
n=−∞

αn =
2
N0

, (38)

D̃HD̃ =
2

πrS2N0

∞∑
n=−∞

n2αn =
r2Sk

2

2N0
, (39)

D̃HÃÃHD̃ =

(
2

πrS2N0

∞∑
n=−∞

nαn

)2

= 0. (40)

Simplifying, we are left with a simple closed form expres-
sion for the single source CRB,

CRBP=1 =
N0

rS2k2
=

N0λ
2

4πrS2
=

N0

4πR2
, (41)

whereR = rS/λ is the size of the region in wavelengths.

VI. N UMERICAL SIMULATIONS

A. The Spatial CRB

In this section we examine the effect of varying region size,
and number of sources on the spatial CRB. In calculating the
bound from (32), the infinite matrices had to be truncated.
Using matrices of over 2000 terms ensured that the truncation
error was a trivial compared with the numerical precision of
other calculations.

Symmetry considerations mean that the best simultaneous
directional estimates forP sources will occur when these
sources have equal amplitude and are spaced evenly in an-
gle [5]. In less symmetric configurations, we may be able to
estimate one source direction more accurately by increasing
it’s amplitude, or placing it away from other sources, but this
will degrade the estimation of the other source directions.

Another advantage of this symmetric situation, is that all
direction estimates will be unbiased by other sources, and we
need only to consider one diagonal element of the CRB matrix
to find a lower bound on the variance of all direction estimates.

Fig. 2 shows the effect of increasing the number of sources
(with N0 = 0.1). Obviously, the single source case has the
form (41) from above, where the bound decreases with the
square of radius. For large regions, the performance in esti-
mating two directions is almost identical to that for estimating
a single direction. As we decrease the radius, however, there
comes a threshold size (aboutrS ≈ 0.3λ) where performance
starts to rapidly diverge from the single source performance.
A similar effect can be observed as more sources are added.

This result tends to suggest thatP sources can only be
effectively resolved once a certain region size is reached. As
the region falls below this size, DOA performance degrades
rapidly. This threshold may be related to the number of ‘active’
modes in the region [9]. A future paper will discuss these
issues in more detail, and may provide an spatial alternative
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Fig. 2: Effect of varying region size, and number of sources on the spatial
CRB.
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Fig. 3: Effect of varying noise levels on the spatial CRB.

to the ‘sensor-based’ identifiability constraints set out in [11]
and [12].

Fig. 3 shows the effect of noise on the CRB for a DOA
problem withP = 2 evenly spaced sources. As expected, the
bound increases linearly with increasing noise power.

B. Comparison with Sensor Array CRB

Another interpretation of the spatial performance bound is
that, no matter how many sensors we put into a region, DOA
variance can never outperform the spatial CRB (32). In this
section, we investigate this idea by comparing the spatial CRB
to the bound derived for a uniform circular array (UCA) with
the same spatial extent.

We assume a UCA with Q sensors, in a spatially white
noise field with varianceN0. The field is generated byP
perfectly correlated farfield sources, all with equal amplitude
γ. This amplitude must be scaled to ensure that the received
signal power remains constant as we increase the number of
sensors [13]
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Fig. 4: Comparison of the spatial CRB with the CRB derived for two UCA’s
with the same radius, but different numbers of sensors.

γ =
1√
Q
. (42)

The CRB for this situation is found in [5],

CRBUCA =
N0

2γ2

{
Re
[
DHD−DHA

(
AHA

)−1
AHD

]}−1

,

(43)
whereΦ, A andD are defined as in equations (26), (27), and
(36), and,

a (φ) ,
[
e−jkτ1(φ), . . . , e−jkτQ(φ)

]T
, (44)

where

τq (φ) = −rS cos
(
φ− 2π(q − 1)

Q

)
. (45)

We can now compare the spatial and sensor array CRBs,
as shown in Fig. 4. Notice that for 10 sensors, the array CRB
is clearly lower bounded by the spatial CRB, but displays
wild behavior due to that fact that that there are not enough
sensors to accurately model the wavefield in the region. When
the number of sensors is increased to 100, the field is well
modeled, and the array CRB sits only slightly above the modal
CRB. The agreement between these two bounds seems to
validate the noise model used in the modal decomposition.

These results seem to indicate that the array CRB is lower
bounded by the spatial CRB. This is quite a powerful result.
It shows that the the performance of an array based DOA
estimator will be bounded by the maximal spatial extent of
the array, independent of the number of sensors. In the limit
of an infinite number of sensors in the region, the performance
converges to the spatial CRB.

VII. C ONCLUSION

We have demonstrated that the performance of a direction
of arrival estimator is fundamentally limited by the size of the
region over which we measure a wavefield. Further, we have
derived the Craḿer-Rao Bound for a spatially limited region

in white noise. This bound is independent of array geometry,
and number of sensors.

The spatial CRB was derived by a modal decomposition
of the field, using a noise model which projects noise non-
uniformly into the modal coefficients. An alternative CRB was
derived using a UCA with the same spatial extent. As the
number of sensors in this array were increased (and signal
amplitude scaled to maintain SNR), the array performance
converged towards the spatial CRB. This seems to indicate
that the performance of DOA estimation from a sensor array
is fundamentally limited by the spatial extent of that array,
independent of the number of sensors.

Simulations of the bound showed thatP sources can only
be effectively resolved once a certain region size is reached.
More work is needed to investigate the size of this threshold
for various source distributions.

Another area for future work will be to generalize the spatial
CRB to the case of multiple snapshots in time. This should
be a trivial extension of the current work.
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