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Abstract—In this paper, we demonstrate that the performance of spatial extent on DOA performance, the results are still
of a direction of arrival (DOA) estimator is fundamentally limited  affected by array geometry and inter-sensor spacing.
by the size of the region over which we measure a wavefield. approach is based on a modal decomposition of the
That is, even assuming continuous field measurements across,. . . . - . .
the region, we still cannot achieve perfect performance. We field. All of the |pf0rmat!on In a spatially limited f_|e_ld can
use an approach based on modal decomposition of a Spat|a||y be expressed USIng an Infll’llte set Of mOda| CoefﬂC'entS We
truncated field, and completely independent of sensor geometry, show that additive white field noise causes a variance in these
to derive the Cramér-Rao Bound (CRB) for spatially-limited  coefficients which increases rapidly with order, and limits the
DOA estimators. The model is validated by comparison with jhformation we can extract from the truncated field. Using

results from a uniform circular array (UCA) as the number of . . —_
sensors goes to infinity. Simulations of the spatial CRB show how this model, we derive a CRB which is dependent only on the

DOA performance improves as the measurement region expands. Spatial extent of the array. . _
Simulations of the bound also indicate thatP sources can only ~ The paper is organized as follows. Section Il introduces

be effectively resolved once a certain threshold region size isa modal decomposition for wavefields. Section Il presents
reellﬁr(;gg'Terms—Direction of arrival estimation, spatial limits on a Spatial measurement model_ for the DOA problem, and
resolution, sensor array processing. ' section !V pr_es_ents a qual noise _model_. From these_ models,
the spatially limited CRB is derived in section V. In section VI,
the bound is simulated for varying source distributions and
region sizes, and compared with the CRB for a uniform

Direction of arrival (DOA) estimation is an importantcircylar array (UCA) as the number of sensors is increased.
problem in signal processing with direct applications in

radar, imaging, and wireless communications. Conventional Il. MODAL DECOMPOSITION

approaches to examining the performance limitations of DOA Consider the 2D DOA problem, where € R? is a

estimators have focussed on deriving resolution bounds bagegition vector. LetF' (x) denote a wavefield generated by

on sensor array geometry (size, shape and number of sensdrdarfield narrowband sources, effectively plane waves. Then,
In [1], the Cranér-Rao Bound (CRB) is derived for anf’ (x) satisfies the 2D Helmholtz equation (the reduced wave

array with arbitrary known geometry in white noise. The CRBquation)

lower bounds the covariance of any unbiased DOA estimator. V?F (x) + k*F (x) =0, (1)

This result has since been extended to a variety of othgj,arer 2 27 /) is the wavenumbefy? is Laplacian operator
more complicated, noise models [2], [3]. The weakness gf ) is the wavelength [6]. ’

this approach is that, due to the focus on the geometry of\\e can use this equation to define the space of valid

the sensor array, it is difficult to investigate more fundamentglaimnoltz wavefieldsH, a linear subspace of? (RQ):
limitations on DOA performance.

In this paper, we disregard array geometry and show that 5 s ) )
DOA performance is fundamentally limited by the spatial " = {F (x) € £* (R?) : V’F (x) +k*F (x) =0}. (2)
extent of the array - in effect the size of the region in which we Any field in H can be expressed using a modal expansion
have knowledge of a wavefield. That is, even if the noisy fielg,

I. INTRODUCTION

could be measured continuously over the region, there would s
still a limit to the DOA resolution that could be achieved. F(x) = Z foun (%), ®3)
Some limited work has been done in the area of spatial n=Tee

limits for DOA by Birkenes [4], [5]. These studies usedvhere the modes are defined using a polar coordinate repre-
a uniform circular array (UCA) with a fixed number ofsentation of positionx = (|x[,fx) as,

sensors, and examined the effect of changing array radius on _

DOA resolution. Whilst the study identifies the important role up (%) = 5" T (k|x[) €%, (4)

and J, () is the integer orden. Bessel function [8].
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where~, and¢, are, respectively, the amplitude and direction Substituting (13) and (14) into (12), we get,
of the farfield sources. oo

In the spatially limited DOA problem, we only have knowl- G (x) = W (x) + Y (fav/an +wa)va (x)  (15)
edge of the wavefield within some small circular region of
space,S, with radiusrg. This restriction of the knowledge is

modeled using the spatial truncation operafar This opera- GWe arI]I_ovr\]/ cli)ntinuous informationdolf theﬁ_o_bsr,;rvfed field
tor is defined such that for any function (x) € £* (R?) , théxf?e\ll\c/i ich aflows us to extract modal coefficiertts from

n=—oo

_f M(x) forxeS
(PsM) (x) = { 0  otherwise. ©) h, = /SG (x) vy (xX)dx = fr/0n + wh. (16)
We define the spac& of functions which are valid
Helmholtz wavefields withirt, and zero outside. The operator
Ps is a projection operator frori ontoG. Any functionG (x)
in G can be expressed using the modal expansion, ~ hn,

Thus, the optimal unbiased estimates of the original field
coefficientsf,, are

= = 17
Fo= o= =t (17)
Z gn¥n (%), ) Once we know how noise is projected into the, we will
n=Teo have a model for how much information we can extract from
wherew,, (x) is an orthonormal basis f@ defined by a spatially limited field.
v (%) = a2 0, (k[x) /0% for x € S ) IV. Noise MODEL
" 0 otherwise In trying to represent noise in our measurement model, we
anda,, is the normalizing constant defined by have the problem that white noise is not Af function. The
solution presented by Gallager in [10], is to model white noise
= / | (x) ||2dx by its projection into£? (R). Under this model, the projection
5 of the noise fieldNV (x), onto any normalized function; (x),
™ rs -
- / dem/ Ix|J,, (k|x])? d|x| IS.
0 0
= 71 | (krs)” = Tusa (krs) Juoa (krs)| . (@) = /S N (x) ¥ (x)dx. (18)

Combining equations (4), (6) and (8) we can derive

X . Where » is a zero mean, Gaussian random variable with
relationships between,, (x) andv, (x),

variance given by

Vanvp (x) = (Psun) (x) . (10) 2 Mo o No
[1l. M EASUREMENTMODEL Bl = 2 /SW(XH dx = 2 (19)

Consider the wavefield” (x). We assume a measurementhe constantV,/2 is chosen to normalize the spatial power
model whereby our observations of the field can only be maggectral density.

over a regionS, and field is corrupted with noise, We generalize this model for the spatial case. Where the
Gallager model defines a noise power independent of region
G (x) = { F(x)+W(x) xe8 _ (11) size, we consider a noise fieltl (x) that is spatially white
0 otherwise with a constant (albeit infinite) power per unit space. Thus, as
= (PsF) (x) + W (x) (12) the region expands, the noise variance will increase with the

area of the region,
As (PsF)(x) € G, we can express it using a modal

expansion with the form of7(: A / W
Wy, =

(PsF)( Z o (Psun) ( Z fa/Cnvn (%) .

n=—oo n=—oo

(20)

where w,, is a zero mean, Gaussian random variable with
(13) variance
The noise fieldW (x) is not a valid wavefield, and so

(PsW) (x) ¢ G. We split the noise orf' into two parts - 2
the projection ontd; (the part of the noise field which looks E {\wn|2} — E{‘/ W (x) vy, (x)dx } (21)
like a valid wavefield) and the projection onta; (the rest of s
the noise field): _ Nomr, 22)
W(x) =Wg (x) + Wig (x) 2
o0 It is easy to confirm that, using this formulation, the noise
= D wavn (x) + Wig (x). (14) field is spatially invariant. That is, the noise fidid (x) exists
n=-00 for all R?, but is observable only withits.
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Using this noise model, the optimal estimator of the field The deterministic CRB for this problem is derived in [3]:
coefficientsf,, from (17) will be a normally distributed Gaus-

sian process, ) (fm NOW%) | CRBspatial = % {Re[(ﬁHpiﬁ) © f’T} }*1’ (32)

fo~ N (23)

200,

L - ) where® stands for the Schur-Hadamard matrix product,
As has been shown, the coefficients contain all of the

information that can be extracted from the field. This means

that the problem of estimating directions of arrival from P =I-A (AHA> 1AH, (33)
the spatially limited field can be reduced to the problem of
estimating thep, from the infinite seriesf,,.
Note that although the noise field (x) is spatially white, X o1)2
the variance in the coefficient§, is clearly not white, and A=Q A, (34)

varies with 1/a,. Fig.1 shows the value ofy,, from (9)

for two different region sizes. Note in each case thatis

basically zero fon > N = [werg/\] [9]. This means that the D =Q /?D, (35)
higher order coefficient will rapidly become extremely noisy,

and not very useful for DOA estimation. This idea is discussed

more in the next section.

A da(¢’) da(¢)
V. THE CRAMER-RAO BOUND D= H a6 L_¢ 7~-~,{ o L_¢ ], (36)

In this section we derive the Cr&mRao Lower Bound
(CRB) for the spatially limited DOA problem. The derivationand
is based on how well we can estimate the directions of arrival,
¢p, from the noisy field coefficientg,,.

This problem is similar to the problem of estimating com-
plex sine wave frequencies from single experiment data [1]. ) ] .
To make this clear, we put our problem into a particular matrix Equation (32) is the spatial CRB - a performance bound for

P = xxH". (37)

form, where we have infinite matrices far= [—oo,...,00] &MY unbiased DOA estimator with limited spatial extent.
The transformations (34) and (35) pre-whiten the non-
F=A®X+W, (24) uniform noise in the coefficients. This has the effect of
‘blocking’ the noisier high order coefficients as, goes to
where - - zero. From Fig. 1 and the discussion in the previous section, we
F2l. . fa forosfar ] (25) see that coefficients far > N = [rerg/A] will have almost
no effect on the performance of DOA estimation. Previous
& 26, 60, (26) work [9] models this effect through a truncation of coefficients

for n > N. Here we see that we can avoid the need for this
truncation by incorporating a more accurate noise model for
A(®) 2 [a(¢1),...,aldp)], (27) coefficients.



A. Single Source ‘o

If there is only a single sourcé’(= 1), the CRB represents - 7;233:2:5
a lower bound on the variance with which a single direction 10° ; — -~ 3 Sources
can be estimated. In this case, we can make considerable 4 sources

simplifications using the addition and recurrence relations for 1 ¢
integer order Bessel functions [8],

CRB (rad)
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52N, ;mn O = SN (39)
~ 2 > ? 1072) 1 0‘2 0‘3 0‘4 0‘5 0‘6 0‘7 0‘8 0‘9 1‘
DHAAHD = SR Z noy, =0. (40) ’ ’ ’ radius'of regic;n in wa\;elengthé (r /M) . .
mrs? Ny M s

Fig. 2: Effect of varying region size, and number of sources on the spatial

Simplifying, we are left with a simple closed form expresz .

sion for the single source CRB,

No NoX2 N,

CRBp_; = = = 41 o'
P=17 1s2k2 ~ 4nrg?  4nR2’ (41) 7zo=°'5
— — =N =1
where R = rg /) is the size of the region in wavelengths. o NZ=1.5
10' b N, =2
\ 0

VI. NUMERICAL SIMULATIONS
A. The Spatial CRB

In this section we examine the effect of varying region size, 5 10° ¢
and number of sources on the spatial CRB. In calculating theS
bound from (32), the infinite matrices had to be truncated.
Using matrices of over 2000 terms ensured that the truncation o'}
error was a trivial compared with the numerical precision of
other calculations.

Symmetry considerations mean that the best simultaneous ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
directional estimates forP.sources will occur when the;e o1 02 08 diuos'tfreg%ﬁmwfv'gengn?'!(r /MO-S 09 1
sources have equal amplitude and are spaced evenly in an- ¢
gle [5]. In less symmetric configurations, we may be able to Fig. 3: Effect of varying noise levels on the spatial CRB.
estimate one source direction more accurately by increasing
it's amplitude, or placing it away from other sources, but this

will degrade the estimation of the other source directions. tg the ‘sensor-based’ identifiability constraints set out in [11]
Another advantage of this symmetric situation, is that ajjng [12].

direction estimates will be unbiased by other sources, and Werig. 3 shows the effect of noise on the CRB for a DOA

need only to consider one diagonal element of the CRB mat%blem with P = 2 evenly spaced sources. As expected, the
to find a lower bound on the variance of all direction estimatege nd increases linearly with increasing noise power.

Fig. 2 shows the effect of increasing the number of sources
(with Ny = 0.1). Obviously, the single source case has t : :
form (41) from above, where the bound decreases with the Comparison with Sensor Array CRB
square of radius. For large regions, the performance in esti-Another interpretation of the spatial performance bound is
mating two directions is almost identical to that for estimatinthat, no matter how many sensors we put into a region, DOA
a single direction. As we decrease the radius, however, thgsgiance can never outperform the spatial CRB (32). In this
comes a threshold size (abatyt ~ 0.3)\) where performance section, we investigate this idea by comparing the spatial CRB
starts to rapidly diverge from the single source performande.the bound derived for a uniform circular array (UCA) with
A similar effect can be observed as more sources are adddélde same spatial extent.

This result tends to suggest th&t sources can only be We assume a UCA with Q sensors, in a spatially white
effectively resolved once a certain region size is reached. Agise field with varianceV,. The field is generated by
the region falls below this size, DOA performance degradeerfectly correlated farfield sources, all with equal amplitude
rapidly. This threshold may be related to the number of ‘active’. This amplitude must be scaled to ensure that the received
modes in the region [9]. A future paper will discuss thesgignal power remains constant as we increase the number of
issues in more detail, and may provide an spatial alternatisensors [13]

rad)

B
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Modal CRB
UCA CRB - 10 sources
— — — UCA CRB - 1000 Sources

CRB

R/A

in white noise. This bound is independent of array geometry,
and number of sensors.

The spatial CRB was derived by a modal decomposition
of the field, using a noise model which projects noise non-
uniformly into the modal coefficients. An alternative CRB was
derived using a UCA with the same spatial extent. As the
number of sensors in this array were increased (and signal
amplitude scaled to maintain SNR), the array performance
converged towards the spatial CRB. This seems to indicate
that the performance of DOA estimation from a sensor array
is fundamentally limited by the spatial extent of that array,
independent of the number of sensors.

Simulations of the bound showed thBAtsources can only
be effectively resolved once a certain region size is reached.
More work is needed to investigate the size of this threshold
for various source distributions.

Fig. 4: Comparison of the spatial CRB with the CRB derived for two UCAs Another area for future work will be to generalize the spatial

with the same radius, but different numbers of sensors.

CRB to the case of multiple snapshots in time. This should

be a trivial extension of the current work.

1
V=—"=. (42) [
V@
The CRB for this situation is found in [5], 2]
_ & Hpy  H Ha\" ! AH -1
CRBycA = 5.5 {Re[D D - DHA (AHA) 1A DH -

(43)
where®, A andD are defined as in equations (26), (27), and

(36), and, @
a(p) 2 [efjkrnw),_._’efjkmw)r’ (44) [6]
where
[6]
2 -1
74 (¢) = —rgcos (¢ — 71'((]@)) . (45) 7]

We can now compare the spatial and sensor array CRBIS]
as shown in Fig. 4. Notice that for 10 sensors, the array CRB
is clearly lower bounded by the spatial CRB, but displaysgg]
wild behavior due to that fact that that there are not enough
sensors to accurately model the wavefield in the region. When
the number of sensors is increased to 100, the field is wgl
modeled, and the array CRB sits only slightly above the modal
CRB. The agreement between these two bounds seemd
validate the noise model used in the modal decomposition.

These results seem to indicate that the array CRB is lowé?!
bounded by the spatial CRB. This is quite a powerful result.
It shows that the the performance of an array based DQf;
estimator will be bounded by the maximal spatial extent of
the array, independent of the number of sensors. In the limit
of an infinite number of sensors in the region, the performance
converges to the spatial CRB.

VIlI. CONCLUSION

We have demonstrated that the performance of a direction
of arrival estimator is fundamentally limited by the size of the
region over which we measure a wavefield. Further, we have
derived the Crar-Rao Bound for a spatially limited region
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