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Abstract— A recently proposed space-time model for Rayleigh
fading for a multiple-input multiple-output (MIMO) channel with
arbitrary spatial separation at the transmitter and the receiver
is extended. A space-frequency cross spectrum is derived from a
space-time cross correlation for a non-isotropic scatterer distri-
bution around the receiver. A simulation study is performed into
the space-time correlation formulation to gain understanding of
the changing of some relevant parameters and applying different
non-isotropic distributions. The formulations presented can be
applied to analyse any numbers of transmit and receive antennas
operating in typical time-selective MIMO fading channels, and
hence can be used in the design of space-time modems.

Index Terms— Space-time cross correlation, space-frequency
cross spectrum, MIMO Rayleigh channels, wireless communica-
tions

I. I NTRODUCTION

The combination of spatial and temporal diversity are two
effective means that can improve communication quality and
associated system performance in a rich-scattering wireless en-
vironment. The use of multiple-input multiple-output (MIMO)
radio channels are a proven means to utilise temporal and
spatial diversity. Without designing highly detailed system
models, which can be used for individual channel realisations,
it is possible to obtain simpler macroscopic system models
with a number of possible applications. An important appli-
cation of these models is a rigorous evaluation of space-time
coding schemes, which are understood to be very beneficial
for high data-rate systems, both coherent [1] and non-coherent
[2]. Other applications have been described in [3], where
performance can be parameterised as a function of antenna
separation and interleaving depth for designs of space-time
modem, or the application described in [4], where models
can be used in the design of a two-dimensional pilot-symbol
assisted demodulation system.

One such model, used for the purposes of macroscopic
system design, based on a Clarke/Jakes model [5], has been
proposed in [3] where a rich isotropic distribution of scatterers
is assumed around the mobile station (MS), the receiver (Rx).
No major scatterers are assumed to be located around the
base station (BS), the transmitter (Tx). Space-time correlation
and space-frequency cross spectrum functions corresponding
to this distribution were derived. This was generalised to
the case of a MIMO Rayleigh channel model applicable to
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many common non-isotropic distribution of scatterers in [6],
where the receivers are assumed to be approximately co-
located. Previously only a MIMO Rayleigh channel model for
a particular non-isotropic distribution had been presented [7].

The results of [6] were extended in [8] to the consideration
of spatial separation at the receive antennas. Thus they are
applicable to many proposed mobile communication systems
with spatial separation at the receive antennas. However the
results were limited to the consideration of the space-time
correlation. Furthermore it is not recognised throughout [8]
that the results are applicable to analysing arbitrary numbers
of transmit and receive antennas.

In this paper, a correction is made to the derivation of
the space-time cross correlation in [8], and the correlation
formulation is further extended to a derivation of the space-
frequency cross spectrum. A short simulation study based on
the derivations of space-time correlation and space-frequency
cross spectrum is also presented giving insight into the chang-
ing of relevant parameters to the space-time model, such as
Doppler fading parameter, the angle of receiver travel, and
angular spread. Different non-isotropic distributions in fast
fading channels are also used to give further understanding
of the application of the correlation and spectrum functions.

II. SPACE-TIME CROSSCORRELATION FORMULATION

Consider a MIMO radio channel, withM transmit antennas
(Tx) andNR receive antennas (Rx). Assume that there are no
major scatterers around the transmitter antennas , the receiver
antennas are immersed in a rich non-isotropic scattering envi-
ronment. We also assume that the spatial separation between
antennas at the transmit and receive side is in azimuth only (2D
plane). The derivations in this paper can be applied to either
a microcellular or macrocellular time-selective (frequency-
nonselective) fading radio scenario. Fig. 1 illustrates the
MIMO transmission model between the transmitter and re-
ceiver. This model has been previously reported in [6].

With respect to Fig. 1 let us denote the positions of receiver
antennaq to be xq wherexq is a vector from the receiver
origin OR, denoting the centre of the area around which the
scatterers are located. The flat fading channel transmission
coefficient at timet from Tx antennap to qth Rx antenna
can be written as

cpq(t) =
√
σ2

∫
A(α̂) exp{j2πfDtξ̂.α̂}

× exp{jk(s1 + a)} exp{jkxqα̂}dα̂ (1)
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Fig. 1: MIMO Transmission model between transmitter (Tx) and receiver (Rx)

where α̂ is a unit vector to represent directions fromOR.
A(α̂) is the complex scatterer gain at anglêα; σ2 is the
variance of the fading channel,fD is the maximal Doppler
spread caused by the relative motion of the Rx with respect
to the Tx,ξ̂ is a unit vector in the direction of Rx travel with
respect toOR, a is the uniform distance fromOR to a non-
isotropically distributed scatterer, the wave numberk = 2π/λ,
where λ represents wavelength, ands1 is the path length
from p at the Tx to a non-isotropically distributed scatterer
at a uniform distance fromOR. The subsequent derivation of
space-time cross correlation function follows from [8]. The
space-time cross correlation at the transmitter and receiver
ρ(dsp, xsp, τ) ≡ Rcpq,cp′q′ (dsp, xsp, τ) can be represented as

ρ(dsp, xsp, τ) ≡ E
{
cpq(t)c∗p′q′(t− τ)

}
=

∫
P (α̂) exp{j2πfdtξ̂.α̂}

× exp{j∆φ(α̂)} exp{jk{xq − xq′}}α̂.dα̂
(2)

where

P (α̂) = E{A|α̂|2}. (3)

P (α̂) is the angular scattering power density distribution,
and∆φ(α̂) = k(s1 − s2) as in [3], wheres2 is the distance
from p′ to a non-isotropically distributed scatterer (it should
be noted thats1 and s2 are functions ofα̂). In the case that
α̂=(1, α) then

∆φ(α̂) = k[(d1 − d2) + zc cosα− zs sinα] (4)

where d1 and d2 are the distance from Tx locationsp and
p′ respectively toOR, and as in [3, App. 1] using far-field
assumptions then

zc = c1 sinβ, zs = c1 cosβ (5)

where c1 = dsp sinβ × a/d, β is the mobile position angle
with respect to the end-fire of Tx betweenOT and OR. If
ξ = (1, ξ) and using the far-field assumption in [3, App. 1]
that (d1 − d2) = dsp cosβ then

ρ(dsp, xsp, τ) = σ2 exp(jkdsp cosβ)

×
∫ 2π

0

P (α)(exp[j cosα(2πfDτ cos ξ + k(zc − xsp cos γ))]

× exp[j sinα(2πfDτ sin ξ − k(zs + xsp sin γ))])dα (6)

wherexsp = |xq − xq′ |, andγ = (1, γ),γ = |xq−xq′ |
‖xq−xq′‖ , the

unit vector from theqth antenna to theq′th antenna.
We can write the angular power distributionP (α) as, [9],

P (α) =
∞∑

m=−∞
Cmexp(−jmα) where

Cm =
1
2π

∫ 2π

0

P (α) exp(jmα)dα. (7)

Now we can use (7) in (6), following from the 2-D modal
expansion in [10] to give

ρ(dsp, xsp, τ) = σ2 exp(jkdsp cosβ)
∞∑

m=−∞
Cm

×
∫ 2π

0

exp(j(−mα+ z sin(α+ ψ)))dα (8)
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where ψ = tan−1 b1
a1

and z = 2π
√
a2
1 + b21; and as a

correction to [8] ,b1 = fDτ sin ξ − zs/λ − xsp/λ sin γ and
a1 = fDτ cos ξ + zc/λ− xsp/λ cos γ.

Now applying the following identity [11],∫ 2π+ψ

ψ

exp(j(−mθ + z sin θ))dθ = 2πJm(z) (9)

whereJm(z) is themth order Bessel function of the first kind,
we obtain

ρ(dsp, xsp, τ) = σ2 exp(jkdsp cosβ)2π

×
∞∑

m=−∞
Cm exp(jmψ)Jm(z). (10)

III. SPACE-FREQUENCYCROSSSPECTRUMFORMULATION

Following from (10), and in a manner similar to the deriva-
tion of the space-frequency cross spectrum in [6], a space-
frequency cross spectrum can be found for a non-isotropic
distribution of scatterers where there is spatial separation at
the receiver in a MIMO radio channel. We first observe that
z can be reformulated as

z = 2π

√
(fDτ + (c2 sin ξ + c3 cos ξ))2

+(c2 cos ξ − c3 sin ξ)2 (11)

wherec2 = −(zs + xsp sin γ), andc3 = (zc − xsp cos γ).
The space-frequency cross spectrum is defined as

Scpq,cp′q′ (dsp, xsp, f) = F{ρ(dsp, xsp, τ)}, whereF{·} is the
Fourier transform with respect toτ . Therefore

Scpq,cp′q′ (dsp, xsp, τ) = σ2 exp(jkdsp cosβ)

.2π
m=∞∑
m=−∞

(Cm.F{exp jmψJm(z)}) (12)

To simplify the above expression, using (11), a result
in [11], and the addition theorem for Bessel functions,
exp(jmψ)Jm(z) can be expressed as

e(jmψ)Jm(z) =
∞∑

n=−∞
jnJn(2π(fDτ+(c2 sin ξ+c3 cos ξ)))

× Jm+n(2π(c2 cos ξ − c3 sin ξ))

=
∞∑

n=−∞
jnJm+n(2π(c2 cos ξ − c3 sin ξ))

×

{ ∞∑
m′=−∞

Jn(2πfDτ)Jn−m′(2π(c2 sin ξ + c3 cos ξ))

}
.

(13)

Therefore since the space frequency cross-spectrum is defined
with respect toτ we need only to findF{Jn(2πfDτ)}
for n = −∞ . . .∞. Thus following from (12) and (13),

Scpq,cp′q′ (dsp, xsp, τ) can be expressed as

Scpq,cp′q′ (dsp, xsp, f) = σ2 exp(jkdsp).2π

×
∞∑

m=−∞

{
Cm

∞∑
n=−∞

jnJm+n(2π(c2 cos ξ − c3 sin ξ))

×

{ ∞∑
m′=−∞

F{Jn(2πfDτ)}Jn−m′(2π(c2 sin ξ + c3 cos ξ))

}}
(14)

and using a result from [12, p. 66] and [13, p. 197] we have

F{Jn(2πfDτ)}

= ±

πfD
√

1−
(
f

fD

)2
−1

× cos
(
n sin−1 f

fD

)
, f < fD

= ∓fnDf−n sin
(nπ

2

) πfD
√

1−
(
fD
f

2)−1

×

1 +

√
1−

(
fD
f

)2
−n

, f > fD.

(15)

The values±x1/ ∓ x2 for n = −∞ . . .∞, depend on
whethern ≥ 0 and/or|n| is even, in which case the transform
is +x1/ − x2; otherwise if n < 0 and n is odd, one has
−x1/ + x2. The term∓x2 can be disregarded in (15) since
we are only considering the frequencies up to the maximal
Doppler spreadfD. Thus (14) gives a closed form expression
for the space-frequency cross spectrum with a non-isotropic
distribution of scatterers.

IV. SIMULATION OF SPACE-TIME MODEL WITH

NON-ISOTROPIC DISTRIBUTIONS

In this section various simulation results will be illustrated
for the space-time cross correlation and the space-frequency
cross spectrum with non-isotropic scatterer distributions using
the results of previous sections. Insight is given into the
effects of varying parameters of the correlation and spectrum
functions relevant to macroscopic system performance in
MIMO flat fading scenarios. These parameters include the
Doppler fading parameter,fDTs where Ts is the uniform
sampling period at the receiver, the angular spread at the
receiver defined as the square root of the variance of the
particular distribution, and the direction of mobile travelξ.
Further understanding is achieved through applying different
non-isotropic distributions, in particular the Von Mises [7] and
Laplacian [14] distributions.

In Fig. 2 and Fig. 3 3-D plots are given of the relative magni-
tude of the cross-correlation function,|Rcpq,cp′q′ (dsp, xsp, τ)|,
stated in (10), assuming a Laplacian distribution with an
angular spread of15o. The radius of scatterers is localised
to a distance of25λ, and the distanced from the BS to the
centre of the MS configuration is1000λ, which approximates
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a microcellular MIMO radio channel scenario. This is for
transmitter spacingdsp from 0.5 to 40λ, xsp from 0 to 5λ;
ξ = 60o; β = 30o; γ = 45o, and AOA of impinging field is
60o from broadside. In Fig. 2 the Doppler fading parameter
fDTs = 0.01 after τ = 20 received time samples, whereas in
Fig. 3 fDTs = 0.05.
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Fig. 2: 3-D plot of magnitude of cross-correlation function|Rc(dsp, xsp, τ)|
for fDTs = 0.01 after τ = 20 time samples;ξ = 60o, β = 30o and
γ = 45o, angular spread =15o, for a microcellular MIMO radio channel
scenario
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Fig. 3: 3-D plot of magnitude of cross-correlation function|Rc(dsp, xsp, τ)|
for fDTs = 0.05, all other relevant parameters are the same as Fig. 2

It is clear from both Fig. 2 and Fig. 3 that the dominant
influence on the cross-correlation, when comparing the effects
of changing the BS spacing,dsp, and the MS spacing,xsp,
is xsp for the Laplacian distribution regardless of Doppler
fading parameter. In Fig. 4 and Fig. 5|Rcpq,cp′q′ (dsp, xsp, τ)|
is plotted assuming a Laplacian distribution with an angular
spread of15o with dsp = 10λ, varying τ and xsp. As with
Fig. 2 and Fig. 3,fDTs = 0.01 in Fig. 4, andfDTs = 0.05
in Fig. 5. In Fig. 6 and Fig. 7 all parameters are plotted the
same as Fig. 4 and Fig. 5 except a Von Mises distribution is
assumed. All other parameters are the same as Fig. 2 and Fig.
3.

Fig. 6 and Fig. 7 show similar trends to Fig. 4 and Fig. 5. In
comparing both Fig. 4 and Fig. 5, and similarly Fig. 6 and Fig.
7, it is shown that increasingfDTs from 0.01 to 0.05 has the
effect of shifting where the cross-correlation is maximised,
which is intuitive. For the lower Doppler fading parameter,
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Fig. 4: 3-D plot of magnitude of cross-correlation function|Rc(dsp, xsp, τ)|
for fDTs = 0.01 assuming a Laplacian distribution withdsp = 10λ, all
other parameters are the same as Fig. 2
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Fig. 5: 3-D plot of |Rc(dsp, xsp, τ)| for fDTs = 0.05 and dsp = 10λ
assuming a Laplacian distribution, all other relevant parameters are the same
as Fig. 2

where the fading is less rapid once again the spatial separation
at the receiver is dominant in the decrease of the space-
time cross correlation. This continued trend is best explained
through (10) ,z =

√
a2
1 + b21, a1 and b1 are defined for (8),

where xsp can be considered to be larger thanfDτ except
where τ is large. From the definition of (8) it is also clear
that xsp is considerably larger thana/d × dsp sinβ, see (5),
for dsp less than40λ in a MIMO microcellular radio channel
scenario, thus explaining it dominating the trend of space-time
cross correlation in Fig. 2 and Fig. 3.

In Fig. 8 and Fig. 9, the same parameters are used as Fig.
4 and Fig. 5 with a Laplacian distribution, except that the
angular spread is increased from15o to 30o. It can be seen
that similar results are obtained as Fig. 4 and Fig. 5. However
there is a sharper decrease at smaller antenna separation in the
cross-correlation over the range ofτ in Fig. 8 when compared
with Fig. 4. Also there is a greater diminution of the cross-
correlation at higherxsp in Fig. 9 when compared with Fig.
5.

Fig. 10 shows a plot of the space-frequency cross spec-
trum function, with the same parameters as previous figures
assuming a Laplacian distribution at the receiver, an angular
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Fig. 6: 3-D plot of magnitude of cross-correlation function|Rc(dsp, xsp, τ)|
for fDTs = 0.01 assuming a Von Mises distribution withdsp = 10λ, all
other parameters are the same as Fig. 2
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Fig. 7: 3-D plot of |Rc(dsp, xsp, τ)| for fDTs = 0.05 assuming a Von
Mises distribution withdsp = 10λ, all other relevant parameters are the
same as Fig. 2

spread of15o for two different directions of mobile movement,
ξ = 60o and ξ = 120o, with xsp = 2λ and dsp = 10λ.
It is shown in Fig. 10 that a change in the direction of
mobile movement has some effect on macroscopic system
performance over a range of Doppler frequencies up to the
maximal Doppler spread. Both curves are similar to the curve
for Doppler frequency spectrum for a single-input single-
output (SISO) radio channel with an isotropic distribution
(which has the well-known uniform∪ shape).

V. CONCLUDING REMARKS

A closed form solution has been found for the space-
frequency cross-spectrum which can be applied to continuous
fading MIMO channels for time-selective radio scenarios for
many common non-isotropic scatterer distributions. The closed
form solution can be applied to arbitrary numbers of trans-
mit and receive antennas, and arbitrary transmit and receive
antenna spacings, unlike previous derivations for the space-
frequency cross spectrum. These solutions can be applied to
development of space-time modems and analysis of space-time
modulation schemes.

The simulation study of the space-time cross correlation
showed the importance of consideration of spatial separation at
the receiver due to its dominant effect compared with transmit
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Fig. 8: 3-D plot of magnitude of cross-correlation function|Rc(dsp, xsp, τ)|
for fDTs = 0.01 assuming a Laplacian distribution withdsp = 10λ and
angular spread =30o, all other parameters are the same as Fig. 2
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Fig. 9: 3-D plot of |Rc(dsp, xsp, τ)| for fDTs = 0.05 and dsp = 10λ
assuming a Laplacian distribution angular spread =30o, all other relevant
parameters are the same as Fig. 2

antenna spacing and also time in the MIMO microcellular
radio scenario considered herein. The simulation of the space-
frequency cross spectrum illustrated some effect in a change in
the direction of receiver travel with respect to the transmitter.
It could reasonably be expected that changing other parameters
such as angle of receive antennas and mobile position angle
would also have effect on the cross spectrum.

The analysis herein could equally be applied to a macro-
cellular radio scenario where the scatterer radius and distance
is increased proportionally to the values used in analysis in
this paper. Furthermore the formulation for space-frequency
cross spectrum could be incorporated with a consideration of
propagation delay for wideband scenarios to apply the space-
frequency cross spectrum formulation herein to continuous
time and frequency selective fading radio scenarios.
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