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Abstract— The mutual information of a discrete time Rayleigh
fading channel is considered, where neither the transmitter nor
the receiver has the knowledge of the channel state information.
We specifically derive a lower bound for the mutual information
of this channel when the input distribution is Gaussian. The
bound is expressed in terms of the capacity of the corresponding
non fading channel and the capacity when the perfect channel
state information is known at the receiver.
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I. INTRODUCTION

AN independent and identically distributed (iid) Gaussian
is the capacity achieving input distribution for additive

white Gaussian noise (non-fading) channel, a Rayleigh fading
channel when the Channel State Information (CSI) is perfectly
known at the receiver, and when the CSI is known to both the
transmitter and the receiver.

However, when CSI is not known by neither the transmitter
nor the receiver, the capacity achieving distribution is not
Gaussian [1]. Therefore, it is of practical interest to find the
achievable information rate of Rayleigh fading channels for
Gaussian distributed input.

Fading channels have been studied in depth and a multitude
of literature is available on the upper and lower achievable
rates over the wireless media; refer [2], [3] for a summary.
The results presented under various channel models applying
constraints for mathematical representations, and the availabil-
ity of (CSI) at the transmitter and receiver.

The capacity of fading channels when the CSI is perfectly
known at the receiver was investigated initially by Ericson
[4], later by Lee [5], and Ozarow, Smamai and Wyner [6].
This capacity is calculated in an average sense due to the
time varying nature of the signal to noise ratio (SNR). The
fading channel with CSI at the receiver alone and at both the
transmitter and the receiver was extensively studied in [7], [8].

The iid Rayleigh fading channel with no CSI was studied by
Faycal [1], [9], where it was shown that the capacity achieving
distribution is discrete with finite number of mass points with
new emerging points as SNR increases. These mass point
distribution tends to be uniform as SNR approaches infinity,
deviating much form that of a Gaussian. The non coherent time
selective Rayleigh fading channel has been further investigated
by Yingbin and Venugopal [10] and derived upper and lower
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bounds on the capacity at high SNR. In this paper, we
determine how the Gaussian input distribution can contribute
in non coherent Rayleigh fading channel. We achieve this by
drawing a lower bound on mutual information and identifying
the maximum deviation of the actual capacity achieved with
a discrete input in the presence of Gaussian input.

This paper is organized follows. Section II describes the
system model for non coherent Rayleigh fading channel.
Section III formulates the mutual information using the input
and output probability distributions. The choice of Gaussian
input is described in IV with detailed analysis of differential
entropies at the channel output leading to the analytical lower
bound of the mutual information. The numerical results are
presented in brief in section V. The conclusions are given in
section VI.

II. SYSTEM MODEL

Consider the Rayleigh fading channel,

y = ax + n (1)

where y is the complex channel output, x is the complex
channel input, a and n represent the fading and noise compo-
nents associated with the channel. Note that the time index
is omitted for simplicity. It is assumed that a and n are
independent zero mean circular complex Gaussian random
variables. Also assume that σ2

a/2 and σ2
n/2 are the equal

variance of real and imaginary parts of the complex variables
a and n respectively. The random variables a, x, and n are
considered to be independent of each other. The input x ε
X is average power limited: E[|X|2] = σ2

x ≤ P . Neither the
receiver nor the transmitter has the knowledge of channel state
information.

III. THE MUTUAL INFORMATION

The Mutual information between the input and output of a
Rayleigh fading channel can be expressed as [11]

I(X; Y ) =

∫ ∞

0

∫ ∞

0

pY |X(y|x)pX(x)log
pY |X(y|x)

∫ ∞
0

pY |V (y|v)pV (v)dv
dxdy

(2)
considering the probability distribution of the magnitudes of
the input and output random variables X and Y . It should
be noted here that since we only consider the distribution of
magnitudes of the random variables, the integral in (2) is taken
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from 0 to ∞. The conditional probability density function
pY |X(y/x) [9] [11] is given by

pY |X(y|x) =
2|y|

σ2
n + σ2

a|x|2
e

−|y|2

σ2
n+σ2

a|x|2 . (3)

Assume the average mean squared power of both fading A,
(a ε A) and noise N , (n ε N ) are unity. This assumption
is valid since the effective received power at the receiver is
the combination of both σ2

a and σ2
x and the SNR is the ratio

between the average received power and the average noise
power. Therefore, the same output exists for various σ2

a and
σ2

n on the appropriate selection of σ2
x. With this assumption,

(3) can be written as

pY |X(y|x) =
2y

1 + x2
e

−y2

1+x2 . (4)

Without loss of generality, the magnitude sign is removed in
(4) and the same notation will be used throughout the rest of
this paper.

It can be shown [11] that, (2) can be simplified to the
following:

I(X;Y ) = −
∫ ∞

0

pY (y)loge pY (y)dy

− 1

2

∫ ∞

0

pX(x)loge(1 + x2)dx + loge 2 − (1 +
γ

2
).

(5)

This was originally proven by Taricco [11] to calculate the
channel capacity analytically using Lagrange optimization
method applying an additional constraint. The result in here
is expressed in nats and γ = 0.5772... is the Euler’s constant.
We separate the terms in (5) as difference between the output
entropy and it’s conditional entropy on the input as, I(X;Y ) =
h(Y ) − h(Y |X). Therefore we represent

h(Y ) = −
∫ ∞

0

pY (y)loge pY (y)dy, (6)

and

h(Y |X) =
1

2

∫ ∞

0

pX(x)loge(1 + x2)dx − log 2 + (1 +
γ

2
).

(7)

IV. GAUSSIAN INPUT IN NON COHERENT
RAYLEIGH FADING

Recall the channel model (1), and assume the input distri-
bution is Gaussian. Then the distribution of both the real and
imaginary parts of x are independent and Gaussian. Therefore,
the distribution of the |x| is Rayleigh with the probability
density function [12]

pX(x) =
2x

σ2
x

e
−x2

σ2
x , x ≥ 0. (8)

It is assumed that both the real and imaginary parts of input
have equal variance σx

2/2. The magnitude sign is omitted in
(8) as mentioned in the previous section.

A. Output Conditional Entropy

Having described the input distribution pX(x) for non
coherent Gaussian input channel, let’s look in to the output
conditional entropy h(Y |X) in (7). By substituting (8) in (7)
we have

h(Y |X) =

∫ ∞

0

[

x

σ2
x

e
−x2

σ2
x loge(1 + x2)

]

dx−loge 2+(1 +
γ

2
).

(9)
With the detailed proof provided in Appendix A, we can
reduce (9) to

h(Y |X) =
−e

1
σ2

x

2
Ei

(−1

σ2
x

)

− loge 2 + (1 +
γ

2
), (10)

where the exponential integral Ei(x) = −
∫ ∞

−x
e−t/t dt. The

channel capacity when the CSI is perfectly known at the
receiver is [2], [4], [5],

Crcsi = −e
1

snr Ei

( −1

snr

)

, (11)

where snr = σ2
x since σ2

n = 1. Therefore, h(Y |X) in non
coherent Rayleigh fading with Gaussian input can be expressed
as

h(Y |X) =
1

2
Crcsi − loge 2 + (1 +

γ

2
). (12)

B. Output Entropy

With |X| Rayleigh, as provided in (4), the output probability
density function pY (y) =

∫ ∞

0
pX(x)pY |X(y|x)dx can be

written as

pY (y) =

∫ ∞

0

2x

σ2
x

e
−x2

σ2
x

2y

1 + x2
e

−y2

1+x2 dx. (13)

We substitute (13) in (6) to get

h(Y ) = −
∫ ∞

0

[
∫ ∞

0

2x

σ2
x

e
−x2

σ2
x

2y

1 + x2
e

−y2

1+x2 dx

]

× loge

[
∫ ∞

0

2x

σ2
x

e
−x2

σ2
x

2y

1 + x2
e

−y2

1+x2 dx

]

dy. (14)

To the best of our knowledge, this integral can not be
evaluated analytically ∀ σ2

x. The mutual information calculated
numerically using Hermit polynomials and Simpson Rules are
plotted in Fig 1.

We will derive an analytical lower bound for (2) to observe
the effect on the channel with Gaussian input.

C. Lower Bound on Mutual Information

We have the following result.

Proposition 4.3.1: The mutual information of an iid non
coherent Rayleigh fading channel when the input distribution
is complex Gaussian, is lower bounded by

I(X;Y ) ≥ 1

2
(Ccnf − Crcsi) (15)

where Ccnf and Crcsi are the capacity of the non fading
complex Gaussian channel and the capacity of the Rayleigh
fading channel when the CSI is perfectly known at the
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Fig. 1. The mutual information with Gaussian input is below the channel
capacity achieved by a discrete input. (1) The mutual information with
gaussian input. (2) The channel capacity with a discrete input. (3) The channel
capacity, Crcsi with CSI. (4) The non fading channel capacity, Ccnf.

receiver. The equality holds when the average input power is
zero.

Proof : We consider I(X;Y ), h(Y ), and h(Y |X) when the
input power (σ2

x) is zero. Using (10), we get h(Y |X)σ2
x=0 =

−loge 2 + (1 + γ
2 ). Since the mutual information is zero with

no channel input, we can write

h(Y )σ2
x=0 = h(Y |X)σ2

x=0. (16)

The quantity h(Y ) in (14) is monotonically increasing with
SNR, thus it has the minimum

h(Y )min = −loge 2 + (1 +
γ

2
). (17)

Consider, a non fading channel whose capacity achieving dis-
tribution is Gaussian, where h(Y |X)nf = h(N) = 1

2 log(πeσ2
n)

is constant over input power. The monotonic increase of
h(Y )nf = 1

2 log(πe(σ2
n + σ2

x)) with SNR results in significant
increase in channel capacity.
However, in the presence of fading, h(Y |X) is not a constant

anymore and we investigate the effect on the mutual infor-
mation of this Rayleigh fading channel by comparing output
entropies in two cases. Here we only consider a one half of
the full complex domain in the non fading model. Figure 2
portrays h(Y ) and h(Y |X) of the two channel models, where

h(Y )nf =
1

2
loge(πe(1 + σ2

x)) (18)

and
h(Y |X)nf =

1

2
loge(πe). (19)

Note that the abbreviation “nf” refers the Gaussian channel
with no fading present.
Since the Gaussian distributions are the entropy maximisers
with the input power constraint,

h(Y )nf > h(Y ) ∀ σ2
x. (20)
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Fig. 2. Entropy Comparison with Fading and Non fading Models: (1) Output
conditional entropy of non fading channel, hnf(Y ). (2) Output conditional
entropy of fading channel with Gaussian input. (3) Output entropy of fading
channel, h(Y ). (4) Output entropy of non fading channel, h(Y )nf. The h(Y )nf
and h(Y ) treated in this paper has a similar shape and the difference is
decreasing with SNR.

Lets define the difference in (20)

G = h(Y )nf − h(Y ), (21)

and investigate the bounds when σ2
x = 0 and σ2

x → ∞. The
Gσ2

x=0 can be written as

Gσ2
x=0 = h(Y )nf,σ2

x=0 − h(Y )min

=
1

2
loge(πe) + loge 2 − (1 +

γ

2
). (22)

To calculate the difference when σ2
x → ∞, we will use the

upper bound
lim

σ2
x → ∞I(X;Y ) ≤ γ (23)

given in [13]. Using (12) and (14), we can write the mutual
information of the channel as

I(X;Y ) = h(Y ) − 1

2
Crcsi + loge 2 − (1 +

γ

2
). (24)

Substituting (23) and (24) in (21), we get,

Gσ2
x→∞ ≥ 1

2

lim

σ2
x → ∞

[

loge(πe(1 + σ2
x)) + e

1
σ2

x Ei

(−1

σ2
x

)]

− γ + loge 2 − (1 +
γ

2
)

= L − γ + loge 2 − (1 +
γ

2
), (25)

where L = 1
2 (γ + loge(πe)). Refer the Appendix B for the

detailed proof. Therefore we can write (25) as,

Gσ2
x→∞ ≥ loge(2

√
πe) − (1 + γ). (26)

Note that Gσ2
x=0 > Gσ2

x→∞. Also the differential entropies
defined here are monotonic and concave. Therefore we con-
clude that the maximum difference occurs at σ2

x = 0. This
Gmax = Gσ2

x=0 can be used to lower bound h(Y ) in (14) and
we get

h(Y ) ≥ h(Y )nf − Gmax. (27)
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Fig. 3. Analysis of the lower bound in fading channel: (1) The lower
bound with Gaussian input. (2) Numerical results of mutual information with
Gaussian input. (3) The channel capacity achieved with a discrete input.

0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

Input Power

%
 L

os
t i

n 
M

ut
ua

l I
nf

or
m

at
io

n

(1) 

(2) 

Fig. 4. Percentage lost using the lower bound: (1) With the mutual
information found numerically for Gaussian input. (2) With the channel
capacity.

Therefore, the mutual information in (24) can be lower
bounded as

I(X;Y ) ≥ h(Y )nf − Gmax −
[

1

2
Crcsi − loge 2 + (1 +

γ

2
)

]

= h(Y )nf −
1

2
loge(πe) − 1

2
Crcsi

=
1

2
loge (1 + σ2

x) − 1

2
Crcsi, (28)

using (12), (18), and (22). With Ccnf = loge (1 + σ2
x), we

prove (15).
It should be noted here that (15) asymptotically converges to
γ/2 since lim

σ2
x→

∞ (Ccnf − Crcsi) = γ [13].

V. NUMERICAL RESULTS

We compare the new lower bound with the mutual infor-
mation found numerically in section IV.

The lower bound in (15) is plotted against the input power
in Fig 3 with the actual mutual information calculated numer-
ically. Also, it has been compared with the capacity of this
channel that is achieved by a discrete input [1]. The channel
capacity is plotted for comparison only with two discrete mass
points one located at the origin since the probability of other
mass points are small at low SNR and even suited for a simple
comparison at high SNR due to the percentage increase in
capacity is low [9]. The percentage lost in mutual information
with a Gaussian input on our lower bound is plotted in Fig 4.
It is 30 % less than that of numerical values.

A. Upper Bound

Having found h(Y |X) analytically in (10), it is easy to
draw an upper bound since h(Y ) in (14) is maximised with a
Gaussian distribution of |Y |. Therefore, we get

I(X;Y ) = h(Y ) − 1

2
Crcsi + loge 2 − (1 +

γ

2
)

≤ hGaussian(Y ) − 1

2
Crcsi + loge 2 − (1 +

γ

2
)

= loge(πe(1 + σ2
x)) − 1

2
Crcsi + loge 2 − (1 +

γ

2
).

(29)

However, this upper bound is not tight since it is very high
at low SNR. But it converges as SNR increases leading to a
useful bound. Also this upper bound deviates a lot from the
actual mutual information where the correct asymptotic value
when SNR approaches infinity is given in (23). The asymptotic
bound provided in [13] demonstrates that the mutual informa-
tion corresponding to a Gaussian input is bounded in the SNR
and the result does not depend heavily on the Rayleigh fading
assumption.

VI. CONCLUSIONS

The mutual information of a non-coherent Rayleigh fading
channel for a Gaussian input can be lower bounded as the
difference between the capacities of non fading channel and
the Rayleigh fading channel when the perfect channel state
information is known at the receiver. Even the Gaussian input
is not optimal, our result shows the minimum achievable
information rate which can be used as the worse case scenario
in non coherent Rayleigh fading channels. The lower bound
found is never lower than 70 % of the actual.

VII. APPENDIX

A. PROOF OF CONDITIONAL ENTROPY IN (10)

We write (9) as

h(Y |X) = E1 − loge 2 + (1 +
γ

2
) (30)

where

E1 =
lim

k1→∞

∫ k1

0

x

k2
e

−x2

k2 loge(1 + x2)dx, x ≥ 0 (31)

and k2 = σ2
x.
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Consider the integral part of (31). Using integration by parts,
we get

∫ k1

0

x

k2
e

−x2

k2 log(1 + x2)dx =

[

−1

2
e

−x2

k2 log (1 + x2)

]k1

0

+

∫ k1

0

e
−x2

k2
x

(1 + x2)
. (32)

Substituting t = 1+x2, the second term of (32) can be written
as

∫ k1

0

e
−x2

k2
x

(1 + x2)
=

1

2
e

1
k2

∫ 1+k1
2

1

e
−t
k2

t
dt. (33)

Substituting u = t/k2 in the right hand side of (33) we get

∫ k1

0

e
−x2

k2
x

(1 + x2)
=

1

2
e

1
k2

∫

1+k1
2

k2

1
k2

e−u

u
du

=
1

2
e

1
k2

[

∫ ∞

1
k2

e−u

u
du −

∫ ∞

1+k1
2

k2

e−u

u
du

]

=
1

2
e

1
k2

[

Ei

[

−(
1 + x2

k2
)

]]k1

0

. (34)

Using this identity in (32) we get
∫ k1

0

x

k2
e

−x2

k2 log(1 + x2)dx =
1

2
e

1
k2

[

Ei

[

−(
1 + x2

k2
)

]]k1

0

−
[

1

2
e

−x2

k2 log (1 + x2)

]k1

0

.

(35)

Now we can write (31) as

E1 =
lim

k1→∞
1

2

[

e
1

k2 Ei

[

−(
1 + k1

2

k2
)

]

− e
−k1

2

k2 loge (1 + k1
2)

]

− 1

2
e

1
k2 Ei

[

− 1

k2

]

. (36)

By applying La’Hospital’s Rule, it can be shown that

lim

k1→∞
1

2
e

−k1
2

k2 loge (1 + k1
2) = 0. (37)

Also note that Ei(−∞) = 0 [14], thus

E1 = −1

2
e

1
k2 Ei

[

− 1

k2

]

. (38)

By substituting (38) in (30) completes the proof.

B. PROOF OF THE ASYMPTOTIC ANALYSIS USED IN (25)

Let’s define ξ = σ2
x and we write the asymptotic value in

(25) as,

L =
1

2

lim

ξ → ∞

[

loge(πe(1 + ξ)) + e
1
ξ Ei

(−1

ξ

)]

(39)

where the exponential integral can be expressed as, [15]

Ei(−x) = γ + e−xlog x +

∫ x

0

e−tlog tdt. (40)

Using this identity we get,

L =
1

2

lim

ξ → ∞

[

loge(πe(1 + ξ)) + e
1
ξ

(

γ + e
−1
ξ log

1

ξ

)]

+
1

2

lim

ξ → ∞e
1
ξ (

∫ e
1
ξ

0

e−tlog tdt)

=
1

2

lim

ξ → ∞

[

loge(πe(1 +
1

ξ
)) + γe

1
ξ

]

+ 0

=
1

2
(γ + loge(πe)) (41)

which competes the proof.

C. DIFFERENCE BETWEEN FADING AND NON FADING
ENTROPIES

In order to lower bound our results, we have shown that the
difference between h(Y )nf and h(Y ) in (14) is monotonically
decreasing based on our asymptotic analysis with the property
of concavity in differential entropies. We will try to further
investigate the G(σ2

x) taking the derivative of it and verifying
the negativity ∀ σ2

x. Lets assume P = σ2
x for simplicity, we

get

G(P ) =
1

2
log[πe(σ2

n + P )] − h(Y ). (42)

Differentiating with respect to P we get

∂G(P )

∂P
=

1

2(P + σ2
n)

+

∫ ∞

0

[

1 + log

[
∫ ∞

0

2xK

P
e

−x2

P dx

]]

(MP,K)dy.

(43)
Where

(MP,K) =

∫ ∞

0

2xK

P 2
e

−x2

P

[

x2

P
− 1

]

dx (44)

and

K =
2y

(1 + x2)
e

−y2

(1+x2) (45)

The derivative in (43) is not possible to solve analytically
and only numerical evidence shows that ∂G(P )

∂P
< 0 ∀ P .

Therefore, this results has been used in lower bounding the
mutual information in (28).
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