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Abstract— In this paper, we derive an upper-bound for
the pair-wise error probability of spac e-tim e c odes whic h
c aptures the effec ts of the transm itter and the rec eiver
antenna c onfi g urations (antenna separation and antenna
g eom etry ) and the surrounding sc attering distributions at
the transm itter and the rec eiver antenna array s. T his
new upper-bound allows investig ation of the individual
effec ts of antenna c onfi g uration and sc attering environm ent
param eters on the perform anc e of spac e-tim e c odes. U sing
this upper-bound, we q uantify the deg ree of the effec t of
antenna c onfi g uration on the diversity advantag e g iven by
a spac e-tim e c ode. S im ulation results show that as the
num ber of antennas inc rease within a fi x ed aperture, the
diversity advantag e of a spac e-tim e c ode is upper-lim ited
by the siz e of the antenna aperture.

I n d e x T e rm s— C hernoff upper-bound, m odal c orrelation,
M IM O sy stem , non-isotropic sc attering , spac e-tim e trellis
c ode.

I . I N T R O D UC T I O N

T he C hernoff upper-bound on pairwise error prob-
ability (PEP) ov er uncorrelated MIMO channels was
orig inally deriv ed in [1 ] , by Tarokh et al. B ased upon this
upper-bound, desig n rules for space-tim e trellis codes
were proposed.

S ev eral approaches hav e been found in literature,
where the upper-bound for PEP is applied to corre-
lated MIMO channels, [ 2 ] , [ 3 ] . H owev er, with these
approaches, the upper-bound is constrained by one of
the following : the correlation is restricted to one end
of the channel; antenna config uration is restricted to
uniform linear arrays; the scattering distribution around
the antenna aperture is confined to a particular scattering
distribution. In [4 ] , [ 5 ] , an upper-bound for the PEP
is deriv ed considering correlations at both ends of the
channel. H owev er the bound presented there does not
allow inv estig ation of the indiv idual effects of antenna
spacing , antenna placem ent and scattering env ironm ents
on space-tim e codes.
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In this paper, we present a g eneraliz ed upper-bound
for PEP on correlated MIMO channels, where the bound
can be applied to any k ind of antenna g eom etry and wide
v ariety of scattering distributions at the receiv er and the
transm itter antennas. W e discuss how this upper-bound
dev iates from the g lobal upper-bound deriv ed by Tarokh

et al with the introduction of space (antenna separa-
tion and antenna placem ent) and surrounding scattering
distributions. W e q uantify the num ber of antennas that
can be em ployed in a g iv en antenna aperture, without
dim inishing the div ersity adv antag e of a space-tim e code,
and show it is lim ited by the siz e of the antenna aperture.

T he following notations are used in this paper. [·]
T ,

[·]
∗ and [·]

† denote the transpose, com plex conjug ate
and conjug ate transpose operations, respectiv ely. T he
sym bols δ(·) and ⊗ denote the D irac delta function and
Matrix K roneck er product, respectiv ely. T he m atrix In

is the n × n identity m atrix .

I I . S Y S T EM MO D EL

C onsider a MIMO system consisting of nT transm it
antennas and nR receiv e antennas. D ata transm itted from
nT transm it antennas are encoded by a space-tim e code
X , where X is nT ×L, L is the code leng th. A ssum ing
q uasi-static fading , the sig nals receiv ed at nR receiv er
antennas during L sym bol periods can be ex pressed in
m atrix form as

Y =
√

EsHX + N ,

where Es is the transm itted power per sym bol at
each transm it antenna, H is the nR × nT z ero-m ean
com plex v alued channel g ain m atrix , N is the noise
represented by nR×L com plex m atrix in which entries
are z ero-m ean independent G aussian distributed random
v ariables with v ariance N0/2 per dim ension and Y is
nR × L.

B y tak ing into account physical aspects of scattering ,
the channel m atrix H can be decom posed into determ in-
istic and random parts as [6 ] [ 7 ]

H = JRHSJ
†
T
, ( 1 )

where JR and JT are determ inistic and HS is a random
m atrix with com plex norm al G aussian distributed entries.
A ccording to the channel m odel proposed in [6 ] , Hs

is an i.i.d channel m atrix , which has z ero-m ean unit
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variance complex Gaussian entries, while JR and JT

are associated to the receiver and transmitter antenna
correlation matrices, respectively. In [7], Hs represents
the random non-isotropic scattering environment, while
JR and JT represent the effect of antenna geometries at
the receiver and transmitter antenna arrays, respectively.
In the next section, we present the Chernoff upper-bound
applied to correlated MIMO channels where the channel
matrix H has the decomposition (1).

III. CHERNOF F UPPER BOUND ON CORRELATED
MIMO CHANNELS

Assume that perfect channel state information (CSI)
is available at the receiver and maximum likelihood
(ML) detection is employed at the receiver. Assume that
the codeword X was transmitted, but the ML-decoder
chooses another codeword X̂ . Then the PEP, conditioned
on the channel, is upper bounded by the Chernoff bound

[1]

P (X → X̂|h) ≤ e x p

(

−
Es

4N0

d2

h(X, X̂)

)

, (2)

where d2

h
(X, X̂) = h[InR

⊗ C∆]h†, C∆ = (X −

X̂)(X − X̂)
†
, h = (v e c (HT ))T a row vector and

H has the decomposition given in (1). To compute the
average PEP, we average (2) over the joint distribution
of h. Assume that h is a proper complex1 nT nR-
dimensional Gaussian random vector with mean 0 and
covariance matrix RM = E

{

h
†
h

}

, then the pdf of h

is given by [8]

p(h) =
1

πnT nR d e t [RM ]
e x p { −hR

−1

M
h
†},

provided that RM is non-singular. Then the average PEP
is bounded as follows

P (X → X̂) ≤
1

πnT nR d e t [RM ]

∫

e x p { −hR
−1

h
†}dh

(3)

where R
−1 = ( Es

4N0

InR
⊗ C∆ + R

−1

M
). Assume RM

is non-singular (positive defi nite), therefore the inverse
R

−1

M
is positive defi nite, since the inverse matrix of

a positive defi nite matrix is also positive defi nite [9,
page 142]. Also note that C∆ is Hermitian and it has
positive eigenvalues (through code construction, e.g. [1]),
therefore C∆ is positive defi nite, hence InR

⊗ C∆ is
also positive defi nite. Therefore R

−1 is positive defi nite
and hence R is non-singular. Using the normalization
property of Gaussian pdf

1

πnT nR d e t [R]

∫

e x p { −hR
−1

h
†}dh = 1,

we can simplify (3) to

P (X → X̂) ≤
d e t [R]

d e t [RM ]
=

1

d e t
[

R
−1

RM

] ,

1To be proper complex, the mean of both the real and imaginary
parts of HS must be zero and also the cross-correlation between real
and imaginary parts of HS must be zero.

or equivalently

P (X → X̂) ≤
1

d e t
[

InT nR
+ Es

4N0

RM [InR
⊗ C∆]

] . (4)

Substituting (1) for H in h = (v e c(HT ))T

with Kronecker product identity [9, page 180]
v e c (AXB) = (BT ⊗ A) v e c (X), we may write

RM = E
{

h
†
h

}

= E
{

(J∗
R ⊗ JT )h†

S
hS(JT

R ⊗ J
†
T
)
}

,

where hS = (v e c(HT

S ))T is a row vector. In the above
equation, JR and JT are deterministic matrices and hS

is random. Therefore we write

RM = (J∗
R ⊗ JT )RS(JT

R ⊗ J
†
T
), (5)

where RS = E
{

h
†
S
hS

}

. F or the channel model in
[6], since the elements of HS are independent and
identically distributed, RS = I . F or the channel model
in [7], RS represents the covariance matrix of the
scattering environment, which can either be correlated
or uncorrelated, unlike the RS in [6].

In this work, we are interested in investigating the
impact of antenna separation, antenna geometry and the
scattering environment on the Chernoff upper-bound.
The channel model given in [6] is restricted to a uniform
linear array antenna confi guration and a fi nite number
of scatterers around the transmitter and receiver antenna
arrays. However, the channel model given in [7], is
capable of capturing different antenna geometries as well
as various non-isotropic power distributions. Therefore,
from here onwards, we use the 2-D spatial channel
model2 given in [7] to investigate the Chernoff upper-
bound.

A. S p atial Channel M odel

In the channel model of [7], JT is the nT×(2MT +1)
transmitter antenna confi guration matrix and JR is the
nR×(2MR + 1) receiver antenna confi guration matrix,
where (2MT +1) and (2MR+1) are the number of effec-
tive communication modes3 available at the transmitter
and the receiver regions, respectively. Note that, MT and
MR are determined by the size of the antenna aperture
[10], but not from the number of antennas encompassed
in an antenna array, and is given by M = dπer/λe,
where d.e is the ceiling operator, r is the minimum radius
of the antenna aperture, e ≈ 2.7 18 3 and λ is the wave-
length. F inally, HS is the (2MR+1)×(2MT +1) random

2 The 2-dimensional case is a special case of 3-dimensional case
where all the signals arrive from horizontal plane only.

3The set of modes form a basis of functions for representing a
multipath wave fi eld.
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scattering matrix with (`, m)-th element given by

{HS}`,m =

∫ π

0

∫ π

0

g(φ, ϕ)e−i(`−MR−1)ϕei(m−MT −1)φdϕdφ

(6)

for ` = 1, · · · , 2MR + 1, m = 1, · · · , 2MT + 1.
Note that {HS}`,m represents the complex gain of
the scattering channel between the m-th mode of the
transmitter region and the `-th mode of the receiver
region, where g(φ, ϕ) is the scattering gain function
which gives the effective random complex gain for
signals leaving the transmitter aperture with angle of
departure φ and arriving at the receiver aperture with
angle of arrival ϕ.

B. Remarks on New Upper-bound

Following remarks can be made regarding the upper-
bound (4) and its association with the space-time trellis
codes.

i). Antenna geometries, both at the transmitter and the
receiver regions are incorporated into the upper-bound
through matrices JT and JR in (5). Correlation effects
due to the surrounding non-isotropic scattering distribu-
tions are also captured by the inclusion of correlation
matrix RS in (5). Upper-bound (4) together with the
channel model [7] allows us to investigate the individual
effects of antenna separation, antenna placement and
scattering environment parameters such as mean angle-
of-arrival (AOA) and angular spread on the performance
space-time codes. Note that upper-bounds found in [4],
[5] do not allow one to analyze the individual effects
of above mentioned deterministic and random factors on
space-time codes.

ii). Tarokh et. al., in [1], has used the PEP upper-
bound for uncorrelated channels to derive the design
rules for space-time trellis codes, under the hypothesis
of high SNR. In these design rules, the overall diversity
advantage of the system, dg , is associated with the rank
of the code word difference matrix times the number
of receiver antennas, i.e., dg = nRra n k (C∆). However
using the new upper-bound, it is possible to show that
the quantitative degree to which the diversity advantage
of a space-time code is reduced due to the size of
the antenna aperture, antenna geometry and scattering
environment parameters.

At high SNRs, the upper-bound (4) becomes

P(X → X̂) ≤
1

det
[

Es

4N0

RM [InR
⊗ C∆]

] , (7)

and the overall diversity advantage of the system is
given by the rank of RM [InR

⊗ C∆]. Assume that
scattering environment is uncorrelated4, i.e., RS =

4A similar analysis can be carried out for correlated scattering
environments as done in [4]

I(2MT + 1)(2MR+ 1) , then

dg = m in {ra n k (JT )ra n k (JR), nRra n k (C∆)} .

If ra n k (JT )ra n k (JR) < nRra n k (C∆), then the di-
versity advantage provided by the space-time code is
reduced by the effect of transmitter and receiver antenna
confi guration matrices. Note that JT is nT×(2MT + 1)
and JR is nR×(2MR + 1), where MT and MR are
determined by the size of the transmitter and receiver
regions [10], but not by the number of antennas encom-
passed in the region. Therefore, it is possible to have a
situation where the number of effective modes available
in a region are less than the number of antennas used
in that region. Thus, in such a scenario, rank of the
antenna confi guration matrix is less than the number
of antennas which are being used for transmission or
reception, which will results in reduction of diversity
advantage from that system.

C. K ronecker P roduct Model as a Special Case

In some circumstances, RS can be expressed as Kro-
necker product between two matrices [11]

RS = E
{

h
†
ShS

}

= F R ⊗ F T , (8)

where F R and F T can be considered as correlation
matrices observed at the receiver and the transmitter
arrays, respectively.

Substituting (8) into (5) gives

RM = (J∗
R ⊗ JT )(F R ⊗ F T )(JT

R ⊗ J
†
T ), (9a)

= (J∗
RF RJ

T
R) ⊗ (JT F T J

†
T ), (9b)

where (9b) follows from (9a) by matrix identity [9, page
180] (A⊗C)(B⊗D) = AB⊗CD, provided that the
matrix products AB and CD exist. Substituting (9b)
into (4) yields the upper-bound

P(X→X̂)≤
1

det
[

IQ + Es

4N0

(J∗
RF RJ

T
R)⊗(JT F T J

†
T C∆)

]

(10)

where Q = nT nR.
In the next section, we provide the conditions pertain-

ing to factorization (8) for the channel model given in
[7] and also the precise defi nitions of F R and F T . The
upper-bound (10) will be used later in Section IV -B to
analyze the correlation effects of scattering environment.

D . Transmitter and Receiv er Modal Correlation

Using (6), we defi ne the modal correlation between
complex scattering gains as

γ`,`′

m,m′ , E
{

{HS}`,m{HS}
∗
`′,m′

}

.

Assume that the scattering from one direction is in-
dependent of that from another direction for both the
receiver and the transmitter apertures. Then the second
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order statistics of the scattering gain function g(φ, ϕ) can
be defi ned as

E {g(φ, ϕ)g∗(φ′, ϕ′)} , G(φ, ϕ)δ(φ − φ′)δ(ϕ − ϕ′),

where G(φ, ϕ) = E
{

|g(φ, ϕ)|2
}

with normalization
∫ ∫

G(φ, ϕ)dϕdφ = 1. With the above assumption, the
modal correlation coeffi cient, γ`,`′

m,m′ can be simplifi ed to

γ`,`′

m,m′ =

∫ ∫

G(φ, ϕ)e−i(`−`′)ϕei(m−m′)φdϕdφ.

Then the correlation between `-th and `′-th modes at the
receiver region due to the m-th mode at the transmitter
region can be given as

γRx
`,`′ =

∫

PRx (ϕ)e−i(`−`′)ϕdϕ, (11)

where PRx (ϕ) =
∫

G(φ, ϕ)dφ is the normalized azimuth
power distribution of the scatterers surrounding the re-
ceiver antenna region. Here we see that modal correlation
at the receiver is independent of the mode selected from
transmitter region. Similarly, we defi ne the correlation
between m-th and m′-th modes at the transmitter as

γT x
m,m′ =

∫

PT x (φ)ei(m−m′)φdφ, (12)

where PT x (φ) =
∫

G(φ, ϕ)dϕ is the normalized azimuth
power distribution at the transmitter region. As for the
receiver modal correlation, we can observe that modal
correlation at the transmitter is independent of the mode
selected from receiver region. Note that, azimuth power
distributions PRx (ϕ) and PT x (φ) can be modeled us-
ing all common power distributions such as Uniform,
Gaussian, Laplacian, Von-Mises, etc.

Denoting the p-th column of scattering matrix HS

as HS,p , the (2MR + 1) × (2MR + 1) receiver modal
correlation matrix can be defi ned as

F R , E
{

HS,p H
†
S,p

}

,

where (`, `′)-th element of F R is given by (11) above.
Similarly, the transmitter modal correlation matrix can

be written as

F T = E
{

H
†
S,q HS,q

}

,

where HS,q is the q-th row of HS . (m, m′)-th element
of F T is given by (12) and F T is a (2MT +1)×(2MT +
1) matrix. The correlation between two distinct modal
pairs can be given as the product of corresponding modal
correlation at the transmitter and the modal correlation
at the receiver, i.e.,

γ`,`′

m,m′ = γRx
`,`′γ

T x
m,m′ . (13)

Facilitating (13), we may write the correlation matrix
of the scattering channel HS as the Kronecker product
between the receiver modal correlation matrix and the
transmitter modal correlation matrix,

RS = E
{

h
†
ShS

}

= F R ⊗ F T . (14)

Note that (13) holds only for class of scattering envi-
ronments where the power spectral density of modal
correlation function satisfi es [11], [12]

G(φ, ϕ) = PT x (φ)PRx (ϕ). (15)

Note that, (15) is the necessary condition in which a
channel must satisfy in order to hold the upper-bound
(10), that we derived earlier in Section III-C.

IV. AN EX AMPLE

In this section, we compare the Chernoff bound de-
rived in [1] with the new upper-bound, which caters
for antenna spacing, antenna placement and surrounding
scattering environments. As an example, we consider
the Q PSK 4-state space-time trellis code given in [1]
for nT = 2 antennas, which is illustrated in Fig.1. The
labelling of the trellis branches follow [1]. The Q PSK
signal points are mapped to the edge label symbols as
shown in Fig. 1.

00, 01, 02, 03

10, 11, 12, 13

20, 21, 22, 23

30, 31, 32, 33

0

1

2

3

1: Trellis diagram for 4-state space-time code for QPSK constellation.

A ssu me th at th e code w ord associated to all-z ero
seq u ence is transmitted, th en th e C h ernoff u pper-b ou nd
[1 , E q . ( 8 ) ] for th e sh ortest error ev ent path of length
N = 2, as illu strated b y sh ading in F ig. 1 , is fou nd to
b e

P (X → X̂) ≤

(

1 +
Es

N0

)

−2nR

. ( 1 6 )

A. Effects of antenna placement

F irst w e consider th e effect of space (antenna separa-
tion and placement) on th e C h ernoff u pper-b ou nd, w h en
RS = I(2MT + 1 )(2MR+ 1 ) . Tw o transmitter antennas are
placed h alf w av elength (λ/ 2) apart, w h ich corresponds
to 2dπ e0.5e + 1 = 11 effectiv e commu nication modes
at th e transmitter apertu re and ra n k (JT ) = 2. H ere w e
prov ide th e simu lation resu lts of th e u pper-b ou nd (4) for
th e sh ortest error ev ent path of length 2 as sh ow n in
F ig. 1 for one, tw o, th ree and fou r receiv er antennas.
F or each antenna sy stem, th e glob al u pper-b ou nd (1 6 ) is
also plotted for comparison.

F or th e single receiv er antenna case, w e place th e
receiv er antenna at th e centre of th e circu lar apertu re.
F or th e oth er th ree cases, receiv er antennas are placed
in a circu lar apertu re w ith radiu s 0.1λ, as sh ow n in
F ig. 2 . N ote th at r = 0.1λ corresponds to 2dπ e0.1e +
1 = 3 effectiv e commu nication modes at th e receiv er

3 1



aperture. With three and four receiver antenna cases, we
also compare the behavior of the new upper-bound for
different antenna geometries5 such as uniform circular
array (U CA) and uniform liner array (U L A).

rrr

R1

r
R3 R1

R3

r
R2

O

R4

OO

O

R2

R2

R2

R3

R3

R4

R1R2 R1 R1

O

(a) (b) (c)

(d) (e)

2: R eceiver antenna confi gurations: (a) 2-R x antennas are placed on
x -ax is, (b),(d) 3,4-R x antennas are placed on an uniform circular array,
(c), (e) 3,4-R x antennas are placed on an uniform linear array.

Simulation results for 1 and 2 receiver antennas are
shown in Fig. 3. With the single receiver antenna, the
performance deviation between the new upper-bound
and the global upper-bound is not signifi cant. With two
receiver antennas, the new upper-bound is 1-dB away
from the global upper-bound. Fig. 3 shows that both the
global upper-bound and the new upper-bound have the
same slope, which indicates that two upper-bounds of
the code have the same diversity advantage. However,
for the 2×2 system a horizontal shift of the new upper-
bound from global upper-bound is observed, which
indicates a loss in coding gain due to the introduction
of space.

0 2 4 6 8 10 12 14 16 18 20
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Average Symbol SNR (dB)

P
E

P
 b

ou
nd

2−Tx and 1−Rx − w/o ant conf
2−Tx and 1−Rx − with ant conf
2−Tx and 2−Rx − w/o ant conf
2−Tx and 2−Rx − with ant conf

2−Tx and 2−Rx 

2−Tx and 1−Rx 

3 : L ength 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and nR receive antennas (nR = 1, 2).

Simulation results for 3 and 4 receiver antennas are

5The upper-bound developed here can be applied to any antenna
confi guration.

shown in Fig. 4. First we consider the three receiver
antenna case. Three receiver antennas are placed in a
U CA and are also placed in a U L A as depicted in
Fig. 2(b) and Fig. 2(c), respectively. We found that
rank(JR) = 3 for U CA and rank(JR) = 2(< nR)
for U L A. From Fig. 4 we observed that the performance
deviation between the new upper-bound and the global
upper-bound is signifi cant for both U CA and U L A
antenna confi gurations. For U CA antenna confi guration
we only observe a coding gain loss whereas for U L A
antenna confi guration we observe a coding gain loss as
well as a diversity gain loss from the space-time code.
Here the diversity loss from U L A is due to the loss of
rank of JR, where rank(JR) is less than the number of
receiver antennas employed in the receiver array.

Now we consider the four receiver antenna case,
where four receiver antennas are placed in a U CA and a
U L A as depicted in Fig. 2(d) and Fig. 2(e), respectively.
Fig. 4 shows that both antenna confi gurations reduce the
diversity gain and the coding gain given by the code (c.f.
with the global upper-bound). The ex pected diversity
advantage from the 4-state QPSK space-time trellis code
with 2-transmit and 4-receive antennas is 8. However,
with the U CA antenna confi guration, the overall diversity
advantage given by the code is reduced to 6, as the rank
of JR is 3 and with the U L A antenna confi guration, it
is reduced to 4 as the rank of JR is 2. This indicates
that the diversity gain of a space-time coded system is
governed by the rank of the antenna confi guration matrix
and the number of effective communication modes in
the antenna aperture (directly related to the radius of the
antenna aperture). In fact, the upper-limit for max imum
number of antennas in an antenna aperture, without
loosing the diversity advantage of the space-time code, is
given by the number of effective communication modes
in that antenna aperture. However, if more than two
antennas are aligned in a line, then further diversity
reduction will be occurred (e.g. U L A case above).

Note that, performance deviations we see here are due
to the introduction of space into the analysis of M I M O
system and we have yet to consider the correlation effects
of the scattering environment. In the nex t section we dis-
cuss the correlation effects of the scattering environment
on the Chernoff upper-bound.

B. Effects of Scattering Environment Parameters

We now investigate the effect of modal correlation
on the Chernoff upper-bound. For simplicity, we only
consider the modal correlation at the receiver region
and assume that the effective modes available at the
transmitter are uncorrelated, i.e. F T x = I2MT +1. I t
was shown in [13] that, all azimuth power distributions
(non-isotropic distributions) give very similar correlation
values for a given angular spread. Therefore, without loss
of generality, we restrict our investigation to U niform
limited azimuth power distribution (U L -APD ) only. For
the U L -APD , the modal correlation coeffi cient at the
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4: Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and nR receive antennas (nR = 3, 4).

receiver is given by

γRx
l,l

′ = sinc((l − l
′

)∆)e−i(l−l
′

)ϕ0 ,

where ϕ0 is the mean angle of arrival (AOA) and ∆ is
the non-isotropic parameter of the power distribution,
which is related to the angular spread σ. In this case,
σ = ∆/

√
3.

Consider a MIMO system consisting of two transmit-
ter antennas and two receiver antennas. Antennas on each
aperture are placed (λ/2) apart and they are positioned
on the x-axis relative to their aperture origin. Aperture
radius λ/2 corresponds to 11 effective communication
modes in each aperture and the rank of each antenna
confi guration matrix is 2. Therefore, this antenna confi g-
uration setup does not diminish the diversity advantage
given by the code, however it reduces the coding gain
due to the fi nite antenna spacing.

Simulation results of the new upper-bound are shown
in Fig. 5, for mean AOA ϕ0 = 30◦ from broadside.
Angular spreads of σ = [18 0◦, 6 0◦, 30◦, 5◦] have been
considered. On the same fi gure, the global upper-bound
and the new upper-bound without modal correlation ef-
fects are also super imposed. Note that, upper-bound for
σ = 18 0◦, which represents the isotropic scattering, is
overlapped with the bound with zero modal correlation,
as expected.

As shown, the new upper-bound moves away from the
global upper-bound as the angular spread σ decreases.
At 10 dB SNR, the new upper-bound is 2dB, 4dB and
8dB away from the global upper-bound for angular
spreads 6 0◦, 30◦, 5◦ respectively. The higher deviation
of the new upper-bound from the global upper-bound at
small angular spreads is due to the higher concentration
of energy arriving closer to the mean AOA. This effect
will make the MIMO channel to be rank defi cient,
hence the loss of diversity. Note that when σ = 0◦,
the rank of the receiver modal correlation matrix will
be 1, which results in no diversity advantage from the
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5 : Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and two receive antennas for a Uniform limited
power distribution with mean AOA 30

◦ from broadside.

code. Fig. 6 shows the simulation results for mean
AOA ϕ0 = 6 0◦ from broadside and angular spreads of
σ = [18 0◦, 6 0◦, 30◦, 5◦]. We observed that as the mean
AOA moves away from the broadside, the new upper-
bound moves further away from the global upper-bound.
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6 : Length 2 error event of 4-state QPSK space-time trellis code with
two transmit antennas and two receive antennas for a Uniform limited
power distribution with mean AOA 6 0

◦ from broadside.

V . CONCLUSION

We derived an upper-bound for the pair-wise error
probability of space-time codes which captures the ef-
fects of the transmitter and the receiver antenna con-
fi gurations and the surrounding scattering distributions
at the transmitter and the receiver antenna arrays. Using
this upper-bound, we showed that the quantitative degree
to which the diversity advantage of a space-time code
is reduced by the size of the antenna aperture and the
antenna confi guration. We also showed that the diversity
advantage and the coding advantage of a space-time code
are decreased when the mean AOA of an impinging
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signal moves away from the broadside, and also when
the angular spread of the azimuth power distribution is
small. We believe that, the new upper-bound derived in
this paper can be used as a tool to develop a space-
time pre-coder which is capable of compensating (fully
or partially) for effects of antenna confi guration and
scattering environment.
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