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Abstract—In this paper, we derive an analytical expression over correlated fading channels. In particular, the effect of
for the exact pairwise error probability (PEP) of a space-time antenna spacing, spatial geometry of the antenna arrays and

coded system operating over a spatially correlated slow fading e non-isotropic scattering environments on the performance
channel using a moment-generating function-based approach. . .
of space-time codes are of interest.

This analytical PEP expression is more realistic than previously ) >
published exact-PEP expressions as it fully accounts for antenna  In this paper, using the MGF-based approach presented
spacing, antenna geometries (Uniform Linear Array, Uniform in [4], we derive an analytical expression for the exact-

Grid Array, Uniform Circular Array, etc.) and scattering models ~ PEP of a space-time coded system operating over a spatially
(Uniform, Gaussian, Laplacian, Von-mises, efc). Inclusion of o, elaied slow fading channel. This expression is more re-

spatial information provides valuable insights into the physical . . . . .
factors determining the performance of a space-time code. We alistic than previously published exact-PEP expressions, as it

demonstrate the strength of our new analytical PEP expression fully accounts for antenna placement along with non-isotropic
by evaluating the performance of two space-time trellis codes scattering environments. Using this analytical expression one

proposed in the literature for different spatial scenarios. can evaluate the performance of a space-time code applied to
a MIMO system in any general spatial scena@mténna ge-
ometries Uniform Linear Array (ULA), Uniform Grid Array

. . _ _ , . (UGA), Uniform Circular Array (UCA), etcscattering mod-
Space-time coding combines channel coding with multipl§s ynitorm, Gaussian, Laplacian, Von-mises, etc.) without

transmit and multiple receive antennas to achieve bandwigy, neeq for extensive simulations. We provide an analytical
and power efficient high data_ raFe transmlsspn over fad"?Qchnique which can be used to evaluate the exact-PEP in
channels. The performance Crltﬁl’la frc:r Spaflfce-tlme COdEI’,S hQY8sed form. We demonstrate the strength of our new analytical
been C_ie”_VEd in [1] basec_i_on the Chernoff bound applied BEp expression by evaluating the performance of a 4-state
the pairwise error probability (PEP). In general, the Chemaf{pgic gpace.-time trellis code with two transmit antennas

bound is quite loose for low signal-to-noise ratios. In [2], thﬁroposed byTarokh et al[1] and a 16-state QPSK space-time

exact.-PEF.’ of spgcg—time 099'65 operating over independgglis code with three transmit antennas proposedzbiro-
and identically distributed (i.i.d.) fast fading channels wag . ot al[6] for different spatial scenarios.

derived using t_he method of residues. A simple method forNotations: Throughout the paper, the following notations
exactly evaluating the PEP based on the moment genetgly | used:[]”, []* and[]' denote the transpose, complex

ing function associated with a quadratic form of a comple njugate and conjugate transpose operations, respectively.

Gaussian random variable [3] is given in [4] for both i'i'dThe symbolsi(-) and ® denote the Dirac delta function and
slow and fast fading channels. The fading correlation effeg{f
I

th ; p " q ) tigat atrix Kronecker product, respectively. The notati@n{-}
- . . 2
on the performance of space-time codes were investigatedji}, .-« tha mathematical expectatiay) = [¥_ e /2dx

[5]. There, the exact-PEP results derived in [2] were furth%‘renotes the Gaussiaf-function, vec(A) denotes the vec-

extended to spatially correlated slow fading channels with tl{‘grization operator which stacks the columns 4f and [.]

use of residue method§. In [5], the correlation s Calcmat%%notes the ceiling operator. The matfixis then xn identity
in terms of the correlation between channel gains, but therﬁe .

I. INTRODUCTION

. i : A . fnatrix.
is no direct realizable physical interpretation to the spatia

correlation. Therefore, existing PEP expressions derived in
the literature do not provide insights into the physical factors II. SYSTEM MODEL

determining the performance of a space-time code operatingcqnsider a MIMO system consisting ef- transmit anten-

; — [.(n) .(n) (T
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quasi-static fading, the signals received atreceiver antennas  Ill. EXACT PEPON CORRELATED MIMO CHANNELS
during L symbol periods can be expressed in matrix form as ossyme that perfect channel state information (CSI) is
available at the receiver and also a maximum likelihood (ML)
decoder is employed at the receiver. Assume that the codeword
was transmitted, but the ML-decoder chooses another
eword X. Then the PEP, conditioned on the channel, is
given by [1]

Y =/E,HX + N,

. , X
whereFE; is the transmitted power per symbol at each transnw.)d
antenna andH is the ng x np zero-mean complex valued
channel gain matrix]V is the noise represented by ap x L

complex matrix in which entries are zero-mean independent N B Es N
Gaussian distributed random variables with variaNgg¢2 per P(X — X|h) =Q 2N, (X, X) |, )
dimension. .
where d*(X,X) = h[l,, ® Xalh!, XA = (X —
X)X - X)' h = (vec (HT))" is a row vector. To compute
A. Spatial Channel Model the average PEP, we average (4) over the joint probability

Using a recently developed 2-dimensional spatial chanr%ﬁt”butt.'on cl)];)h.ciy us:lngECrallg'zs formula for the Gaussian
model [8], we are able to incorporate the antenna spacing, a -function [10, Chap. 4, Eq. (4.2)]

tenna placement and scattering distribution parameters such as 1 [/ x?

mean angle-of-arrival (AOA), mean angle-of-departure (AOD) (@) =~ /0 P75

and angular spread, into the exact-PEP calculations of space- i . . .
time coded systems. In this model, the MIMO chanfilis and the MGF-based technique presented in [4], we can write

. L h PEP
decomposed into deterministic and random parts as the average as

. 1 w/2 poo r
H = JpHsJ}, 1) (X — X) W/O /O eXp( 2Sin29>PF( )dr'do,
w/2
whereJ 7 is thenr x (2mr+1) transmit antenna array config- ! My <__12 > dé, 5)
uration matrix andJ  is thengx(2mpg + 1) receive antenna ™ Jo 2sin” 6

array configuration matrix, wher@mr+1) and(2mpr+1) are  where Mp(s) £ fooo ¢*Tpr(D)dT is the MGF of
the number of effective communication moélasailable in the

; . . . E,
transmitter and receiver regions, respectively. Note that, =
andmg are determined by the size of the antenna aperture, but 2No
not from the number of antennas encompassed in an anteBnd pr(I') is the probability density function (pdf) of'.
array. The number of effective communication modé¢) Substituting (1) forH in h = (vec (HT))T and using the
available at a region is given by [9] Kronecker product identity [11, page 188pc(AXB) =

(BT @ A)vec(X), we rewrite (6) as

h[InR ®XA]hT (6)

M = 2[mer/\] +1, 2 5
= _2hs(Jhe ) L, © Xa)(Jh @ Jr)hl, (7a)

wherer is the minimum radius of the antenna array aperture, 2No

A is the wavelength and =~ 2.7183. We refer the reader - Ehs [(JI%JR)T ® (JTTXAJT) hg, (7b)
to [8] for the definitions ofJr and Jr. Finally, Hg is the No

(2mpr+1)x(2mp+1) random scattering matrix witt, m)-th — &hsGhT (7¢)
element given by 2No 5

T ” Do i ) wherehg = (vec(HsT))T is a row vector and
{Hs}t.m :/ / 9§, pe~mmrDeimmmr =10 4pdg, X
0 0

G=ILTR) ©(JLXadr). 8
£=1,--- 2mr+1, m=1,--- 2mpr+1 (©)

Note that, (7b) follows from (7a) via the identity [11, page

Note that{ H s}, represents the complex gain of the scattet80] (A ©® C)(B ® D) = AB © CD, provided that the
ing channel between the-th mode of the transmitter regionMatrix productsA? andCD exist.

and the/-th mode of the receiver region, whergo, ¢) is ~ NOte thathsGhg in (7¢) is a quadratic form of a random
the scattering gain function, which is the effective randoifpiable sincehs is a random row vector and is fixed as
complex gain for signals leaving the transmitter aperture withr:J r @nd X A are deterministic matrices. Furthermore, the

angle of departure and arriving at the receiver aperture witiMatrix G is Hermitian as bothJ,Jr and Jp X aJr are
angle of arrivaly. Hermitian, and the Kronecker product between two Hermitian

matrices is always Hermitian. The MGF associated with a

1The 2-D case is a special case of the 3-D case where all the signals ar%adratlc random variable is read”y found in the literature

from on a horizontal plane only. Similar results can be obtained using thd]. Using [3, Eq. 14], we write the MGF af as
3-D channel model proposed in [7]. 55 1
W:\thefgt of modes form a basis of functions for representing a multipath MF(S) = [det (I — %RG)] , (9)



wherey = f,; is the average symbol energy-to-noise ratio Matrix Z in (12) has sizeVl gk M x Mgz M7, where Mg =
2mpg + 1 and Mt = 2mg + 1. Therefore, the integrand in

and R = E{hTShS is the covariance matrix ohg. Here ]
(12) will take the form

we assumed that the entries b are zero-mean complex

Gaussian distributed. 5 —1 (sin? )N
Substitution of (9) into (5) gives the exact-PEP {det (I + 4511129Z>] = (13)
R 1 /2 5 -1 Z ay(sin? 0)*
P(X — X) = 7/ [det (I + ,QRG>] de. s
T Jo sin” 6

(10) where N = MzrMr anday,for ¢ = 1,2,---, N, are con-

stants. Note that the denominator of (13) is &nth order
olynomial insin?#. To evaluate the integral (13) in closed
orm, we use the partial-fraction expansion technique given in

Remark 1:Eq. (10) is the exact-PERf a space-time coded
system applied to a spatially correlated slow fading MIM
channel following the chan.nel decomposition in (1).. [10, Appendix 5A] as follows.

Remar_k 2:WhenR N I (1.e., correlation between different First we begin by factoring the denominator of (13) into
communication modes is zero), Eq. (10) above captures tth?ms of the form(sin@ + ¢,), for ¢ = 1,2,---, N. This
effects due to antenna spacing and antenna geometry on he S ce) o o

erformance of a space-time code operating over a slow fadfrrjwoweS finding the roots of anV-th order polynomial in
P P P g G20 either numerically or analytically. Then (13) can be

channel, expressed in product form as
Remark 3:When the fading channels are independent (i.€7; P P
R=1IandG =1,, ® Xa), (10) simplifies to, (sin2 0)N B ﬁ sin2 0 me )
. 1 2k ¥ e SN ap(sin? 0)¢ co +sin® 0
P(X - X)=—- det ( I, _ ' x de, =0 /=1
( ) 7r/0 H { ¢ < T+4sin29 A)}

n=1

o wherem, is the multiplicity of the rootc, and Z?:lmg =
which is the same as [4, Eq. (13)]. N. Applying the partial-fraction decomposition theorem to the
product form (14), we get
A. Kronecker Product Model as a Special Case A -y me A my -y k
. . sin“ 6 sin“ 6

In some circumstances, the covariance maiRxof the ———— ) =D A ——— (15)
scattering channelH s can be expressed as a Kronecker i—i \¢¢+sin”¢ =1 k=1 ¢e +sin” 0
product betwee.n correlation matrices obser\{ed at the receiyRlare the residuall, is given by [10, Eq. 5A.72]
and the transmitter antenna arrays [12,13], i.e.,

R=E {hﬁshs} — Fr®Frp, (11) . 1 \™
_ _ _ dzme—F H 1+c, x |$=—0Z1
where F'r and Fr are the transmit and receive correlation Z;} "
matrices. Substituting (11) in (10) and recalling the definition ~Are = : PRYpr= . (16)
of G in (8), the exact-PEP can be written as (me — k)lcy
. 1 [7/2 5 -1 Expansion (15) often allows integration to be performed on
P(X - X)= ;/ [det <I + ToZ Gzﬂ df (12) each term separately by inspection. In fact, each term in (15)
0 Sin

can be separately integrated using a result found in [4], where
where Z = (FrJ hJ%) @ (FrJ X ad 7).

1 [7/2 in2p k
Plee k) = = / <S“2> do,
IV. REALISTIC EXACT-PEP ™ Jo ¢ +sin” 6
The exact-PEP expression we derived in the previous section e k-1 2] 1 J
captures the antenna configurations (Linear Array, Circular =|1- Vite JX_%( j > <4(1+cz)>

Array, Grid, etc.) both at the transmitter and the receiver arrays
via Jr andJ g, respectively. Furthermore, it also incorporates 1)

the spatial correlation effects at the transmitter and the receiygs,, using the partial-fraction form of the integrand in (15)

regions viaF'r and F'r, respectively. Therefore, the PERgether with (17), we obtain the exact-PEP in closed form as
expression (12) can be considered as riistic exact PEP

of a space-time coded system. . 1 [™/2 sinZ 6 me
To calculate the exact-PEP, one needs to evaluate the P(X — X) = ;/ ( 2 ) do,

. . - 8 ; 0 ¢y + sin” 0

integral (12) (or (10) in a more general spatial scenario), either k=1

using numerical methods or analytical methods. We present an 1 A AsPles k

analytical technique which can be employed to evaluate the - 522 ke (ce, k).

integral (12) in closed form as follows.

(18)
(=1 k=1

3Eq. (10) can be evaluated in closed form using the analytical technique’One would need to evaluate the determinan(DH ﬁz) and then
discussed in Section IV. take the reciprocal of it to obtain the form (13).



For the special case of distinct roots, i.e.; = mo = -+ = w0 ‘ f
my = 1, the exact-PEP is given by

P(X_’X):;iO_ 1fcé>ﬂ<cfizcn>.

(=1 n=1
n#L

V. ANALYTICAL PERFORMANCEEVALUATION : EXAMPLES 2

a

In this section, we consider the following two space-time i
codes as examples.
(@) 4-state QPSK space-time trellis code with two trans- o
mit antennas [1, Fig. 4]; the shortest error event path

—©- i.i.d. channel - without antenna conf.

of lengthH = 2, as illustrated by shading in Fig. 1 o7[| 7 Rxantenna sep: 0.1

Of 4 —8- Rxantenna sep: 0.2A
. ) ) ) — - Rxantenna sep: 0.5\
(b)  16-state QPSK space-time trellis code with three [l Rranemaser) ‘ ‘ ‘ ‘ ‘
transmit antennas [6, Table 1]; the shortest error ° 2 4 Average Symbol SR (05 2 “ 1

event path of lengthd = 3.
For the 4-state code. the exact-PEP results and approxinféﬁ\el- Exact pairwise error probability performance of the 4-state space-time
! . rellis code with 2-Tx antennas and 2-Rx antennas: length 2 error event.
BEP results fomrp = 1 andny = 2 were presented in [2,
4] for i.i.d. fast fading and slow fading channels. In [5], the

effects of fading correlation on the average BEP were StUdI@%nificant when the receive antenna separation is small. For

for np = 1 over a slow fading channel. In this work, Weexample, at0.2)\ and 0.1\ receive antenna separations, the

compare the i.i.d. channel performance results presented,diljistic PEPs are 1dB and 3dB away from the i.i.d channel

[2, 4] with our realistic exact-PEP results for different amem}?erformance results, respectively. From these observations,
spacing and scattering distribution parameters. In addition, can emphasize that the effect of antenna spacing on the
use the 16-state code with three transmit antennas to StUdyg%ﬂ‘ormance of the 4-state code is minimum for higher antenna

impact of antenna placement on the performance of space-ti %arations whereas the effect is significant for smaller antenna

codes. separations.
In [2, 4], performances were evaluated under the assumptio

that the transmitted codeword is the all-zero codeword. Here
we also adopt the same assumption as we compare our resBltEffect of Antenna Configuration

with their re;ults. However, we are aware that space-time,, ihis section, we compare the PEP performance of
codes may, in general, be non-linear, i.e., the average BER

i 16-state code for different antenna configurations at the
can depend on the transmitted codeword.

transmitter antenna array. Here we consider UCA and ULA
antenna configurations as examglesVe place the three
A. Effect of Antenna Spacing transmit antennas within a fixed circular aperture of radius

First we consider the effect of antenna spacing on the exatt= 0-15),0.25)), where the antenna placements are shown
PEP when the scattering environment is uncorrelated, i.# Fig.2. The exact-PEP performance for the error event path
Fr =15, andFg = Isp, 1. Consider the 4-state codeOf length three is also shown in Fig 2 for a single receive
with two transmit antennas and two receive antennas, whéenna.
the two transmit antennas are placed in a circular aperture of fom Fig.2, it is observed that at high SNRs the perfor-
radius0.25) (antenna separati®r 0.5)) and the two receive mance given by the UCA antenna configuration outperforms

antennas are placed in a circular aperture of radi(entenna that of the ULA antenna configuration. For example, at 14dB
separation =2r). SNR, the performance differences between UCA and ULA are

Fig.1 shows the exact pairwise error probability perfod.75dB with0.15\ transmitter aperture radius and 1dB with

mance of the 4-state code fét = 2 and receive antenna0-25A transmitter aperture radius.
separationg).1\, 0.2), 0.5\ and \. Also shown in Fig.1 for ~ According to the performance criteria given in [1], the slope
comparison is the exact-PEP for the i.i.d. slow fading chanr@l the performance curve on a log scale corresponds to the
(Rayleigh) corresponding to the length two error event patifliversity advantage of the code and the horizontal shift in the
As we can see from the figure, the effect of antenriRerformance curve corresponds to the coding advantage. From
separation on the exact-PEP is not significant when the recefig.2, we observed that as the radius of the transmitter aperture
antenna separation &5\ or higher. However, the effect is decreases the diversity advantage of the code is reduced,
particularly for the ULA antenna configuration. Here, the loss

5In a 3-D isotropic scattering environment, antenna separ@tioh (first of diversity advantage is mainly due to the loss of raniJef
null of the order zero spherical Bessel function) gives zero spatial correlati is shown in [14]
but here we constraint our analysis to a 2-D scattering environment. The spatial :
correlation function in a 2-D isotropic scattering environment is given by a
Bessel function of the first kind. Therefore, antenna separatj@hdoes not 6The exact-PEP expression we derived in this work can be applied to any
give zero spatial correlation in a 2-D isotropic scattering environment. arbitrary antenna configuration.



power distributions such as Uniform, Gaussian, Laplacian,
Von-Mises, Polynomial, etc.

It was shown in [15] that all azimuth power distribution
models give very similar correlation values for a given angular
spread, especially for small antenna separations. Therefore,
without loss of generality, we restrict our investigation only
to the case of energy arriving uniformly over a limited
angular spread around a mean AOAp, (uniform limited
azimuth power distribution). In this case, the modal correlation
coefficient’yf'g% in the receiver region is given by

PEP

10°

Wffl = sinc((¢ — E’)U)e_i(z_e,)‘po. (20)

107

—©- i.i.d. channel
< ULA - radius 0.15\
+* - ULA - radius 0.25\

Continuing the performance analysis, we now investigate
5 UCA - radius 0.15) the modal correlation effects on the performance of the 4-
107, T : p L = 5 m m > state code with two transmit and two receive antennas. We
Average Symbol SNR (48) place the two transmit antenn8s$sA apart and also the two
Fig. 2. The exact-PEP performance of the 16-state code with three transrr%{:?we antennag.5\ apart!
and one receive antennas for UCA and ULA transmit antenna configurations:Fig. 3 shows the exact-PEP performances of the 4-state
length 3 error event. code for various angular spreads = {5°,30°,45°,180°}
about a mean AOAp, = 0° from broadside, where the
broadside angle is defined as the angle perpendicular to
C. Effect of Modal Correlation the line connecting the two antennas. Note that= 180°
For simplicity, here we only consider the modal correlatiorepresents the isotropic scattering environment. The exact-PEP
effects at the receiver region and assume that the effectR@rformance for the i.i.d. slow fading channel (Rayleigh) is
communication modes available at the transmitter region a&t$0 plotted on the same graph for comparison.
uncorrelated, i.e.F'r = Iap,41. First, we derive the defini-
tion of modal correlation matrid¥'r at the receiver region. 0 . AOA-0" from broadside
Using (3), we can define the modal correlation between
complex scattering gains as 104

Net A E {{HS}W{HS};M,}, o

Assume that the scattering from one direction is independent s+
of that from another direction for both the receiver and the
transmitter apertures. Then the second-order statistics of tliew®
scattering gain functiog(¢, ) can be defined as

E{g(6.0)5"(¢. &)} = Gl6,9)8(6 = 6)0(p — ¢,

10°

10

—*— i.i.d. channel-w/o antenna conf.

where G(¢7 (p) = FE {|g(¢’ @) |2} with normalization ; j ée:ros:nodal correlation
| [G(¢,¢)dpd¢ = 1. With the above assumption, the modal ™ f|-=- o=

— 0=45°

can be simplified to o[ L= 0 180" Isotropic

10

. .. ’
correlation coefﬂment;yz’e

m,m’
00 ' —i(—)p i(m—m")p
= G(o,p)e™" “e dode.
T, / / ( ’90) v Fig. 3. Effect of receiver modal correlation on the exact-PEP of the 4-
state QPSK space-time trellis code with 2-Tx antennas and 2-Rx antennas

Then the correlation between tieh and/’-th modes at the for the length 2 error event. Uniform limited power distribution with a

receiver region due to the-th mode at the transmitter regionmean angle of arrivalo = 0° from broadside and angular spreags=
is given by {5°,30°,45°,180°}.

T 1 1 1 1 1 *

I
0 2 4 6 8 10 12 14 16 18 20
Average Symbol SNR (dB)

Rz _ —i(e—")p As one would expect, the performance loss incurred due
"= | Pra(p)e dop, 19 o

el / s () 4 (19) to the modal correlation increases as the angular spread of

h the distribution decreases. For example, at 10dB SNR, the

h . = is th li [
where Pr (i7) JG(#,¢)do s the normalized azimut listc PEP performance results obtained from (12) are

power distribution of the scatterers surrounding the receivk s
antenna region. Here we see that modal correlation at t 'ngB’ 1.5dB, 2.75dB and 7.5dB away from the i.i.d. channel

receiver is independent of the mode selected from the trarpg_rform_ance results for apgular spre;é@ , 45°,30° and5°,
mitter region. Note that the/, #/)-th element ofF'y, is given respectively. Therefore, in general, if the angular spread of

by (19) andFy is a (QmR + 1) X (27_711% + 1) matrix. A|§O “Performance loss due to antenna spacing is minimum when the antenna
note thatPr, () can be modeled using all common azimutlaeparation i©.5) or higher as we showed in Section V-A



the distribution is closer td80° (isotropic scattering), then separation and the angular spread are small.
the loss incurred due to the modal correlation is insignificant,
provided that the antenna spacing is optimal. However, for V1. CONCLUSION

moderate angular spread values such4a% and 30°, the  Using an MGF-based approach, we have derived an ana-
performance loss is quite significant. This is due to the highkfical expression for the exact pairwise error probability of
concentration of energy closer to the mean AOA for small space-time coded system over a spatially correlated slow
angular spreads. It is also observed that for large anguf@fling channel. This analytical PEP expression fully accounts
spread values, the diversity order of the code (the slope f§f antenna separation, antenna geometry and surrounding
the performance curve) is preserved whereas for small a#&muth power distributions, both at the receiver and the

moderate angular spread values, the diversity order of the cdggSmitter antenna arrays. In practice, it can be used as
is diminished. a tool to estimate or predict the performance of a space-

time code under any antenna configuration and surrounding
ot AOA-60" from broadside azimuth power distribution parameters. Based on this new PEP

expression, we showed that space-time codes employed on
multiple transmit and multiple receive antennas are susceptible
to spatial fading correlation effects, particularly for small
antenna separations and small angular spreads.
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