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Abstract— In this paper, we derive an analytical expression
for the exact pairwise error probability (PEP) of a space-time
coded system operating over a spatially correlated slow fading
channel using a moment-generating function-based approach.
This analytical PEP expression is more realistic than previously
published exact-PEP expressions as it fully accounts for antenna
spacing, antenna geometries (Uniform Linear Array, Uniform
Grid Array, Uniform Circular Array, etc.) and scattering models
(Uniform, Gaussian, Laplacian, Von-mises, etc). Inclusion of
spatial information provides valuable insights into the physical
factors determining the performance of a space-time code. We
demonstrate the strength of our new analytical PEP expression
by evaluating the performance of two space-time trellis codes
proposed in the literature for different spatial scenarios.

I. I NTRODUCTION

Space-time coding combines channel coding with multiple
transmit and multiple receive antennas to achieve bandwidth
and power efficient high data rate transmission over fading
channels. The performance criteria for space-time codes have
been derived in [1] based on the Chernoff bound applied to
the pairwise error probability (PEP). In general, the Chernoff
bound is quite loose for low signal-to-noise ratios. In [2], the
exact-PEP of space-time codes operating over independent
and identically distributed (i.i.d.) fast fading channels was
derived using the method of residues. A simple method for
exactly evaluating the PEP based on the moment generat-
ing function associated with a quadratic form of a complex
Gaussian random variable [3] is given in [4] for both i.i.d.
slow and fast fading channels. The fading correlation effects
on the performance of space-time codes were investigated in
[5]. There, the exact-PEP results derived in [2] were further
extended to spatially correlated slow fading channels with the
use of residue methods. In [5], the correlation is calculated
in terms of the correlation between channel gains, but there
is no direct realizable physical interpretation to the spatial
correlation. Therefore, existing PEP expressions derived in
the literature do not provide insights into the physical factors
determining the performance of a space-time code operating
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over correlated fading channels. In particular, the effect of
antenna spacing, spatial geometry of the antenna arrays and
the non-isotropic scattering environments on the performance
of space-time codes are of interest.

In this paper, using the MGF-based approach presented
in [4], we derive an analytical expression for the exact-
PEP of a space-time coded system operating over a spatially
correlated slow fading channel. This expression is more re-
alistic than previously published exact-PEP expressions, as it
fully accounts for antenna placement along with non-isotropic
scattering environments. Using this analytical expression one
can evaluate the performance of a space-time code applied to
a MIMO system in any general spatial scenario (antenna ge-
ometries: Uniform Linear Array (ULA), Uniform Grid Array
(UGA), Uniform Circular Array (UCA), etc.scattering mod-
els: Uniform, Gaussian, Laplacian, Von-mises, etc.) without
the need for extensive simulations. We provide an analytical
technique which can be used to evaluate the exact-PEP in
closed form. We demonstrate the strength of our new analytical
PEP expression by evaluating the performance of a 4-state
QPSK space-time trellis code with two transmit antennas
proposed byTarokh et al.[1] and a 16-state QPSK space-time
trellis code with three transmit antennas proposed byZuho-
Chen et al.[6] for different spatial scenarios.

Notations: Throughout the paper, the following notations
will be used:[·]T , [·]∗ and [·]† denote the transpose, complex
conjugate and conjugate transpose operations, respectively.
The symbolsδ(·) and⊗ denote the Dirac delta function and
Matrix Kronecker product, respectively. The notationE {·}
denotes the mathematical expectation,Q(y) =

∫ y

−∞ e−x2/2dx
denotes the GaussianQ-function, vec(A) denotes the vec-
torization operator which stacks the columns ofA, and d.e
denotes the ceiling operator. The matrixIn is then×n identity
matrix.

II. SYSTEM MODEL

Consider a MIMO system consisting ofnT transmit anten-
nas andnR receive antennas. Letxn = [x(n)

1 , x
(n)
2 , · · ·x(n)

nT ]T

denote the space-time coded signal vector transmitted from
nT transmit antennas in then-th symbol interval andX =
[x1, x2, · · ·,xL] denote the space-time code representing the
entire transmitted signal, whereL is the code length. Assuming
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quasi-static fading, the signals received atnR receiver antennas
during L symbol periods can be expressed in matrix form as

Y =
√

EsHX + N ,

whereEs is the transmitted power per symbol at each transmit
antenna andH is the nR × nT zero-mean complex valued
channel gain matrix,N is the noise represented by annR×L
complex matrix in which entries are zero-mean independent
Gaussian distributed random variables with varianceN0/2 per
dimension.

A. Spatial Channel Model

Using a recently developed 2-dimensional spatial channel
model1 [8], we are able to incorporate the antenna spacing, an-
tenna placement and scattering distribution parameters such as
mean angle-of-arrival (AOA), mean angle-of-departure (AOD)
and angular spread, into the exact-PEP calculations of space-
time coded systems. In this model, the MIMO channelH is
decomposed into deterministic and random parts as

H = JRHSJ†T , (1)

whereJT is thenT×(2mT +1) transmit antenna array config-
uration matrix andJR is thenR×(2mR + 1) receive antenna
array configuration matrix, where(2mT +1) and(2mR+1) are
the number of effective communication modes2 available in the
transmitter and receiver regions, respectively. Note that,mT

andmR are determined by the size of the antenna aperture, but
not from the number of antennas encompassed in an antenna
array. The number of effective communication modes(M)
available at a region is given by [9]

M , 2dπer/λe+ 1, (2)

wherer is the minimum radius of the antenna array aperture,
λ is the wavelength ande ≈ 2.7183. We refer the reader
to [8] for the definitions ofJR and JT . Finally, HS is the
(2mR+1)×(2mT +1) random scattering matrix with(`,m)-th
element given by

{HS}`,m =
∫ π

0

∫ π

0

g(φ, ϕ)e−i(`−mR−1)ϕei(m−mT−1)φdϕdφ,

` = 1, · · · , 2mR + 1, m = 1, · · · , 2mT + 1 (3)

Note that{HS}`,m represents the complex gain of the scatter-
ing channel between them-th mode of the transmitter region
and the`-th mode of the receiver region, whereg(φ, ϕ) is
the scattering gain function, which is the effective random
complex gain for signals leaving the transmitter aperture with
angle of departureφ and arriving at the receiver aperture with
angle of arrivalϕ.

1The 2-D case is a special case of the 3-D case where all the signals arrive
from on a horizontal plane only. Similar results can be obtained using the
3-D channel model proposed in [7].

2The set of modes form a basis of functions for representing a multipath
wave field.

III. E XACT PEPON CORRELATED MIMO CHANNELS

Assume that perfect channel state information (CSI) is
available at the receiver and also a maximum likelihood (ML)
decoder is employed at the receiver. Assume that the codeword
X was transmitted, but the ML-decoder chooses another
codewordX̂. Then the PEP, conditioned on the channel, is
given by [1]

P(X → X̂|h) = Q

(√
Es

2N0
d2(X, X̂)

)
, (4)

where d2(X, X̂) = h[InR
⊗ X∆]h†, X∆ = (X −

X̂)(X − X̂)
†
, h = (vec (HT ))

T
is a row vector. To compute

the average PEP, we average (4) over the joint probability
distribution of h. By using Craig’s formula for the Gaussian
Q-function [10, Chap. 4, Eq. (4.2)]

Q(x) =
1
π

∫ π/2

0

exp
(
− x2

2 sin2 θ

)
dθ

and the MGF-based technique presented in [4], we can write
the average PEP as

P(X → X̂) =
1
π

∫ π/2

0

∫ ∞

0

exp
(
− Γ

2 sin2 θ

)
pΓ(Γ)dΓdθ,

=
1
π

∫ π/2

0

MΓ

(
− 1

2 sin2 θ

)
dθ, (5)

whereMΓ(s) ,
∫∞
0

esΓpΓ(Γ)dΓ is the MGF of

Γ =
Es

2N0
h[InR

⊗X∆]h† (6)

and pΓ(Γ) is the probability density function (pdf) ofΓ.

Substituting (1) forH in h = (vec (HT ))
T

and using the
Kronecker product identity [11, page 180]vec(AXB) =
(BT ⊗A) vec (X), we rewrite (6) as

Γ =
Es

2N0
hS(JT

R ⊗ J†T )(InR
⊗X∆)(J∗R ⊗ JT )h†S , (7a)

=
Es

2N0
hS

[
(J†RJR)

T ⊗ (J†T X∆JT )
]
h†S , (7b)

=
Es

2N0
hSGh†S , (7c)

wherehS = (vec(HS
T ))

T
is a row vector and

G = (J†RJR)
T ⊗ (J†T X∆JT ). (8)

Note that, (7b) follows from (7a) via the identity [11, page
180] (A ⊗ C)(B ⊗ D) = AB ⊗ CD, provided that the
matrix productsAB andCD exist.

Note thathSGh†S in (7c) is a quadratic form of a random
variable sincehS is a random row vector andG is fixed as
JT ,JR andX∆ are deterministic matrices. Furthermore, the
matrix G is Hermitian as bothJ†RJR and J†T X∆JT are
Hermitian, and the Kronecker product between two Hermitian
matrices is always Hermitian. The MGF associated with a
quadratic random variable is readily found in the literature
[3]. Using [3, Eq. 14], we write the MGF ofΓ as

MΓ(s) =
[
det

(
I − sγ̄

2
RG

)]−1

, (9)
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where γ̄ = Es

N0
is the average symbol energy-to-noise ratio

and R = E
{

h†ShS

}
is the covariance matrix ofhS . Here

we assumed that the entries ofhS are zero-mean complex
Gaussian distributed.

Substitution of (9) into (5) gives the exact-PEP

P(X → X̂) =
1
π

∫ π/2

0

[
det

(
I +

γ̄

4 sin2 θ
RG

)]−1

dθ.

(10)

Remark 1:Eq. (10) is the exact-PEP3 of a space-time coded
system applied to a spatially correlated slow fading MIMO
channel following the channel decomposition in (1).

Remark 2:WhenR = I (i.e., correlation between different
communication modes is zero), Eq. (10) above captures the
effects due to antenna spacing and antenna geometry on the
performance of a space-time code operating over a slow fading
channel.

Remark 3:When the fading channels are independent (i.e.,
R = I andG = InR

⊗X∆), (10) simplifies to,

P(X → X̂) =
1
π

∫ π/2

0

L∏
n=1

[
det

(
InT

+
γ̄

4 sin2 θ
X∆

)]−nR

dθ,

which is the same as [4, Eq. (13)].

A. Kronecker Product Model as a Special Case

In some circumstances, the covariance matrixR of the
scattering channelHS can be expressed as a Kronecker
product between correlation matrices observed at the receiver
and the transmitter antenna arrays [12, 13], i.e.,

R = E
{

h†ShS

}
= F R ⊗ F T , (11)

where F R and F T are the transmit and receive correlation
matrices. Substituting (11) in (10) and recalling the definition
of G in (8), the exact-PEP can be written as

P(X → X̂) =
1
π

∫ π/2

0

[
det

(
I +

γ̄

4 sin2 θ
Z

)]−1

dθ (12)

whereZ = (F RJT
RJ∗R)⊗ (F T J†T X∆JT ).

IV. REALISTIC EXACT-PEP

The exact-PEP expression we derived in the previous section
captures the antenna configurations (Linear Array, Circular
Array, Grid, etc.) both at the transmitter and the receiver arrays
via JT andJR, respectively. Furthermore, it also incorporates
the spatial correlation effects at the transmitter and the receiver
regions viaF T and F R, respectively. Therefore, the PEP
expression (12) can be considered as therealistic exact PEP
of a space-time coded system.

To calculate the exact-PEP, one needs to evaluate the
integral (12) (or (10) in a more general spatial scenario), either
using numerical methods or analytical methods. We present an
analytical technique which can be employed to evaluate the
integral (12) in closed form as follows.

3Eq. (10) can be evaluated in closed form using the analytical technique
discussed in Section IV.

Matrix Z in (12) has sizeMRMT×MRMT , whereMR =
2mR + 1 and MT = 2mT + 1. Therefore, the integrand in
(12) will take the form4

[
det

(
I +

γ̄

4 sin2 θ
Z

)]−1

=
(sin2 θ)N

N∑

`=0

a`(sin2 θ)`

, (13)

where N = MRMT and a`, for ` = 1, 2, · · · , N , are con-
stants. Note that the denominator of (13) is anN -th order
polynomial in sin2 θ. To evaluate the integral (13) in closed
form, we use the partial-fraction expansion technique given in
[10, Appendix 5A] as follows.

First we begin by factoring the denominator of (13) into
terms of the form(sin2 θ + c`), for ` = 1, 2, · · · , N . This
involves finding the roots of anN -th order polynomial in
sin2 θ either numerically or analytically. Then (13) can be
expressed in product form as

(sin2 θ)N

∑N
`=0 a`(sin2 θ)`

=
Λ∏

`=1

(
sin2 θ

c` + sin2 θ

)m`

(14)

wherem` is the multiplicity of the rootc` and
∑Λ

`=1 m` =
N . Applying the partial-fraction decomposition theorem to the
product form (14), we get

Λ∏

`=1

(
sin2 θ

c` + sin2 θ

)m`

=
Λ∑

`=1

m∑̀

k=1

Ak`

(
sin2 θ

c` + sin2 θ

)k

(15)

where the residualAk` is given by [10, Eq. 5A.72]

Ak` =





dm`−k

dxm`−k

Λ∏
n=1
n 6=`

(
1

1 + cnx

)mn




|x=−c−1

`

(m` − k)!cm`−k
`

. (16)

Expansion (15) often allows integration to be performed on
each term separately by inspection. In fact, each term in (15)
can be separately integrated using a result found in [4], where

P (c`, k) =
1
π

∫ π/2

0

(
sin2 θ

c` + sin2 θ

)k

dθ,

=


1−

√
c`

1 + c`

k−1∑

j=0

(
2j
j

)(
1

4(1 + c`)

)j

 .

(17)

Now using the partial-fraction form of the integrand in (15)
together with (17), we obtain the exact-PEP in closed form as

P(X → X̂) =
1
π

∫ π/2

0

Λ∏

k=1

(
sin2 θ

c` + sin2 θ

)m`

dθ,

=
1
2

Λ∑

`=1

m∑̀

k=1

Ak`P (c`, k). (18)

4One would need to evaluate the determinant of
(
I + γ̄

4 sin2 θ
Z

)
and then

take the reciprocal of it to obtain the form (13).
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For the special case of distinct roots, i.e.,m1 = m2 = · · · =
mN = 1, the exact-PEP is given by

P(X → X̂) =
1
2

N∑

`=1

(
1−

√
c`

1 + c`

) N∏
n=1
n 6=`

(
c`

c` − cn

)
.

V. A NALYTICAL PERFORMANCEEVALUATION : EXAMPLES

In this section, we consider the following two space-time
codes as examples.

(a) 4-state QPSK space-time trellis code with two trans-
mit antennas [1, Fig. 4]; the shortest error event path
of length H = 2, as illustrated by shading in Fig. 1
of [4].

(b) 16-state QPSK space-time trellis code with three
transmit antennas [6, Table 1]; the shortest error
event path of lengthH = 3.

For the 4-state code, the exact-PEP results and approximate
BEP results fornR = 1 and nR = 2 were presented in [2,
4] for i.i.d. fast fading and slow fading channels. In [5], the
effects of fading correlation on the average BEP were studied
for nR = 1 over a slow fading channel. In this work, we
compare the i.i.d. channel performance results presented in
[2, 4] with our realistic exact-PEP results for different antenna
spacing and scattering distribution parameters. In addition, we
use the 16-state code with three transmit antennas to study the
impact of antenna placement on the performance of space-time
codes.

In [2, 4], performances were evaluated under the assumption
that the transmitted codeword is the all-zero codeword. Here
we also adopt the same assumption as we compare our results
with their results. However, we are aware that space-time
codes may, in general, be non-linear, i.e., the average BEP
can depend on the transmitted codeword.

A. Effect of Antenna Spacing

First we consider the effect of antenna spacing on the exact-
PEP when the scattering environment is uncorrelated, i.e.,
F T = I2MT +1 andF R = I2MR+1. Consider the 4-state code
with two transmit antennas and two receive antennas, where
the two transmit antennas are placed in a circular aperture of
radius0.25λ (antenna separation5 = 0.5λ) and the two receive
antennas are placed in a circular aperture of radiusr (antenna
separation =2r).

Fig.1 shows the exact pairwise error probability perfor-
mance of the 4-state code forH = 2 and receive antenna
separations0.1λ, 0.2λ, 0.5λ and λ. Also shown in Fig.1 for
comparison is the exact-PEP for the i.i.d. slow fading channel
(Rayleigh) corresponding to the length two error event path.

As we can see from the figure, the effect of antenna
separation on the exact-PEP is not significant when the receive
antenna separation is0.5λ or higher. However, the effect is

5In a 3-D isotropic scattering environment, antenna separation0.5λ (first
null of the order zero spherical Bessel function) gives zero spatial correlation,
but here we constraint our analysis to a 2-D scattering environment. The spatial
correlation function in a 2-D isotropic scattering environment is given by a
Bessel function of the first kind. Therefore, antenna separationλ/2 does not
give zero spatial correlation in a 2-D isotropic scattering environment.
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Fig. 1. Exact pairwise error probability performance of the 4-state space-time
trellis code with 2-Tx antennas and 2-Rx antennas: length 2 error event.

significant when the receive antenna separation is small. For
example, at0.2λ and 0.1λ receive antenna separations, the
realistic PEPs are 1dB and 3dB away from the i.i.d channel
performance results, respectively. From these observations,
we can emphasize that the effect of antenna spacing on the
performance of the 4-state code is minimum for higher antenna
separations whereas the effect is significant for smaller antenna
separations.

B. Effect of Antenna Configuration

In this section, we compare the PEP performance of
the 16-state code for different antenna configurations at the
transmitter antenna array. Here we consider UCA and ULA
antenna configurations as examples.6 We place the three
transmit antennas within a fixed circular aperture of radius
r(= 0.15λ, 0.25λ), where the antenna placements are shown
in Fig.2. The exact-PEP performance for the error event path
of length three is also shown in Fig 2 for a single receive
antenna.

From Fig.2, it is observed that at high SNRs the perfor-
mance given by the UCA antenna configuration outperforms
that of the ULA antenna configuration. For example, at 14dB
SNR, the performance differences between UCA and ULA are
1.75dB with0.15λ transmitter aperture radius and 1dB with
0.25λ transmitter aperture radius.

According to the performance criteria given in [1], the slope
of the performance curve on a log scale corresponds to the
diversity advantage of the code and the horizontal shift in the
performance curve corresponds to the coding advantage. From
Fig.2, we observed that as the radius of the transmitter aperture
decreases the diversity advantage of the code is reduced,
particularly for the ULA antenna configuration. Here, the loss
of diversity advantage is mainly due to the loss of rank ofJT ,
as is shown in [14].

6The exact-PEP expression we derived in this work can be applied to any
arbitrary antenna configuration.
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Fig. 2. The exact-PEP performance of the 16-state code with three transmit
and one receive antennas for UCA and ULA transmit antenna configurations:
length 3 error event.

C. Effect of Modal Correlation

For simplicity, here we only consider the modal correlation
effects at the receiver region and assume that the effective
communication modes available at the transmitter region are
uncorrelated, i.e.,F T = I2MT +1. First, we derive the defini-
tion of modal correlation matrixF R at the receiver region.

Using (3), we can define the modal correlation between
complex scattering gains as

γ`,`′

m,m′ , E
{
{HS}`,m{HS}∗`′,m′

}
.

Assume that the scattering from one direction is independent
of that from another direction for both the receiver and the
transmitter apertures. Then the second-order statistics of the
scattering gain functiong(φ, ϕ) can be defined as

E
{

g(φ, ϕ)g∗(φ
′
, ϕ

′
)
}

= G(φ, ϕ)δ(φ− φ
′
)δ(ϕ− ϕ

′
),

where G(φ, ϕ) = E
{|g(φ, ϕ)|2} with normalization∫ ∫

G(φ, ϕ)dϕdφ = 1. With the above assumption, the modal
correlation coefficient,γ`,`′

m,m′ can be simplified to

γ`,`′

m,m′ =
∫ ∫

G(φ, ϕ)e−i(`−`′)ϕei(m−m′)φdϕdφ.

Then the correlation between the`-th and`′-th modes at the
receiver region due to them-th mode at the transmitter region
is given by

γRx
`,`′ =

∫
PRx(ϕ)e−i(`−`′)ϕdϕ, (19)

where PRx(ϕ) =
∫

G(φ, ϕ)dφ is the normalized azimuth
power distribution of the scatterers surrounding the receiver
antenna region. Here we see that modal correlation at the
receiver is independent of the mode selected from the trans-
mitter region. Note that the(`, `′)-th element ofF R is given
by (19) andF R is a (2mR + 1) × (2mR + 1) matrix. Also
note thatPRx(ϕ) can be modeled using all common azimuth

power distributions such as Uniform, Gaussian, Laplacian,
Von-Mises, Polynomial, etc.

It was shown in [15] that all azimuth power distribution
models give very similar correlation values for a given angular
spread, especially for small antenna separations. Therefore,
without loss of generality, we restrict our investigation only
to the case of energy arriving uniformly over a limited
angular spreadσ around a mean AOAϕ0 (uniform limited
azimuth power distribution). In this case, the modal correlation
coefficientγRx

`,`′ in the receiver region is given by

γRx
`,`′ = sinc((`− `′)σ)e−i(`−`′)ϕ0 . (20)

Continuing the performance analysis, we now investigate
the modal correlation effects on the performance of the 4-
state code with two transmit and two receive antennas. We
place the two transmit antennas0.5λ apart and also the two
receive antennas0.5λ apart.7

Fig. 3 shows the exact-PEP performances of the 4-state
code for various angular spreadsσ = {5◦, 30◦, 45◦, 180◦}
about a mean AOAϕ0 = 0◦ from broadside, where the
broadside angle is defined as the angle perpendicular to
the line connecting the two antennas. Note thatσ = 180◦

represents the isotropic scattering environment. The exact-PEP
performance for the i.i.d. slow fading channel (Rayleigh) is
also plotted on the same graph for comparison.
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σ = 180°−Isotropic

Fig. 3. Effect of receiver modal correlation on the exact-PEP of the 4-
state QPSK space-time trellis code with 2-Tx antennas and 2-Rx antennas
for the length 2 error event. Uniform limited power distribution with a
mean angle of arrivalϕ0 = 0◦ from broadside and angular spreadsσ =
{5◦, 30◦, 45◦, 180◦}.

As one would expect, the performance loss incurred due
to the modal correlation increases as the angular spread of
the distribution decreases. For example, at 10dB SNR, the
realistic PEP performance results obtained from (12) are
0.25dB, 1.5dB, 2.75dB and 7.5dB away from the i.i.d. channel
performance results for angular spreads180◦, 45◦, 30◦ and5◦,
respectively. Therefore, in general, if the angular spread of

7Performance loss due to antenna spacing is minimum when the antenna
separation is0.5λ or higher as we showed in Section V-A
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the distribution is closer to180◦ (isotropic scattering), then
the loss incurred due to the modal correlation is insignificant,
provided that the antenna spacing is optimal. However, for
moderate angular spread values such as45◦ and 30◦, the
performance loss is quite significant. This is due to the higher
concentration of energy closer to the mean AOA for small
angular spreads. It is also observed that for large angular
spread values, the diversity order of the code (the slope of
the performance curve) is preserved whereas for small and
moderate angular spread values, the diversity order of the code
is diminished.
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Fig. 4. Effect of receiver modal correlation on the exact-PEP of the 4-
state QPSK space-time trellis code with 2-Tx antennas and 2-Rx antennas
for the length 2 error event. Uniform limited power distribution with a
mean angle of arrivalϕ0 = 60◦ from broadside and angular spreads
σ = {5◦, 30◦, 45◦, 180◦}.

Fig.4 shows the PEP performance results of the 4-state
code for a mean AOAϕ0 = 60◦ from broadside. Similar
results are observed as for the mean AOAϕ0 = 0◦ case.
Comparing Figs. 3 and 4 we observe that the performance loss
is increased for all angular spreads as the mean AOA moves
away from broadside. This can be justified by the reasoning
that, as the mean AOA moves away from broadside, there will
be a reduction in the angular spread exposed to the antennas
and hence less signals being captured.

Furthermore, we observed that (performance results are not
shown here) when there are more than two receive antennas
in a fixed receiver aperture, the performance loss of the 4-
state code with decreasing angular spread is most pronounced
for the ULA antenna configuration when the mean AOA
is closer to90◦ (inline with the array). But, for the UCA
antenna configuration, the performance loss is insignificant as
the mean AOA moves away from broadside for all angular
spreads. This suggests that the UCA antenna configuration is
less sensitive to change of mean AOA compared to the ULA
antenna configuration. Hence, the UCA antenna configuration
is best suited to employ a space-time code.

Using the results we obtained thus far, we can claim that,
in general, space-time trellis codes are susceptible to spatial
fading correlation effects, in particular, when the antenna

separation and the angular spread are small.

VI. CONCLUSION

Using an MGF-based approach, we have derived an ana-
lytical expression for the exact pairwise error probability of
a space-time coded system over a spatially correlated slow
fading channel. This analytical PEP expression fully accounts
for antenna separation, antenna geometry and surrounding
azimuth power distributions, both at the receiver and the
transmitter antenna arrays. In practice, it can be used as
a tool to estimate or predict the performance of a space-
time code under any antenna configuration and surrounding
azimuth power distribution parameters. Based on this new PEP
expression, we showed that space-time codes employed on
multiple transmit and multiple receive antennas are susceptible
to spatial fading correlation effects, particularly for small
antenna separations and small angular spreads.
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