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Abstract— In this paper, we investigate the reduced rank shift
invariant techniques in the application of synchronization and
channel identification of UWB signals. The proposed reduced
rank techniques can track the principal components automati-
cally and reduce the computational complexity significantly by
transforming the generalized eigen-problem in an original high
dimensional space to a lower dimensional space depending on
the number of desired principal signals. Technical details in the
application, including the operations of sampling, fast Fourier
transform (FFT) and the capture of synchronization delay, are
given. Experiments show the performance is only slightly inferior
to the general full rank algorithms.

shift invariant techniques, UWB, synchronization, channel
estimation

I. INTRODUCTION

Ultra Wideband (UWB) signals have very high resolution
ability. This implies a frequency-selective channel with rich
multipath in practice. Identifying and utilizing these multipath
is a must for achieving satisfactory performance in a UWB
receiver.

Some related research based on the traditional correla-
tor techniques have been reported [1], [2]. The correlator-
based techniques are simple, but they only have limited
resolution ability (depending on the number of samples for
non-overlapped multipath signals), and are vulnerable to the
intersymbol interference (ISI). In [3], a frequency approach
is introduced based on the subspace methods. Although this
scheme is derived from the authors’ preceding work on the
“sampling signals with finite rate of innovation”, it is essen-
tially same to those [4], [5] based on the well-known shift
invariant techniques [6], [7].

Shift Invariant techniques, such as ESPRIT and its variants,
Matrix Pencil methods and State-Space methods, are a class
of signal subspace approaches with high resolution ability but
relatively high computational complexity associated with the
singular value decomposition (SVD) and generalized eigen-
value decomposition (GED). To make the algorithms noise-
stable, truncated data matrices are generally formed using
SVD, and the original GED in a larger space is transformed
into that in a smaller space. So rank reduction is inherent
in shift invariant techniques. However, in the literature, the
rank reduction is only limited to separating the signal subspace

and noise subspace and the reduced rank is constrained to L,
the number of signal sources, which is usually required to be
known as a prior or to be estimated on-line.

In this paper, we present some novel joint channel iden-
tification and synchronization methods for UWB based on
reduced-rank shift invariant techniques. Unlike general sub-
space methods, our schemes remove the constraint on L, and
p multipath signals with largest energy can be automatically
tracked and identified, while the complexity is only roughly
related to p and can be significantly reduced. The value
of p can be adjusted freely to meet different performance
requirements of synchronization and specific multiple-finger
receivers like RAKE. In regard to the anti-aliasing filter used
before sampling in [3], we will discuss the possibility of
omitting it in the receiver.

The following notation is used. Matrices and vectors are
denoted by boldface upper-case and lower-case letters, respec-
tively. The conjugate transpose of a vector or matrix is denoted
by the superscript (·)∗, the transpose is denoted by (·)T , and
the pseudo-inverse of a matrix is denoted by (·)†. Finally, I
denotes the identity matrix and diag(· · · ) denotes a diagonal
matrix.

II. REDUCED-RANK IDENTIFICATION OF PRINCIPAL

COMPONENTS

Typical harmonic retrieval problems can be addressed as
the identification of unknown variables from the following
equations

x(k) =
L∑

�=1

a�e
jkω� + n(k), k ∈ [1,K] (1)

where x(k) are the measured samples, n(k) are the noise
samples, a� and ω� ∈ (0, 2π) are the unknown amplitudes
and frequencies, to be determined.

Organize these measured samples x(k) into a Hankel matrix
X where the entries along the anti-diagonals are equal to each
other, we get

X =




x(2) x(3) · · · x(Q + 1)
x(3) x(4) · · · x(Q + 2)

...
...

. . .
...

x(M + 1) x(M + 2) · · · x(K)


 , (2)



where min(M, Q) ≥ L and M +Q− 1 = K. Without loss of
generality, we assume M ≥ Q. In the noise-free case, X can
be factorized as

X = FMAFT
Q, (3)

where

FM = F(M),FQ = F(Q),
F(m) =

[
fm(ω1), fm(ω2), · · · , fm(ω�), · · · , fm(ωL)

]
,

fm(ω�) =
[
ejω� , ej2ω� , · · · , ejmω�

]T
,

A = diag
(
a1, a2, · · · , aL

)
. (4)

The Vandermonde matrix F(m) exhibits the so-called shift
invariant property, that is,

F(m)↑d = F(m)↓dΦd (5)

where (·)↑d and (·)↓d denote the operations of omitting the
first d and the last d rows of a matrix, respectively, and Φ =
diag

(
ejω1 , ejω2 , · · · , ejωL

)
contains the desired frequencies.

This property facilitates the development of various shift
invariant techniques. By constructing two L rank matrices Y1

and Y2 with inherent shift invariant property, the diagonal
elements of Φ can be obtained by solving the generalized
eigenvalues of the matrix pencil {Y1 − ξY2}. These two
matrices Y1 and Y2 can be constructed directly from X
using Y1 = X↓d and Y2 = X↑d, or from the correlation
matrices of X, or from the singular vectors of X. The use of
d > 1 can improve resolution ability and result to smaller
variance of estimates [8], but d must be chosen to ensure
d < 2π/ max(ω�) in order to avoid phase ambiguities.

A. Principal subspace and frequency estimation

Suppose that the constructed Y1 and Y2 are (M − d)×Q
noise-free matrices. Since Y1 has rank L, the compact SVD
of Y1 has the form

Y1 = UΛV∗ = [Up Ur]
[

Λp 0
0 Λr

]
[Vp Vr]∗ (6)

= UpΛpV∗
p + UrΛrV∗

r ,

where the L×L diagonal matrix Λ contains singular values in
descending order, the (M−d)×L matrix U and Q×L matrix
V consist of left and right singular vectors, respectively. Up

(Vp) and Ur (Vr) are the left and right submatrices of U
(V), associated with the p principal and the remaining L− p
smaller singular values, respectively.

Multiply the matrix pencil (Y1−ξY2) by U∗
p from the left

and by Vp from the right, we get a new p × p matrix pencil

(Λp − ξU∗
pY2Vp), (7)

where we have utilized the orthogonality between the columns
of Up and Ur, and Vp and Vr.

For the new matrix pencil, we have the following results.
Proposition 1: The matrix pencil (Λp − ξU∗

pY2Vp) has
p distinctive generalized eigenvalues ξ�, � = 1, 2, · · · , p, and
in most cases, the angles of ξ� are 1) equal or 2) good
approximations to the p frequencies ω� up to a known scalar,
corresponding to p harmonics with largest energy.

Proof: The proof is given in [9].
Substituting estimated frequencies into (1), the amplitudes

a� can be obtained by solving a Vandermonde system using
least squares type algorithms [10]. However, in the case when
only p out of L frequencies are known, the estimates of
p amplitudes obtained by solving under-determined linear
equations of (1) will comprise large error. Alternatively, when
Y1 and Y2 are formed as the correlation matrices of x(k),
for example,

Y1 = X↓d(X↓d)∗,

Y2 = X↑d(X↓d)∗, (8)

the energy of the harmonics can be estimated in a subspace
method according to the following proposition.

Proposition 2: When Y1 and Y2 are constructed similar
to (8), the energy of every harmonic, |a�|2, can be well
approximated by

|a�|2 ≈ θ∗
�Λpθ�∣∣θ∗

�UpfM−d(ω�)
∣∣2 , (9)

where θ� is the generalized eigenvector corresponding to the
generalized eigenvalue ξ� (and then frequency ω�).

Proof: The proof is given in [9].
A necessary condition for the above proposition is that

the product FT
Q(FT

Q)∗ need resemble an identity matrix. This
condition can only be met when Q is larger enough and there
is no frequency close to zero or π.

In [9], we will show there is another method in which the
condition can be waived by constructing a Hermitian data
matrix.

B. Fast Algorithms

Since only p out of L principal singular values and vectors
are required, the computation can be simplified by applying
fast algorithms with lower complexity, such as the power
method [11]. For each dominant singular value and vector,
the power method has a computational order of (M − d)2

for a (M − d) × (M − d) Hermitian matrix. To be noted, in
the power method, the speed of convergence is highly related
to the ratio between the two principal singular values of the
matrix. The larger the ratio is, the faster it converges. For
the series of principal singular values, several iterations can
usually achieve convergence.

For a Hermitian matrix Y1, the power method generates p
principal singular values and vectors as follows:

1) Let i = 1;
2) Generate the dominant eigenvalue λi and eigenvector vi

of Y1 using the power method;
3) Using the deflation operation to update Y1:

Y1 = Y1 − λiviv∗
i ;

4) Let i = i + 1, and repeat 2 until i = p + 1.

When Y1 is not a symmetric or Hermitian matrix, a similar
algorithm is applicable in which the left and right singular vec-
tors should be generated by constructing Y1Y∗

1 and Y∗
1Y1,

respectively.



III. JOINT SYNCHRONIZATION AND CHANNEL

IDENTIFICATION

We consider a general transmitted UWB signal s(t) in a
single user system in this paper. The signal s(t) could be
a spread spectrum (SS) signal (e.g., time hopping or direct
sequence hopping) or non-SS signal (e.g., single pulse), but
it should be unmodulated or modulated with identical known
data. We assume the spread spectrum sequence is known in
a SS system. A simplified time delayed line (TDL) multipath
model is adopted. The TDL model can be represented as

h(t) =
L∑

�=1

a�δ(t − τ�), (10)

where τ� is the �th multipath delay, a� is the �th multipath
gain with phase uniformly set to {±1}.

When a symbol sequence {si(t)} are transmitted over this
channel, the received signal r(t) is

r(t) =
∑

i

L∑
�=1

a�si(t − iTs − τ − τ�) + n(t), (11)

where τ is the synchronization delay between the receiver
and the transmitter, Ts is the symbol period, n(t) represents
addition white Gaussian noise (AWGN) with mean zero and
variance σ2

0 .
To set up the connection between (11) and (1), we can

transform (11) from time domain to frequency domain. Con-
sidering the efficiency, Discrete Fourier Transform (DFT) can
be applied to the samples of r(t). However, when applying the
DFT, some technical details should be dealt with carefully.

A. Sampling of Signals

Since the system is not synchronized yet, whatever the
signal s(t) is, the width of the sampling window should equal
the integral times of the symbol period and be larger than the
maximal multipath spread. Assume that the sampling period
is T , the number of samples is K1, and the obtained samples
from (11) are {r(m)}, where m ∈ [1,K1]. Two scenarios need
be considered for the DFT coefficients.

1) Sampling of Widely Separated Pulses: When the interval
between the continuously transmitted pulses is larger than
the maximum spread of the multipath, ISI does not exist in
the samples. Let the sampling length TK1 equal the symbol
period Ts, {s(m)} be the samples of si(t), and {n(m)} be
the samples of the noise n(t), then the DFT coefficients of
(11) can be represented as

R(k) = S(k)
L∑

�=1

a�e
−jkΩ0(τ+τ�) + N(k), k ∈ [1,K1],

(12)

where Ω0 = 2π/(TK1) is the basic frequency, S(k) and N(k)
are the DFT coefficients of {s(m)} and {n(m)}, respectively.

2) Sampling of Closely Spaced Pulses: When the interval
between the transmitted pulses is smaller than the maximum
spread of the multipath, ISI is generated. Assume that at most
∆i symbols can cover the multipath spread. Represent the ∆i
symbols as

s∆i(t) =
i1+∆i−1∑

i=i1

si(t − iTs), (13)

where i1 is the index of any symbol, and let {s(m)}, m ∈
[1,K1] be the samples of s∆i. When symbols are transmitted
continuously without interruption, it can be shown that the
Circular Shift Property of the DFT enables the measured
samples in the frequency domain to be ISI-free, and (12) is
also satisfied in this case.

3) Influence of Sampling period on the Resolution Ability:
From the expression of the circular shift property, it seems
that the delays are implicitly aligned to the integral multiples
of the sampling period. Actually, this is not necessary when
the signal is bandlimited and it is sampled above the Nyquist
rate. According to the sampling theory, any bandlimited signal
can be reconstructed without distortion when sampled above
the Nyquist rate, no matter when the sampling starts.

On the contrary, if the signal is not bandlimited or it
is sampled below the Nyquist rate, aliasing will affect the
accuracy of estimates due to the loss of the circular shift
property between the DFT coefficients of original signals and
their time shifted versions. Besides, the jitter of sampling
epoch will also cause slight errors. In this sense, the sampling
period largely determines the accuracy of estimates.

However, interestingly, in the delay tracking problem, if the
delays can be translated into integral times of the sampling
period, aliasing will not influence the estimation at all. Intu-
itively, the delay tracking now is equivalently operated over
some discrete samples which are predetermined and fixed. This
result seems to suggest that a resolution of the estimates up
to half of the sampling period is always achievable no matter
how severe the aliasing degree is.

B. Spectrum aliasing and DFT coefficients

A key problem in DFT is the aliasing arisen by sampling
below the Nyquist rate. Due to the ultra wide bandwidth of
UWB signals, sampling rate usually can not be high enough
to avoid aliasing in practical implementations. In this case,
the received signal can be passed through a band-limited filter
(called as anti-aliasing filter) before sampling as suggested in
[3]. However, this filter should be an analog filter but not
a digital one. Otherwise higher sampling frequency in the
digital filter will be required to avoid the distortion of a desired
spectrum. The disadvantage with such an analog device in a
low-power UWB system is obvious. Below, we will see that
this filter is not necessary when we check the property of the
Fourier transform of Gaussian monocycles.

The spectrum of s∆i can be expressed as the sum of several
shifted versions of the spectrum of the basic monocycle. The
degree and range of spectrum aliasing in the DFT coefficients
of s∆i are largely determined by the aliasing of the basic
monocycle. Then, by observing the aliasing in the DFT of the



basic monocycle, we can choose those DFT coefficients with
negligible errors.

On the other hand, DFT coefficients with larger energy
should be chosen to avoid blowing up the noise in the
de-convolution operation. When the signal s∆i consists of
multiple monocycles, the signal spectrum deviates largely from
the spectrum of the basic monocycle. So the selection of DFT
coefficients varies from time to time and has to be determined
on-line.

When strong narrow-band interference is present and the
interference spectrum is known, the interference can be readily
removed by selecting those coefficients in the unaffected
spectrum.

C. Application of the principal components tracking algorithm

De-convolution is defined as the operation of dividing R(k)
by S(k) in (12), the reverse of convolution viewed in the
frequency domain. After the de-convolution operation, we get
an expression identical to the harmonic retrieval model in (1).
Then the synchronization and channel identification algorithm
can be summarized as follows:

1) Sampling the received signal using period T in a window
with width TK1. Make sure TK1 equals integer times
of the symbol period Ts and be larger than the maximal
multipath spread;

2) Applying FFT to the samples and select K DFT coeffi-
cients carefully;

3) After de-convolution, forming Hankel data matrix X,
and using principal components tracking algorithms to
estimate the p delays with largest energy (sum of τ and
τ�). (If the fading amplitudes a� are required, correlation
matrices should be used)

4) Resolve τ and τ� from the estimated delays.
The last step is necessary since the estimated delays in step

(3) are the sums between the synchronization delay and every
multipath delays. There is a phase-ambiguity problem with
these sums as the delays may become circularly shifted. This
could happen when sampling starts in the middle of multipath
delays. Our solution is first to make TK1 be much larger than
the maximal multipath delay, then separate τ and τ� according
to the following criteria:

• Sorting the estimates in ascending order, {τ̂1, τ̂2, · · · , τ̂p}.
If the gap between two adjoining estimates is larger than
a threshold τth, for example, τ̂p1 − τ̂p1−1 > τth, then τ̂p1

equals the sum of the synchronization delay and the first
desired multipath. And all the estimates need be updated
to

{τ̂p1 , τ̂p1+1, · · · , τ̂p, τ̂1+TK1, · · · , τ̂p1−1+TK1}, (14)

that is, the original τ̂1, · · · , τ̂p1−1 are updated by adding
TK1 to themselves. Now, the receiver can synchronize
to the multipath with delay τ̂p1 which implicity assumes
the delay of the first multipath of interest is zero. Then
the difference between the updated estimates and the first
desired multipath are the relative multipath delays.

• Otherwise, the smallest estimate is the first multipath of
interest and no update is needed.

This judgement is based on the assumption that the gap
between any two multipath is smaller than the threshold τth,
which is generally close to the difference between the window
width of the sampling TK1 and the maximal mltipath delay. In
practice, the multipath components with larger energy usually
have smaller delays, so the threshold need not be very large.

D. Complexity of Our Scheme

The complexity of our algorithm depends on the required
resolution ability and performance of estimation. The reso-
lution ability is roughly determined by the sampling period.
The smaller the sampling period is, the higher the resolution
ability is. The performance of estimation is mainly influenced
by the signal to noise ratio (SNR), and the dimension of the
matrices Y1 and Y2. Then the sampling period is the key
parameter in both the complexity and performance since the
main computation cost of our algorithm is associated with FFT
and GED. For an K1-point FFT1, the computational workload
is K1(3 log2 K1 − 1)/2 when using a Cooley-Tukey radix-2
algorithm. Plus the complexity of the power method and the
GED of a p × p matrix, the total complexity of our reduced
rank algorithms is in the order of K1 log2 K1+K2

1 +p3, while
the complexity of general shift invariant techniques is in the
order of K1 log2 K1 + K3

1 + L3.

IV. SIMULATIONS

The second order Gaussian monocycle p(t) is used as the
basic pulse

p(t) = [1−4π((t− tp)/tp)2] exp
(−2π((t− tp)/tp)2

)
, (15)

where tp parameterizes the effective pulse width. To generalize
the analysis, t is normalized with respect to tp.

Fig. 1 depicts how the magnitude of DFT coefficients and
the degree of aliasing change when a sequence of Gaussian
monocycles are transmitted over a TDL multipath channel.
The transmitted signal consists of two of the pulse p(t)
separated by 4tp. The multipath channel simply consists of
two tags with delays 2.27tp, 4.41tp and amplitudes 0.85, 0.51,
respectively. The sampling period is T = 0.3tp (roughly six
samples per pulse). From the figure, we can see the degree
of aliasing changes, and is less serious than that in the single
pulse case. From the statistical viewpoint, this is always the
case due to the cancellation between different delayed versions
of the monocycle.

To test the performance of our algorithms in practical
implementations, we use the channel model proposed in [12]
by IEEE802.15.3a. The channel impulse response (CIR) is
reproduced using tp = 1 for the line-of-sight model (CM1).
The transmitted signal is a single pulse p(t). The first L = 50
multipath signals in each of 20 CIRs are truncated as inputs.
The multipath signal is sampled with period T = 0.3tp.
The rooted mean squared error (RMSE) of the multipath
delay estimates averaged over 10 realizations for each CIR is
shown in Fig. 2. In the experiments, the ratio of successfully
tracking the multipath with largest energy is about 80%. The

1K1 need equal a power of 2, or the zero padding is required.
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Fig. 1. Illustration of DFT coefficients and the aliasing for a sequence
of Gaussian Monocycles. Solid curve: CFT of the received signal; Dashed
curve: DFT of the transmitted signal; Stems with circles in the end: DFT of
the received signal.

ratio of “hit” is influenced by the overlapping of multipath
components, the burst of noise and the limitation of the
algorithm itself. The Mean Squared Error shown in Fig. 2 is
the statistical result with wrong “hit” excluded. In the figure,
the solid lines correspond to p = 10, and the dashed lines
correspond to p = L = 50. The two curves without marks
depict the performance of the practical implementations (Sam-
pling, FFT and identification). As comparisons, the two curves
marked with circles depict the result from the harmonics model
when the multipath coefficients are directly fed into (1). The
comparisons show that the loss of performance is significant
during the sampling, FFT and de-convolution operations. This
loss is less dependent of the sampling period according to our
experiments. Even when the sampling period is as small as
0.1tp and the aliasing is almost invisible, the RMSEs are little
improved compared to those shown in Fig. 2. The possible
reasons are that 1) the estimation errors of the multipath delays
are enlarged by a scalar of TK1 since the directly estimated
parameters are frequencies and 2) the sampling operation
partly determines the resolution ability according to the FFT
because the shift property of DFT requires the time shifts to be
aligned to the integral times of the sampling period T . This
resolution can not be improved any longer in the posterior
operations. Actually, in the experiments, we find the RMSEs
corresponding to the 10dB SNR are already very close to the
RMSEs in the noise-free case.

The performance for closely spaced pulse are similar to that
in the single-pulse case. Due to space limitation, the results
are not listed here.

V. CONCLUSION

To reduce the complexity of general subspace-based delay
estimation algorithms, we introduce the reduced rank shift
invariant techniques which can track the principal components
automatically. Experiments show that our improved algorithm
can achieve the performance slightly inferior to that by the
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Fig. 2. Normalized RMSE of the multipath delay estimates vs the SNR.
Solid lines: p = 10; dashed lines: p = L = 50.

full rank algorithm, but with significantly reduced complexity.
However, both algorithms exhibit less attractive performance
in practical implementations in UWB systems due to the inher-
ent limitations on the resolution ability. A better scheme seems
to combine these shift invariant techniques in a two-staged
algorithm. The shift invariant techniques are used in the first
stage to determine parameters quickly and roughly, and the
second stage acts as a refinement process where the searching-
based Maximum Likelihood algorithm or a correlator with
dense samples could be applied.
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