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Abstract— In this paper, we propose a new technique that
facilitates soft transition between a startup algorithm and a
decision directed (DD) algorithm in blind adaptive equalizers.
The algorithm-pair is combined using a reliability measure that
is proportional to an estimate of the probability of the equalizer
detecting a correct symbol. This measure takes into account both
the equalized signal and its statistical distribution. The main
feature of the technique is in the smooth and automatic switching
from the startup algorithm to the DD algorithm and vice versa
depending on the value of the reliability measure. This technique
has been compared with the popular Benveniste-Goursat and
Stop-And-Go algorithms and is shown to exhibit a faster rate of
convergence and lower steady state error.

I. INTRODUCTION

In blind equalization, acquisition of the channel parameters
is usually achieved by employing a robust startup algorithm
such as the Sato algorithm [1] and the constant modulus (or
Godard) algorithm [2]. When the convergence is achieved,
the equalizer enters into the tracking mode and switches
to a decision directed (DD) algorithm. In the absence of
a training sequence, the “true” mean-squared error (MSE)
cannot be computed. Therefore, it is difficult to determine
an appropriate condition for switching to occur. Switching
too early when there are many errors may result in the ill-
convergence of the DD algorithm; switching too late may
result in a slow rate of convergence. The problem is how to
determine the reliability of the equalized output in the presence
of intersymbol interference (ISI) and noise when only the
received signal is available.

In the literature, several solutions to this problem have been
proposed [3]–[7]. They presented combination techniques for
the startup algorithm and the DD algorithm. The pioneers
Benveniste et al [3] as well as the authors of [6], [7] suggested
that the reliability of the equalized signal is related to the
proximity of that signal to its nearest constellation point(s).
Usually when the equalized signal is close to the constellation
points, the DD algorithm will dominate. Conversely, when
they are far away from the constellation points, the startup
algorithm will dominate. Another approach by Picchi and Prati
[4] suggested that it is reliable enough to update the DD
algorithm when the signs of the error functions of both the
Sato and the DD algorithms agree. Their idea is then extended
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Fig. 1. A typical baseband equivalent channel and a linear equalizer that
employs the dual-mode algorithm.

in [5] to include a third algorithm so that the DD algorithm is
only updated when the error functions of the Sato, the Godard
and the DD algorithms all agree in sign. The above mentioned
algorithms tend to have slow convergence. This is because the
combination techniques of the algorithms depend only on the
instantaneous equalized output or the signs of error functions,
without (explicitly) taking into account the distribution of the
deconvolutional noise, i.e., the sum of the residual ISI and the
receiver noise.

In this paper, we propose a blind adaptive dual-mode algo-
rithm that uses a reliability measure that is an explicit function
of both the equalized output and its statistical distribution.
In contrast to previous approaches, we derive this measure
by applying Bayes theorem to obtain the probability of the
equalizer correctly detecting a symbol. The resulting algorithm
therefore depends on both the equalized output as well as the
estimated variance of the deconvolutional noise. The system
model is developed in Section 2. The development of the new
algorithm is outlined in Section 3. Section 4 shows supportive
simulation results.

II. SYSTEM MODEL

Consider the combined channel-equalizer system depicted
in Fig. 1. Let h � [h0, h1, · · · , hL]T denote the coefficients
of the channel filter of length L + 1. The channel is assumed
stationary, possibly non-minimum phase, but unknown. Let the
source data sequence be ak � [ak, ak−1, · · · , ak−L]T with a
time index k, drawn from the alphabet set

A � {d1, d2, · · · , dM} = {±1,±3, · · · ,±(M − 1)} (1)
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for M -ary pulse amplitude modulation (PAM) signaling. Then
the input signal to the equalizer is

rk = hT ak + nk (2)

where nk is the additive noise. Also let ck �
[c−N,k, · · · , c0,k, · · · , cN,k]T be the (2N + 1) equalizer
tap coefficients. We set

cp,0 =
{

1 p = 0
0 otherwise (3)

to have a center-tap initialization, which allows the causal
development of approximate inverse filters for non-minimum
phase systems. Then the equalizer output is given by

zk =
N∑

n=−N

cnrk−n (4)

= s0ak + vk (5)

where

vk =
N+L∑

j �=0,j=−N

sjak−j +
N∑

n=−N

cnnk−n (6)

is the so-called deconvolutional noise with a variance of σ2
k,

and {sj}, j = −N, · · · , N +L is the set of coefficients of the
combined channel-equalizer filter. Without loss of generality,
the coefficient s0 is defined as unity. We further assume:
(H1) the M -PAM source symbols are identically and inde-

pendently distributed (i.i.d.);
(H2) vk is white and Gaussian with zero mean and variance

σ2
k;

(H3) the impulse response of the combined channel-equalizer
filter is absolutely summable, i.e.,

∑∞
j=−∞ |sj | < ∞.

While assumption (H2) may not hold well for a wide range of
channels, we expect it to hold, due to the central limit theorem
[8, ch. 2], for our special case that considers the channel eye
to be open. This assumption is further discussed in Section
III-C.

III. DEVELOPMENT OF ALGORITHM

A. Stochastic Gradient Descent Blind Dual-Mode Algorithms

Blind adaptive equalization algorithms are often designed as
stochastic gradient descent schemes to update the parameter
vector by minimizing some cost functions that do not involve
the use of the original input ak but reflect the current level of
ISI in the equalizer output. Define the mean cost function as

J(ck) � 1
2
E{ε2(zk)} (7)

where ε2(·) : R → R is a scalar cost function and zk

is the equalizer output. Denote the parameter vector of the
equalizer ck as its value at sample instant k and rk =
[rk−N , · · · , r0, · · · , rk+N+L]T as the regressor vector of the
samples of the channel output. The stochastic gradient descent
minimization algorithm is well-known to be

ck+1 = ck − µ
∂

∂ck

1
2
ε2(zk) (8)

= ck − µε(zk)rT
k . (9)

Hence the blind algorithm can either be defined by the cost
function or equivalently through ε(·) which we call the error
function since it replaces the prediction error in the LMS
algorithm. Let εstartk and εsteady

k be the error functions of the
blind algorithms of the startup mode and the steady state mode,
respectively. A dual-mode algorithm has an error function that
combines these two types of error functions. Then a class of
dual-mode algorithms can be expressed in the form

εk = β1ε
steady
k + β2ε

start
k (10)

where β1 and β2 are user defined functions that depend on
signals available at the receiver.

B. Novel Dual-Mode Algorithm

We propose a dual-mode algorithm with an error function

εk = αkγεsteady
k + (1 − αk)εstartk (11)

which represents a convex combination between γεsteady
k

and εstartk with convex parameter αk, and γ is chosen to
compensate for the differences in the variances of the re-
spective error functions where it is sensible to assign γ �
E{|εstartk |}/E{|εsteady

k |}1. The formulation in (11) is largely
conventional. The principle design issue is how to determine
αk as a function of signals available at the receiver. In what
follows we identify αk with a measure of reliability2.

Let PC be the probability of the output of the quantizer
being correct given the output of the equalizer zk. Then given
αk is a convex parameter we can relate the extreme values of
αk to PC in the following way:

αk = 0, when PC ≤ 1 − PC

αk = 1, when PC = 1,
(12)

The lower bound condition is satisfied when the probability
of the equalizer detecting an incorrect symbol exceeds that of
the correct symbol. Consequently, at high noise levels, αk =
0 almost for all values of zk. At low noise levels, αk = 0
when zk is at (or near to) the middle point of two adjacent
alphabets. Empirical results often show that a bit-error-rate
of less than 10% is often sufficient in allowing the decision
directed algorithm to converge to its global minima. Therefore
we also set αk = 1 whenever σ2

k < σ2
thr where σ2

thr is a
suitable threshold.

Subsequently, we need to decide on the relationship between
αk and PC whenever 0.5 ≤ PC < 1 and σ2

k ≥ σ2
thr. We

propose a simple linear relationship between αk and PC which
is given by αk = 2PC − 1. Other mappings are possible as
long as αk is a monotonically increasing function of PC . Thus,

1γ is meant to be computed infrequently say at the end of each frame.
When we consider the CMA and the LMS algorithm for example, we find
that γ is approximately constant for a particular constellation size during the
transitional period between startup and steady state, i.e., at the vicinity of
an open eye condition. For the 4-PAM source, for example, it can be shown
empirically that γ ≈ 14.

2The definition of reliability is the ability of a system or component to
perform its required functions under stated conditions for a specified period
of time [9].
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our proposed reliability measure can be compactly expressed
as

αk =




1 σ2
k < σ2

thr

2PC − 1 0.5 ≤ PC < 1 and σ2
k ≥ σ2

thr

0 otherwise.
(13)

The probability PC can be interpreted as the posterior
probability of the event of a correctly detected symbol given
certain measurements. Such an event can be mathematically
expressed as {Aj∗ : Q(zk) = dj∗ = ak}, where Q(·) is
the quantization operator and j∗ is the index of the alphabet
symbol that corresponds to a correct quantizer decision. All
other incorrect events are {Aj : Q(zk) = dj , ∀j �= j∗}. Thus,
we define PC as the posterior conditional probability

PC � P (Aj∗ |zk). (14)

C. Computation of Reliability Measure αk

To compute αk we need to compute PC and σ2
k. The former

can be calculated by applying Bayes theorem and the law of
total probability:

PC = P (Aj∗ |zk) =
p(zk|Aj∗)P (Aj∗)

p(zk)
(15)

=
p(zk|Aj∗)P (Aj∗)

p(zk|Aj∗)P (Aj∗) +
∑

j �=j∗ p(zk|Aj)P (Aj)
, (16)

where p(·) denotes the probability density function (pdf).
From assumption (H1), we get P (Aj) = 1/M,∀j. From
assumption (H2), p(zk|Aj),∀j is the pdf of a normalized
Gaussian distribution, i.e.

p(zk|Aj) =
1

σk

√
2π

exp
(−(zk − dj)2

(2σ2
k)

)
. (17)

Therefore, due to assumptions (H1) and (H2), PC of (15)
becomes a function of both zk and σ2

k so that

PC =
exp

(
−(zk−Q(zk))2

2σ2
k

)
∑M

j=1 exp
(−(zk−dj)2

2σ2
k

) . (18)

To calculate the reliability measure αk in (13) and PC in
(18), it is necessary to estimate the variance of the deconvo-
lutional noise σ2

k. However, estimation of this noise level is
not a simple task because of the unknown channel. In our
situation, we will rely on the deconvolutional noise being
Gaussian due to the central limit theorem, i.e., the assumption
of (H2). Recall that the conditions of the central limit theorem
are such that there should be many independent terms in the
impulse response of the deconvolutional noise which is the
combined channel-equalizer response excluding the cursor s0.
In other words, the terms in {sj},∀j �= 0 should be many and
independent of one another. When the channel eye is almost
open, the impulse response {sj},∀j �= 0 should contain many
small terms whose cross-correlation is small [8, ch. 2] if the
equalizer has successfully minimized the cost function. It is
actually appropriate to restrict the region of our consideration
to the region when the channel eye is almost open as this is

when switching usually occurs and the calculation of αk is
required.

There are two known methods to obtain σ2
k, namely the

decision directed MSE and the signal-to-noise ratio (SNR)
moments estimator approaches.

1) SNR Moments Estimator: The variance of the deconvo-
lutional noise can be obtained by solving simultaneously the
equations of the second (M2) and fourth (M4) order moments
of zk [10]

M2 � S + N (19)

M4 � kaS2 + 6SN + kvN2 (20)

where S, N are the power scaling factors of the unit variance
signal and noise respectively, and ka � E{|ak|4}/E{|ak|2}2

and kv � E{|vk|4}/E{|vk|2}2 are the kurtoses of the signal
and the noise, respectively. Let the so-called excess kurtoses
of ak and vk be Ga � ka − 3 and Gv � kv − 3. Further we
assume the deconvolutional noise is Gaussian so that Gv = 0.
Solving for S and N of (19) and (20) simultaneously, we get

σ2
k � N = M2 ±

√
G−1

a (M4 − 3M2
2 ). (21)

The second and fourth order moments Mp, p = 2, 4, can be
estimated recursively in time k by

M̂p(k + 1) = ρM̂p(k) + (1 − ρ)|zk|p (22)

where ρ is a forgetting factor that is close to 1. The initial
values M̂2(0) and M̂4(0) are set to zero. Equation (21) needs
to be computed only once in every frame3. The estimated
variance is then substituted into PC of (18) to acquire the
reliability measure αk.

Fig. 2. Relationship between the DD MSE and σk for M -ary PAM with
M = 2, 4, · · · , 64. The range of values of σk is from 0.1 to 1.4 presented
in the log scale.

2) Decision directed MSE (DD MSE) Method: Once the
pdf of vk is assumed Gaussian, there is a straightforward

3In our simulations using 4-PAM data, one frame consists of 100 symbols.
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TABLE I

LOOKUP TABLE FOR DD MSE, κ(σk) AND VARIANCE OF

DECONVOLUTIONAL NOISE, σ2
k FOR M -PAM SIGNALS

σk 0.4 0.5 0.6 0.7 0.8 0.9 1.0
σ2
k 0.16 0.25 0.36 0.49 0.64 0.81 1.0

M -PAM DD MSE, κ(σk)
2- 0.157 0.232 0.311 0.392 0.476 0.565 0.663
4- 0.155 0.224 0.287 0.344 0.396 0.444 0.495
8- 0.154 0.219 0.275 0.32 0.354 0.383 0.411
16- 0.154 0.217 0.269 0.308 0.334 0.353 0.369
32- 0.154 0.216 0.266 0.302 0.324 0.338 0.348
64- 0.154 0.216 0.265 0.3 0.319 0.33 0.337

relationship between σ2
k and the DD MSE. This method

involves a lookup table to be tabulated which can be computed
offline. The value of σk is varied from say 0.4 to 1.0 at an
interval of 0.1 and a large sample of zk is generated for each
σk. Let the DD MSE of these sample points be κ(σk), where
it is a function of σk. Then the DD MSE can be computed
according to

κ(σk) =
∑Ls

i=1 |zk − Q(zk)|2
Ls

(23)

where Ls is the sample size used. The lookup table for M -
PAM, M = 2, 4, 8, 16, 32, 64 for a range of σk values is
tabulated in Table I.

One advantage of the DD MSE approach over the SNR
moments estimator, apart from being less computationally
intensive, is that it is a direct and unbiased estimator. In
contrast the SNR moments estimator may suffer a large
variance given higher order moments need to be estimated.
On the other hand, the DD MSE approach is less robust for
greater constellation sizes. For M -PAM, it may not be reliably
used for constellation sizes larger than 16 as the relationship
becomes increasingly nonlinear (see Fig. 2).

IV. SIMULATION RESULTS

With stationary channels, the equalizer achievements can be
characterized in terms of convergence speed and steady-state
error. As our performance measure, we have used the DD MSE
which can be estimated recursively via

MSEdd
k+1 = ρMSEdd

k + (1 − ρ)(zk − Q(zk))2 (24)

where ρ = 0.99 is our forgetting factor. Results have been
obtained via Monte Carlo simulations using 200 independent
runs on two nonminimum phase channels: (one with a weaker
coloring on the channel output h′ [11], and another with a
stronger coloring h′′ [12])

h′ = [0.04,−0.05, 0.07,−0.21,−0.5, 0.72,

0.36, 0, 0.21, 0.03, 0.07]T

h′′ = [0.8264,−0.1653, 0.8512, 0.1636, 0.81]T .

Simulations on both channels were carried out at an SNR of
25dB using 4-PAM signalling {±1,±3}. A total of 104 and
105 symbols were used in each simulation run when dealing
with the channel h′ and h′′, respectively. For the respective
channels, we used a baud-rate equalizer with 20 taps and 40

taps initialized with a center tap strategy, employing a step
size of 10−4 and 2.5 × 10−5, respectively.

We compared the performance of the proposed dual-mode
algorithm (new) with 4 other popular algorithms, namely
the Benveniste-Goursat (BG) algorithm [3], the Stop-And-
Go (SAG) algorithm [4], the dual-mode Godard algorithm
(DMGA) [7] and the traditional “hard switching” (HS) al-
gorithm. The HS algorithm will switch from the CMA to the
LMS algorithm when MSEdd

k < 0.25. The choice of startup
and steady state algorithms in all cases is the CMA 2-2 and
the DD LMS algorithm, respectively, except for the DMGA
[7] which employs the decision adjusted modulus algorithm
(DAMA) [13] at steady state. Their respective error functions
are given below:

εCMA
k = zk(|zk|2 − R2) (25)

εDD
k = zk − Q(zk) (26)

εDAMA
k = zk(|zk|2 − Q2(zk)) (27)

where Q(·) is the nearest neighbor quantizer.
For our simulations, the parameters of various algorithms of

comparison are outlined below. In the notation of (10) we can
express the error function in terms of the combination βk =
[β1, β2]. The name of the associated algorithm is superscripted
on βk. We have assigned βBG

k = [4, |εDD
k |]; βSAG

k = [40, 0] for
h′ and βSAG

k = [14, 0] for h′′ when sgn(εCMA
k ) = sgn(εDD

k )
and βSAG

k = [0, 0] when sgn(εCMA
k ) �= sgn(εDD

k ); βDMGA
k =

[1, 0], ∀|zk − Q(zk)| < 0.2, and βDMGA
k = [0, 1] otherwise;

βHS
k = [0, 1] when MSEdd

k > 0.25, and βHS
k = [14, 0]

otherwise. As for our dual-mode algorithm, we used αk from
(13) and assigned γ = 14. The variance σ2

k is estimated from
(17).

We simulated 200 runs for each dual-mode algorithm for
both channels. The graphs of the DD MSE of the averaged
runs are plotted in Fig. 3. Note that these graphs are obtained
by averaging out only the MSE of the runs that have been
successful in convergence. The summary of the results that
includes the failure rate of convergence is tabulated in Table II.
The failure rate is calculated by recording the number of runs
where the MSE at the end of a particular run is higher than
−13.15 dB = 0.22 then dividing by the total number of runs.
The time to convergence has been normalized by the averaged
number of symbols required by the fastest algorithm. From
Table II, the hard switching algorithm is the most unreliable as
it yields high failure rates. Both our algorithm and the DMGA
are the smoothest in terms of low failure rate, but the DMGA
yields higher steady state MSE and is also carrier phase blind.
The general conclusion is that the proposed new algorithm is
superior than others in terms of convergence speed and steady
state error based on the results in Fig. 3 and Table II.

V. CONCLUSION

In this paper, we have constructed a novel dual-mode algo-
rithm whose combination technique depends on a reliability
measure of the equalized signals. This measure, unlike several
traditional ones, reflects more accurately the probability of
correctly detecting a symbol given the most current output and
certain statistics regarding the distribution of the residual ISI
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Fig. 3. A comparison of several dual-mode algorithms equalizing channels (A) h′, and (B) h′′, both at an SNR of 25dB for 4-PAM signalling.

TABLE II

SUMMARY OF RESULTS IN FIG. 3 INCLUDING FAILURE RATES

h′ h′′
Normalized Normalized

Dual-mode Fail time to reach Fail time to reach
Algorithm rate -14dB -18dB rate -14dB -18dB

New 0% 1 1 3.5% 1.11 1
BG 0% 1.45 1.35 16.5% 1.65 1.35

SAG 0% 2.70 2.88 55.0% 3.18 -
DMGA 0% 1.15 1.25 1.5% 1.06 1.07

HS 1.5% 1.13 1.31 53.5% 1 1.23

Time normalized by 1590 2110 28900 49700

and noise. The proposed algorithm exhibits faster and more
reliable convergence corroborated by simulations performed
under both lightly and severely distorted channels when
compared to traditional algorithms such as the Benveniste-
Goursat and the Stop-And-Go algorithms. The performance
improvement over DMGA [7], however, is less discernible
in our simulations. This new technique also eliminates any
requirement for manual control of the parameters that govern
the convergence speed and excess noise.

REFERENCES

[1] Y. Sato, “A method of self-recovering equalization for multi-level
amplitude-modulations systems,” IEEE Trans. Commun., pp. 679–682,
Jun 1975.

[2] D. N. Godard, “Self-recovering equalization and carrier tracking in
two dimensional data communication system,” IEEE Trans. Commun.,
vol. 28, no. 11, pp. 1867–1875, Nov 1980.

[3] A. Benveniste and M. Goursat, “Blind equalizers,” IEEE Trans. Com-
mun., vol. COM-32, no. 8, pp. 871–883, Aug 1984.

[4] G. Picchi and G. Prati, “Blind equalization and carrier recovery using
a “Stop-and-Go” decision-directed algorithm,” IEEE Trans. Commun.,
vol. COM-35, no. 9, pp. 877–887, Sep 1987.

[5] D. Hatzinakos, “Stop-and-go sign algorithms for blind equalization,”
Proc. SPIE, Adaptive Signal Processing, vol. 1565, pp. 118–129, 1991.

[6] K. Hilal and P. Duhamel, “A blind equalizer allowing soft transition
between the CMA and the DD algorithm for PSK modulated signals,”
Proc. ICC, Geneva, Switzerland, pp. 1144–1148, May 1993.

[7] V. Weerackody and S. A. Kassam, “Dual-mode type algorithms for blind
equalization,” IEEE Trans. Commun., vol. 42, no. 1, pp. 22–28, Jun
1994.

[8] S. Haykin, Blind Deconvolution. Prentice Hall Information and System
Sciences Series, 1994.

[9] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries. New York, NY, 1990.

[10] D. R. Pauluzzi and N. C. Beaulieu, “A comparison of SNR estimation
techniques for the AWGN channel,” IEEE Trans. Commun., vol. 48,
no. 10, pp. 1681–1691, Oct 2000.

[11] J. G. Proakis, Digital Communications, 2nd ed. McGraw-Hill Interna-
tional Editions, 1989.

[12] J. Labat, O. Macchi, and C. Laot, “Adaptive decision feedback equaliza-
tion: Can you skip the training period?” IEEE Trans. Commun., vol. 46,
no. 7, pp. 921–930, Jul 1998.

[13] W. A. Sethares, G. A. Rey, and C. R. Johnson, Jr, “Approaches to blind
equalization of signals with multiple modulus,” ICASSP-89, vol. 2, pp.
972–975, 1989.

[14] J. J. Shynk, C. K. Chan, and R. P. Gooch, “Comparative performance
study of several blind equalization algorithms,” SPIE 91, San Diego, CA
(Optical Engineering), 1991.

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE2635


	footer1: 


