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Abstract— In this paper, we present the Cramér-Rao lower
bounds (CRLBs) for the time delay estimation of UWB signals
which could be tight lower bounds for the theoretical perfor-
mance limits of UWB synchronizers. The CRLBs are investigated
for both single pulse systems and time hopping systems in
AWGN and multipath channels. Insights are given into the
relationship between CRLBs for different Gaussian monocycles.
It is found that larger number of multipath signals implies higher
CRLBs and inferior performance of synchronizers, and multipath
interference on CRLBs can not be eliminated completely except
in very special cases. As every estimate of time delay could not
be perfect, the least influence of the synchronization error on the
performance of receivers is quantified.

I. INTRODUCTION

Ultra Wideband (UWB) is a promising technique in the
application of short-range high-speed wireless communication
and precise location tracking. Typically, ultra narrow pulses,
such as Gaussian monocycles [1], are modulated to transmit
information. These pulses could be narrower than 1 nanosec-
ond. This brings very stringent synchronization requirements.

A UWB signal is basically a baseband signal without phase
and carrier information, hence time delay estimation is the
main task of a synchronizer. This synchronizer could be one in
a simple single-pulse UWB system, however, due to the power
limitation imposed by FCC [2], UWB pulses are generally
combined with spread spectrum techniques, especially time
hopping (TH). Like in traditional spread spectrum systems,
the synchronization of a time-hopping UWB system can be
accomplished in two steps: code acquisition followed by code
tracking.

Some research on the design and performance of UWB
synchronizers has been reported in [3]–[6]. In order to pro-
vide benchmarks for these synchronizers, it is important to
understand the theoretical performance limits of synchronizers.
Among these limits, the Cramér-Rao Lower Bound (CRLB)
is most widely used. The CRLB [7] is a fundamental lower
bound on the variance of any unbiased estimator. The analysis
of CRLB for synchronizers in traditional systems is well
founded (e.g., see [8]–[11]), but for UWB, there is no sys-
tematic work yet. This paper is concerned with evaluating the
CRLB of UWB synchronizers for different UWB pulses. Both
single-pulse systems and time-hopping systems are considered.
For time hopping, the CRLB can be a lower bound for the
performance of code tracking. The evaluation of CRLBs is

generally mathematically quite difficult when the observed
signal contains, besides the parameter to be estimated, also
some nuisance parameters that are unknown [9], [11]. To
generate results intuitively, we only consider unmodulated
UWB signals here.

This paper is organized as follows. Section II introduces
the system model. In Section III, the CRLB for single-pulse
systems in AWGN channels is discussed and some insights
into the relationship between CRLBs for different Gaussian
monocycles are given. Section IV derives the CRLBs for UWB
signals in a multipath channel. The influence of synchroniza-
tion error on the performance of receiver is quantified in a
simple example in Section V. Finally, numerical results are
given in Section VI to verify the analytical results.

II. SYSTEM STRUCTURE

Let s(t) be the transmitted UWB signal. In an unmodulated
single-pulse system, s(t) =

∑
i ω(t − iTs), where ω(t) is a

UWB pulse, Ts is the symbol period. In an unmodulated time
hopping system, s(t) =

∑
i si(t) =

∑
i

∑Nf

j=1 ω(t − iTs −
jTf − cjTc) where Tf is the frame width, Nf is the number
of frames in a symbol, Tc is the chip width, and cj is the time
hopping code.

The UWB pulses considered are series of Gaussian monocy-
cles ω(t;n, tp), which are scaled and/or differentiated versions
of the basic Gaussian waveform ω0(t) = exp(−2πt2), that is,
ω(t;n, tp) = ω

(n)
0 (t/tp), where the superscript (n) stands for

n-order differentiation with respect to t.
To ensure equal energy of monocycles, a coefficient ε(n, tp)

is introduced, and let ω(t) = ε(n, tp)ω(t;n, tp). Denote the
energy of ω(t) as Ep, then ε(n, tp), depending on n and tp,
satisfies

ε2(n, tp) =
Ep∫ +∞

−∞ ω2(t;n, tp)dt
. (1)

In a pure AWGN channel n(t), the received signal r(t) is

r(t) = s(t − τ) + n(t), (2)

where every sample of n(t) is Gaussian distributed with zero
mean and variance σ2

0 , and τ is the timing delay to be
estimated.
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In a selective fading channel, h(t) =
∑L

�=1 a�δ(t − τ�), the
received signal is given by

r(t) =
L∑

�=1

a�s(t − τ�) + n(t), (3)

where a� and τ� are real multipath gains and delays, respec-
tively. Note the time delay τ between transmitter and receiver
is merged into τ�.

Due to the low duty cycle of UWB signals, we assume the
received signal is free of intersymbol interference (ISI) unless
indicated otherwise.

For the AWGN model in (2), estimated based on K inde-
pendent observations, the received signal can be represented
as a vector model

r = s + n, (4)

where r = [r1, · · · , rK ], s = [s1, · · · , sK ] and n =
[n1, · · · , nK ].

Suppose an unbiased estimate τ̂ of the time delay τ can be
generated from (4), then the estimation error variance is lower
bounded by the CRLB Er[(τ̂ − τ)2] ≥ CRLB(τ), where

CRLB(τ) =
(
Er|τ

[ − d2

dτ2
ln(p(r|τ))

])−1

. (5)

In (5), the conditional pdf p(r|τ) is the likelihood function of
τ , and the expectation Er|τ [·] is with respect to p(r|τ).

Since the additive noise n(t) is white and zero mean, p(r|τ)
can be expressed as

p(r|τ) =
K∏

k=1

1√
2πσ0

exp(− 1
2σ2

0

(rk − sk)2)

= (
1√

2πσ0

)K exp(− 1
2σ2

0

K∑
k=1

(rk − sk)2). (6)

A continuous-time equivalent of p(r|τ) can be developed
[7, p.274] [12, p.335], and the log-likelihood function L(r; τ)
has the form

L(r; τ) =
1

2σ2
0

(
2
∫

To

r(t)s(t − τ)dt −
∫

To

s2(t − τ)dt
)
. (7)

The process from (4) to (7) can be applied to the multipath
model (3) with minor modifications.

III. CRLB FOR SINGLE-PULSE SYSTEMS IN AWGN
CHANNELS

In this case, the CRLB, further derived from (7) or directly
from [13], has the form

CRLB(τ) =
σ2

0∫
To

ṡ2(t − τ)dt
, (8)

where ṡ(t−τ) denotes once partial differentiation with respect
to τ .

Assuming that the pulse is strictly restricted within a symbol
period, the denominator in (8) equals N

∫
Ts

ω̇2(t−τ)dt, where
N = To/Ts is the number of symbols in the observation

period. For a specific monocycle, the lower variance bound
becomes

CRLB(τ) =
1

Nγs

∫
Ts

ω2(t − τ ;n, tp)dt∫
Ts

ω̇2(t − τ ;n, tp)dt
, (9)

where the symbol SNR γs = Ep/σ2
0 .

If the symbol period Ts is large enough so that most of the
energy of the pulse concentrates within Ts, we can express (9)
in frequency domain

CRLB(τ) =
1

Nγs

∫ +∞
−∞ |W (f ;n, tp)|2df∫ +∞

−∞ f2|W (f ;n, tp)|2df
, (10)

where W (f ;n, tp) is the Fourier Transform of ω(t;n, tp).
According to the properties of the Fourier Transform of

derivatives of functions, we find explicit relationships exist
between the CRLBs of monocycles with different n but same
tp, that is,

CRLB(τ)n

CRLB(τ)n+1

=

∫ +∞
−∞ |W (f ;n, tp)|2df · ∫ +∞

−∞ f4|W (f ;n, tp)|2df( ∫ +∞
−∞ f2|W (f ;n, tp)|2df

)2 (11)

> 1, (12)

where the inequality is an application of Schwarz’s inequality.
This inequality implies that monocycles with higher order
differentiation have the potential for better performance in the
sense of lower synchronization error variance.

For monocycles with different tp but same n, the ratio
between their CRLBs can be found as

CRLB(τ)tp1

CRLB(τ)tp2

=
( tp1

tp2

)2

, (13)

which implies that monocycles with smaller tp (narrower
effective pulse width) have the potential for better synchro-
nization performance.

IV. CRLB FOR TIME-HOPPING UWB SYSTEMS IN

SELECTIVE-FADING CHANNELS

When the channel is AWGN, the analysis and results in
Section III can be applied to time hopping UWB systems
with minor modification. The change can be merged into the
symbol SNR γs, that is, γs equals to the ratio between the
energy of Nf pulses and the noise variance σ2

0 for TH UWB
systems. In this section, we will focus on selective fading
channels and derive the CRLBs using joint detection for mul-
tiple multipath parameters a = [a1, . . . , a�, . . . , aL]1×L and
τ = [τ1, . . . , τ�, . . . , τL]1×L, which are treated as unknown
but deterministic.

Start with (3), the log-likelihood function in (7) can be
rewritten as L(r; τ,a) as

L(r; τ,a) =
1
σ2

0

∫
To

r(t)
∑

�

a�s(t − τ�)dt−

1
2σ2

0

∫
To

[
∑

�

a�s(t − τ�)]2dt (14)

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE3425



Lower bounds on the variances of estimates for the compo-
nents of a� and τ� are given in terms of the diagonal elements
of the inverse of the Fisher information matrix J−1 [7]. After
some manipulation, the Fisher Information Matrix J can be
written as

J =
(

Jττ Jτa

Jaτ Jaa

)
, (15)

where Jττ , Jτa, Jaτ and Jaa are all L × L matrices with
[�,m]th elements

Jττ [�,m] =
1
σ2

0

∫
To

a�amṡ(t − τ�)ṡ(t − τm)dt, (16)

Jaa[�,m] =
1
σ2

0

∫
To

s(t − τ�)s(t − τm)dt, (17)

Jτa[�,m] = Jaτ [m, �] = − 1
σ2

0

∫
To

a�ṡ(t − τ�)s(t − τm)dt,

(18)

respectively.
The CRLB for τ� is just the �th diagonal element of the

inverse of J. Use � = 1 as an example and rewrite the matrix
J as

J =
(

J11 B
C D

)
, (19)

we have

CRLB(τ1) = J−1
11 + J−1

11 B(D − CJ−1
11 B)−1CJ−1

11 (20)

= J−1
11 + J−2

11 BJ̃11

−1
C (21)

≥ J−1
11 (22)

where J̃11 is called the Schur complement of J11 [14, p.175].
Since J is nonnegative definite, the Schur complement matrix

J̃11 is also nonnegative definite, so is J̃11

−1
. At the same time,

B is the transpose of C since J is a symmetric matrix in this
case. Thus we get BJ̃11C ≥ 0 and the inequality in (22)
follows immediately. When utilize the knowledge of J11 >
0 according to (16), we can get the inequality in (22) more
readily according to

CRLB(τ1) = (J11 − BD−1C)−1 > J−1
11 . (23)

As J−1
11 can be regarded as the CRLB in an AWGN channel

with a known scalar of amplitude, this inequality implies the
CRLB in joint detection is always larger than that in the single
parameter estimation in an AWGN channel. Then an inter-
esting question arises, whether more multipath means higher
CRLB and inferior performance of synchronizer accordingly?

Let us consider a channel with L−1 multipath signals. The
Fisher Information Matrix J′ can be written as

J′ =
(

J11 B
C D′

)
, (24)

with

D′ =
(

D1 0
0† 0

)
, (25)

where 0 is a (L−2)×1 zero vector and † stands for transpose
operation. Then the CRLB with L − 1 multipath is

CRLB(τ1)L−1 = (J11 − BD′−1C)−1. (26)

Comparing BD−1C and BD′−1C gives

BD−1C − BD′−1C = B
(
D−1 −

(
D1

−1 0
0† 0

) )
C (27)

≥ 0, (28)

where the inequality in (28) yields from that D−1 − D′−1 is
a nonnegative definite matrix as can be proven according to
the property of partitioned nonnegative definite matrices (e.g.,
see [14, p178], let D−1 = A in equation (6.10)).

Recall J11 > 0, we have

CRLB(τ1)L > CRLB(τ1)L−1, (29)

which shows that more multipath does lead to higher CRLB
and inferior performance of synchronizer. Since the number of
multipath is closely relevant to the bandwidth of monocycles,
we conclude that narrower monocycles will very likely cause
larger CRLBs. We did not say “absolutely” because all other
variables besides D during this derivation are assumed un-
changed, but it could be unrealistic when different monocycles
are applied.

Another key factor with influence on CRLB is the choice
of TH codes. When the autocorrelation of TH codes is ideal,
the CRLBs in a multipath channel will be similar to the one
in an AWGN channel.

So far, we have seen that the performance of synchronizers
is deteriorated by the multipath interference. It is natural to ask
whether the multipath interference can be mitigated or fully
eliminated before entering the decision part of a synchronizer?

As shown for CDMA systems in [15], it is possible to
remove part of multipath interference in UWB systems. How-
ever, unless the correlation of TH codes is ideal, the total
removal of multipath interference is impossible due to the
existence of n(t). This is because, any estimate of parameters,
including amplitude and delay, even though unbiased, may
still have a nonzero variance in the present of noise. The
CRLB can generally be achieved by Maximum Likelihood
estimation asymptotically (when the number of observation
samples goes to infinity), and the estimation error becomes
Gaussian distributed with zero mean and variance equivalent
to the CRLB [7], [8]. Therefore, the final signal with a pair
of synchronization parameters of interest contains the sum
of 2(L − 1) Gaussian variables, which has a variance larger
than the variance of n(t). Since CRLB is proportional to the
variance of (interference and) noise, the CRLBs for this pair of
parameters will be larger than those in a single path channel.
So no matter how perfect the structure and algorithm to remove
multipath signal are, the effect of multipath interference can
only be mitigated but can not be cancelled completely. This
result also partly explains why more multipath generally leads
to higher CRLBs.
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However, there are some special cases when multipath inter-
ference becomes negligible. For example, when the maximal
multipath delay is smaller than the frame period in a single
pulse system, multipath signals do not interfere with each other
due to the low duty cycle of UWB signal structure.

V. INFLUENCE OF SYNCHRONIZATION ERROR ON BER

We discuss a simple example here to show the influence of
synchronization error on the performance of receivers in UWB
systems.

We consider a BPSK modulated single-pulse signal in an
AWGN channel. A correlator receiver [16], [17] is used to
detect the signal.

The conditional bit-error-ratio (BER), depending on the
synchronization error eτ , is given by

Pe(eτ ) = Q
( ρ(eτ )√

Epσ0

)
, (30)

where Q(x) �
∫ +∞

x
exp(−t2/2)/

√
2πdt and ρ(eτ ) =∫

Ts
ω(t)ω(t − eτ )dt.

Recall that the best achievable eτ is Gaussian distributed
with zero mean and variance equivalent to the CRLB (denoted
by σ2

c ). In the best case, σ2
c = σ2

0/(N
∫

Ts
ω̇2(t − τ)dt) from

(8) is the smallest. Averaging Pe(eτ ) over eτ , we get the mean
BER

Pe = E[Pe(eτ )]

=
∫ +∞

−∞

1√
2πσc

Q
(√

ρ2(eτ )
Epσ2

0

)
exp(

−e2
τ

2σ2
c

) deτ . (31)

Statistically, this is the best achievable performance under
certain SNR. This equation can be evaluated numerically
by Monte Carlo simulation which requires highly computa-
tional complexity. Alternatively, we invoke the Hermite-Gauss
quadrature [18], and Pe can be accurately approximated by

Pe � 1√
π

Nh∑
n=1

Hxn
Q

(ρ(
√

2σcxn)√
Epσ0

)
, (32)

where Nh is the order of the Hermite polynomial HNh
(·),

xn and Hxn
are the zeros (abscissas) and weight factors

of Nh-order Hermite polynomial, respectively. These values
are tabulated in many mathematical handbooks (e.g., [19]).
In experiments, we find first 16 coefficients (Nh = 16) are
enough to generate accurate approximation results.

Further define a variable η as the degrading ratio between
Pe and Pe(0) = Q(

√
γs), which is the BER in the case of

perfect synchronization. We show the values of η for different
monocycles in Section VI to compare the synchronization
error robustness of monocycles.

VI. NUMERICAL RESULTS

Since there is not widely acceptable UWB fading channel
models yet, we only show numerical results on the CRLBs in
pure AWGN channels.

In Fig. 1 - Fig. 3, the CRLBs for different monocycles are
demonstrated. Since in practice, a transmitted monocycle is

usually the truncated portion of a whole pulse w(t;n, tp), this
effect of truncation is considered by varying the actual width
of pulse in (9).

From Fig. 1, we can see CRLBs are inversely proportional
to symbol SNR and the observation period NTs. The relation-
ship between CRLBs for monocycles with different order n
coincides with the analytical results in (12). This can be further
observed in Fig. 2, which also depicts the effect of truncated
pulses on CRLB. The CRLBs change little even when the
truncated portion narrows to 1.6tp (symmetric with respect to
t = 0). However, with the width of truncated pulse decreasing
further, the CRLBs become orderless. Fig. 3 shows the effect
of tp on the CRLBs, which is a direct verification of (13).
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Fig. 1. CRLB versus symbol SNR γs for n-order monocycles with tp = 2ns,
n = 2, 3, 4.
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Fig. 2. CRLB versus order n for monocycles with tp = 1ns; different lines
correspond to different width of truncation.

Fig. 4 demonstrates the influence of synchronization error
on the performance of receivers. It is plotted from (32) using
Hermite Gaussian approximation. The influence is notable
when the observation window in the stage of synchronization
has small width (NTs), and weakens with N increasing
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Fig. 3. CRLB for a 3 order (n = 3) monocycle with different parameter tp;
different lines correspond to different width of truncation.

(CRLBs decreasing). The figure also indicates that synchro-
nization errors of different monocycles have very close in-
fluence on BER, although the data in experiments shows the
influence of monocycles with larger n is a little worse when
SNR γs is small, and changes toward opposite with SNR
increasing.
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Fig. 4. The degrading ratio η versus SNR γs for monocycles. Two
observation periods (NTs) in a synchronizer are compared with N = 10
(left) and N = 50 (right). The time t is normalized with respect to tp.

VII. CONCLUSIONS

We have derived the Cramér-Rao lower bounds (CRLBs)
for the time delay estimation of UWB signals for both single
pulse systems and time hopping systems in AWGN and mul-
tipath channels. Insights are given on the relationship between
CRLBs for different Gaussian monocycles. It is found that
larger number of multipath implies higher CRLBs and inferior
performance of synchronizers, and multipath interference on
CRLBs can not be eliminated thoroughly except for in very
limited cases. The influence of synchronization error on the

performance of receivers is quantified in a simple example.
The influence is notable when observation window (NTs) in a
synchronizer is small, and weakens with N increasing (CRLBs
decreasing). Synchronization errors of different monocycles
have very close influence on BER.
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