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ABSTRACT 
 
This paper extends a recently proposed space-time model for Rayleigh fading to include an arbitrary transmit antenna 
configuration of any shape and size transmitting simultaneously in a multiple-input multiple-output (MIMO) channel. 
The space-time correlation function and space-frequency cross spectrum function for a non-isotropic scatterer 
distribution around the receiver is derived for the arbitrary configuration as a further extension of a previous result of a 
multiple-input single-output Rayleigh wireless channel which used a ring of uniformly distributed scatterers model. 
Analysis based on achievable spectral efficiency for typical arbitrary transmit antenna configurations is given. The 
analysis demonstrates the utility of the correlation function. 
 
 
INTRODUCTION 
 
The combination of temporal and spatial diversity are two effective means by which communication quality and 
associated system performance can be significantly improved in a rich-scattering wireless environment. This has been 
demonstrated through proposals for space-time coded modulation over multiple-input multiple-output (MIMO) radio 
channels which are understood to be beneficial for high data-rate systems operating in rich-scattering wireless 
environments. Without designing highly detailed system models, which can be used for individual channel realisations, 
it is possible to obtain a more rigorous evaluation of the proposed coding schemes through simpler macroscopic system 
models. One such scheme, based on a traditional Clarkes/Jakes model [1], has been proposed in [2], where a rich 
isotropic distribution of scatterers is assumed around the mobile station (MS), the receiver. No major scatterers are 
located around the base station (BS), the transmitter. Space-time correlation and space-frequency cross spectrum 
functions corresponding to this distribution were derived. This was extended to the case of a (2, NR), i.e. 2 transmit, NR 
receive antennas, Rayleigh fading channel with a non isotropic distribution of scatterers in [3]. 
 
One major drawback of [2, 3] is that by consideration of time selectivity and/or frequency selectivity (with reasonable 
sized Doppler spread, and/or delay spread), limits the models to M =2 transmit antennas at a particular time instant. 
Thus, they are not applicable to many  proposed mobile communication systems where application of space-time coding 
utilises M > 2 for continuous fast fading and/or frequency selective fading wireless scenarios. This paper will provide a 
useful generalisation of [3] that will mean the space-time model can be applied to any numbers of antennas at the BS in 
a macrocellular fast fading scenario. The application of the model can be for frequency selective and/or frequency non-
selective wireless scenarios through derivation of appropriate space-time cross correlation, and space-frequency cross 
spectrum functions. Such functions can analyse space-time coding, or space-frequency coding, schemes. To 
demonstrate the utility of the proposed model a simple spectral efficiency analysis based on Shannon’s capacity 
measure is given for the case of a (4, 4), fast flat Rayleigh fading wireless channel. 
 
SPACE-TIME CROSS CORRELATION FORMULATION 
 
Consider an arbitrary number of BS antennas, M, of any configuration, located at y1, y2…,yM, with no major scatterers 
and only characterised by horizontal separation of an arbitrary number of wavelengths (λ), and NR approximately co-
located receive antennas at the MS. The discussion in this paper assumes a macrocellular radio channel. Fig. 1 
illustrates the MIMO transmission model between the BS and MS for the case of M = 4. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 (4, 2), M = 4, NR = 2, MIMO Transmission model between base station (BS) and mobile station (MS). 
 
 
The space-time cross correlation function can be defined as ( ) ( ) ( ) ( ), ; , ,m m m m sp spy y Ec t c d t dρ τ τ ρ τ∗
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where sp m md y y′′ ′= − is the magnitude separation of antennas m″ and m′ at the BS,  k = 2π/λ is the wave number, â  is 
a unit vector pointing in the direction of wave propagation with reference to the MS, Ω corresponds to the unit circle 
over which integration is performed, ( )ˆP a  is the angular power density distribution function around the MS of 

scatterers and 1j = − , and γ is the angle of separation between antennas my ′′  and my ′ with respect to y1. Note that for 

uniformly distributed scatterers ( )ˆP a  = 1 and for a finite number of scatterers the integration in (1) reduces to a 
summation as in [2]. Also with reference to (1),  fD is the maximal Doppler spread, ξ  is the direction of movement of 

the MS with reference to the BS , σ is the variance of the channel gain, and csz ′  and ssz ′ , found using macrocellular 
far-field assumptions [2], are similar to those defined in [2, App. 1, eqn. (36,37)] as 

 
sin ,   coscs s ss sz c z cβ β′ ′= =        (2)        

 
where cs = dspsin(β−γ)×a/d′; a/d′ represents the ratio of distance, a, of scatterers from the MS and the distance, d′, of the 
MS to the centre of the antennas m″  and m′ , and β represents the angular position of the MS with respect to the BS. To 
further appreciate the material in this section the reader is referred to [2]. 
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Similarly to [2], and using the 2-D modal expansion as in [4], if one lets ( )ˆ 1,  φ=a  the following formulation is 
obtained for the space-time correlation function 
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After an appropriate change of variables the following is obtained for the space-time correlation function, 
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where ( )1
1 1tan b aψ −=  and 2 2

1 12z a bπ= + ;  b1 = ( )sinD ssf zτ ξ λ′−  and a1 = ( )cosD csf zτ ξ λ′+ ; and ( )mJ i is the 

mth order Bessel function of the first kind. 
 
 
Note that  for an isotropic scatterer distribution,  
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, which for the case of M = 2, and thus β = γ, we obtain the same space-time correlation as defined in [4]. 
 
A 3-D plot of the magnitude of the cross-correlation function, ( ),

m mc c spR d τ
′ ′′

, is shown in Fig. 2 for fD = 0.01, between 

diagonally opposite antennas for a uniform circular array (UCA), M = 4, with antenna spacing, dsp = 10λ (4 element 
UCA also shown in Fig. 2); ξ = π/3 and β = π/6 assuming a Laplacian distribution [5]. The angular spread, 2Sσ , of 10o 

given, is found from the square root of the variance, [4]. ( ),
m mc c spR d τ

′ ′′
 can also be plotted for all other common 

angular power distributions for BS antenna configurations of arbitrary shape and size.  

 
 

Fig. 2  3-D plot of magnitude of cross-correlation function, |Rc(dsp,τ)|, for fD = 0.01, 
MS moving direction with respect to BS, ξ = π/3, and MS position with respect to BS, β = π/6, 

assuming a Laplacian distribution with an angular spread of 10o. 



SPACE-FREQUENCY CROSS SPECTRUM FORMULATION 
 
Following from (5), and in a manner similar to the derivation of the space-frequency cross spectrum given in [4, eqn 
(3), p. 1176], a space-frequency cross spectrum can be found for a non-isotropic distribution of scatterers. We first 
observe that z can be reformulated as 
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The space-frequency cross spectrum is defined as ( ) ( ){ }, ,sp spS d f R dτ� F
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Thus following from some manipulation of (7), and (6), ( )1 2

,c c spS d f , can be expressed as 
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where { }iF  is as defined as 
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where fD is now the maximal Doppler spread. The values 1 2/x x± ∓  for ,  and 0n n= −∞ ∞ ≠… , depend on whether n > 
0 and/or  n  even, in which case the transform is +x1/−x2; otherwise, if n < 0 and n is odd, one has −x1/+x2. 
 
It can also be readily observed that from (8), if we are summing over n = −∞ ∞… , then the term 2x∓ in equation (9) can 
be disregarded since x2 is only non-zero for odd n, n = −∞ ∞… , due to the ( )sin 2nπ  term in x2 and 

( ) ( )sin 2 sin 2 0n nj n j nπ π−+ − = . Consequently (8) gives a closed form expression for the space-frequency cross 
spectrum with a non-isotropic distribution of scatterers. 
 
SPECTRAL EFFICIENCY ANALYSIS FOR A FREQUENCY FLAT FADING (4, 4) MIMO CHANNEL 
 
This section investigates the spectral efficiency of a (4, 4), i.e. M = 4, NR = 4 co-located receive antennas, MIMO 
wireless channel, for Rayleigh frequency flat fading. Two separate non-isotropic scatterer distributions are considered, a 
cos2pφ distribution and a Laplacian distribution. The general channel transfer matrix, ( ), ,

RM N spdτH is found as, 
similarly to [11], 
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The term ( )1/ 2R̂ i  represents the space-time correlation matrix square root, 
RM,NA is an M × NR matrix of zero mean, unit 

variance, complex normal i.i.d. variables. The term Rc(τ) represent the autocorrelation function for the particular non-
isotropic distribution of scatterers. 

 
Assuming NR = M, for a rich-scattering wireless environment, we obtain the following for the Shannon capacity, C, of 
the M data subchannels [13] (if it is assumed that equal power is assigned to each subchannel), 
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where PBS is the power assigned to the kth subchannel, σn

2 is the noise power and λk is the kth eigenvalue of the M data 
subchannels, found from the eigenvalues of ( ) ( )†H Hτ τ  where ( )†i represents the matrix adjoint, or complex 
conjugate transpose. 

 
Fig. 3 and Fig. 4 shows the cumulative distribution function of achievable spectral efficiency calculated according to 
(13) for a (4, 4) channel, found via Monte Carlo simulations after τ  = M = 4 time samples for a maximal Doppler 
spread, fD = 0.01 for non-isotropic scatterer distributions. For the Laplacian distribution, [5], an angular spread of 10o is 
assumed and for the cos2pφ distribution, [6], an equivalent half-power beamwidth (HPBW) of the BS antennas of 131o    is 
assumed. A Uniform Circular Array (UCA) is modelled at the BS where β and ξ are taken from uniform distributions 
on (-π, π], for a equivalent antenna spacing   dsp, of 1λ, 5λ, 10λ and 20λ for an SNR, 2

BS nP σ  = 20 dB. Fig. 3 shows the 
case of NR = 2 as a dashed lines to compare with the results for the Laplacian distribution, and Fig. 4 shows the 
comparison of Laplacian distribution and cos2pφ distributions. 
 
Fig. 3 shows expected performance improvement for NR = 4 over NR = 2 receive antennas. There is also demonstrable 
improvement in spectral efficiency with increasing BS aperture. Fig. 4 shows that there is significant improvement in 
spectral efficiency for the particular Laplacian scatterer distribution over the cos2pφ distribution for smaller BS 
apertures. But for the larger BS apertures, i.e. for a UCA with antenna spacing, dsp of 10λ or 20λ, the  cos2pφ 
distribution shows improvement in achievable spectral efficiency over the Laplacian distribution considered. 
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Fig. 3. Plot of cumulative distribution function (CDF) v. Capacity (bits/s/Hz) for a (4, 4) channel after τ = 4 
time samples, fD = 0.01, found via Monte Carlo simulations for a UCA at the BS with various antenna 

spacing, dsp. A Laplacian distribution, [5], is assumed with an angular spread of 10o, β and ξ are taken from 
uniform distributions on (-π, π]. The results for NR = 2 are shown as dashed lines. 
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CONCLUDING REMARKS 
 
Closed-form solutions have been found for the space-time cross correlation and space-frequency cross spectrum which 
can be applied to continuous fading (M, NR) MIMO channels for both frequency flat and frequency selective fading 
wireless scenarios with non-isotropic scatterer distributions. The correlation function has been successfully applied to a 
Rayleigh continuous flat fading channel to obtain a measure of performance based on achievable spectral efficiency 
both a Laplacian distribution, and a cos2pφ non-isotropic scatterer distribution. 
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Fig. 4. Plots of  CDF v. Capacity (bits/s/Hz) for a (4, 4) channel after τ = 4 time samples, fD = 0.01, found via 
Monte Carlo simulations for a UCA with various antenna spacing, dsp. The results for a Laplacian distribution, 

[5], with an angular spread of 10o is shown as solid lines, and those for a cos2pφ distribution, [5], equivalent 
HPBW = 131o, are shown as dashed lines; β and ξ are taken from uniform distributions on (-π, π].  


