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Rank Reduced ESPRIT Techniques in the
Estimation of Principle Signal Components

Jian Zhang, Rodney A. Kennedy and Thushara D. Abhayapala

Abstract—In this paper, we present novel rank reduced ES- techniques usually try to find a low rank approximation of the
PRIT algorithms to estimate principle signal components with  griginal data matrix following some optimization criteria such
low computational complexity, which can typically be applied o5 the |east squares and the minimum variance criteria. In the
in the high resolution identification of closely spaced wireless SVD-based red d Kk methods. the | K imati
multipath channels. These algorithms transform the generalized - gse reducedran me 0 S_’ e OYV ran apprOXIma_lon
eigen-problem from an original high dimensional space to a Matrix is a result of keeping dominant singular values while
lower dimensional space depending on the number of desired setting insignificant ones to zeros. Rank reduction technique
principle signals. As only principle singular values and vectors s inherent in some improved ESPRIT algorithms, such as
are required, fast algorithms such as the power method can be 1 5 ESPRIT [2]. However, the reduced rank discussed in the
applied to greatly simplify the proposed algorithm and make it literature is constrained td, the number of signal sources
implementable in real time. - . ! '9 . '

o o andd is usually required to be known as a prior or estimated

Index Terms— Rank Reduced ESPRIT, Estimation of Principle by other techniques

Signal Components ) . .
The approach we address in this paper removes the con-
straint ond, and is suitable for any rank < d. Due to the ro-
I. INTRODUCTION tational invariance property of the formed data matrix, we will
ESPRIT is a signal subspace algorithm using a matri%SFhOW that thgre exists an app_roach V\./h.'Ch can g_reatly reduce

i . i Lo ... the computation complexity, with negligible error introduced.
shifting approach to achieve high resolution identification . . . . . . :

. ; o asically, this algorithm is designed to accurately identify the
of signals corrupted by noise [1], [2]. The applications of .~ . : .
ﬁ|nC|pIe signal components with affordable complexity when

ESPRIT and its variants (ESPRITSs) include harmonic retrie\%Ie number of sianal resources is verv larae. for example. the
[3], estimation of directions of arrival (DOA) in array signal. 9 y 1arge, P,

processing [2], filter design [4] and identification of closel identification of part of multipath signals with largest power

spaced wireless multipath channel [5]. In ESPRITs, the dath? rich mu|t|_path er_mronment. The computat!onal C.OSt. IS
: . I roughly associated with the number of the desired principle
matrix or a matrix of some statistics of the data (such aCs0 mponents

correlation) is decomposed into orthogonal signal and noiser, following notation is used in this paper. Matrices and

subspaces using singular value decomposition (SVD), a\r/]gctors are denoted by boldface upper-case and lower-case
then the signal parameters are estimated using the rotat||0{| . y . PP
. . . . . letters, respectively. The conjugate transpose of a vector or
invariance over the signal subspace by generalized eigen-_."". o .

matrix is denoted by the superscript*, the transpose is

value decomposition (GED). Compared to the tradition (l?noted by-)*, and the pseudo-inverse of a matrix is denoted
least squares methods, these algorithms can normally provide

much better performance on the accuracy and stability By (-)7. Finally, I denotes the identity matrix and diag-)
estimates. However, the computation of SVD and GED 0
high dimensional matrices is often very intensive, and this
associated high computational cost makes these techniques, as
well as other subspace methods, less attractive for real-timeéSince many applications can be generalized into a signal
implementation. In this paper, we develop some rank reduceabdel similar to the harmonic retrieval problem, we use the
ESPRIT algorithms to reduce the computational complexitylatter as an example to address our algorithms. Consider
Rank reduction is a general principle for finding the righa signal consisting ofl harmonics with unknown constant

tradeoff between model bias and model variance when @mplitudes and phases, and an additive noise that is assumed
constructing signals from noisy data. Abundant research Hgo-mean stationary complex white Gaussian random process
been reported, for example, in [6]-[9]. These rank reductid@AWGN). The signal can be represented as

Fnotes a diagonal matrix.

Il. DATA MODEL AND ESPRIT ALGORITHM

gineering, Australian National University, Canberra, ACT 0200, Australia.
email: jlan@syseng.anu.edu.au

R .A. Kennedy and T. D. Abhayapala are with National ICT Aus- . .
tralia (NICTA) Limited, and Department of Telecommunications EnWheréw; € (—77,7r)_ ands; are the norma_llzed freque_nC|es
gineering, Research School of Information Sciences and Engineeri@)d complex amplitudes of thah harmonics, respectively,
The Australian National University, Canberra ACT 0200, Australiagnd n(k:) is the random additive noise with variance.

email: {rodney.kennedy,thushara.abhayapala }@anu.edu.au R . . L
This work was partially supported by the Australian Research Couna_lhe objective is to estimate the unknown but deterministic

under Discovery Project Grant DP0343804. frequenciesv; from the measured data.

d
J. Zhang is with the Research School for Information Science and En- s
g z(k) = E 5™ (), @)
=1



14 PROCEEDINGS 5TH AUSTRALIAN COMMUNICATION THEORY WORKSHOP 2004

Define severaln x 1 vectors of samples from (1) as follows,the matricesC; and C, to extract components containing
less noise, and transform the generalized eigen-problem in an
f— .. _— T
x(k) = [w(k), - 2k +m 1)]T’ instablem x m space to that in a more stabfex d space.
y(k) = [x(k+ 1), ,2(k +m)]", The computational load of ESPRITs is mainly from the
n(k) = [n(k), - ,n(k+m — 1)]T’ (2) SVD and GED operation in terms of a high dimension matrix.

) _ ) The basic ESPRIT algorithm needs one SVD and one GED
wherem > d*. Further define the autocorrelation matrix of the 1, x m matrices. while all published TLS-ESPRIT type
sampling vectox (k) asR., = E[x(k)x*(k)], and the*cross- algorithms require operations of at least two SVDsok m
correlation matrix ofk(k) andy (k) asR., = E[x(k)y*(k)]. matrices and one GED af x d matrices. For generah x m

These two matrices can be expressed as matrices, the complexity of SVD is aboutn?®, and the
R,. — ASA* + oI, 3) complexity of GED is abougm? [10].
R,y = AS®A" + oz, ) [1l. REDUCED-RANK APPROXIMATION IN ESPRIT
where ALGORITHM
Ay = [a(wﬁ?a(w?)’m La(w;), - ,a(wd)], From the analysis of error sources ab(_)ye, we see t_hat a
smaller space usually implies better stability and simplicity
a(W)mx = [1,e7, &2 . edm=De] T compared to a larger one. This motivates us to design stable
Saxa = diag(|s1[%,|s2/%, -+, [sa]?), and less complgx algorithms in a .smaller space when pnly
By = diag(e, . ¢90), ®) out of d harmonics need to be estimated.

andZ = o 2E[n(k)n*(k+1)] is anm x m matrix with ones A. Principle subspace and frequency estimation

on the first subdiagonal and zeros elsewhere. _ SinceC; in (6) is a Hermitian matrix, the SVD of; has
The ESPRIT algorithm exploits the underlying deterministiga form

nature of the harmonics in (1), which is basically a matrix shift

invariance property. When the noise varianceis estimated C, = UAU"

via the insignificant singular values of the mati,,, the _ A, O .

following two matrices are formed =[U, U] [ o 4, |[Ur Ul @)
Ci =R, — 0’1 = ASA", =U,A, U + U A, UL,
C,=R,y, — 0’7 = ASP*A*. (6) where them x m diagonal matrixA contains singular values

in descending order, the unitary matri¥ consists of left
singular vectors, which equal right singular vectors sifite
is Hermitian.U,, and U,. are the left and right submatrices of

o . L ..U, associated with the principle and the remaining: —
Substituting estimated frequencies into (1), the amplitud Raller singular valuez ?espgctively g -p

s; can be obtained by solving a Vandermonde system usmglvlultiply the matrix pencil(C; — £Cs) by U? from the left
p

least squares type algorithms [3], [8]. In ESPRIT, the pow - f he righ . i
of harmonics can also be solved directly according to thed byU, from the right, we get a new x p matrix penci

generalized eigenvectors (GVSs). (Ap — €U, CU,), (8)
_The estimates obtained by ESPRIT are asymptlotl.cqlly lWhere we have utilized the orthogonality between the columns
biased (when the number of samples goes to infinity). U d hat is. U*U. — ATT
: . . P p andU,, thatis,U U, =1, U U, =0.
practice, since the number of signal samples is finite, the NOIS&- )\ the new matrix pencil, we have the following results
components contained in the estimates of correlation matrice%’heorem 1:1n ESPRIT—typ;e algorithmsC, and C, are '
i 2 2 P )
R, andR,, always deviate from”I ando"Z, respectively. conqircted as in (6), and the SVD @f, is described as in

This deviation is one of the main sources causing EITorS B Then the matrix pencilA, — £U*CyU,) hasp distinctive
the estimation. Besides, when the dimension of matricesE ﬁeralized eigenvalugs. i P 5 ?)..prand the angles of
Y - = b

The frequencies are then determined by theeneralized
eigenvalues (GEs) of the matrix pent{C; —£Cs) that lie on
the unit circle.

large, the numerical error in the computation of SVD and GEP) GEs; are just thep frequenciess;, corresponding t
frequently causes noticeable estimation error, especially X rmonics Zvvith largest power. v
small singular values. This is due to the inherent instability Proof: First, using (6), rewrite\, as
of SVD and GED operation on singular or ill-conditioned ’ ' L P
matrices. Another error source, less noticed, is formed in the A, = U;C,U, = U5AS2(S2)"A*U, £ B*B, (9)
rocess of tracking thé GEs, locating on the unit circle, out . 1
gf - GEs of the rgatrix pencic; — 5%2_ where thed x p matrix B £ (S2)*A*U,. From
Part of these errors are mitigated by some improved ESRPIT p =RankA,) = RankB*B) < RankB), (10)
algorithms such as TLS-ESPRIT [2]. Combined with Total

Least Squares (TLS), TLS-ESPRIT further applies SVD off¢ know RankB) = p. Then we can define the Moore-
Penrose inverse (pseudo inverse)Bfas

1Generally,m > d for a good accuracy of estimates when the additive o *s\—11% _ A —lpa*
noise is not small B'=(B'B)”" B"=A, B". (11)
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Using the expressions relatedi the matrix pencilU;(C;—  Left multiply (13) by v, yields

& C2)U, can be rewritten as .
(viU,A)S(I-&®")(v;U,A)" =0. (14)

Up(C1 = &C)U, U, ASZ (I - 6i27)(S2)° AT, As S(I — &®*) is ad x d diagonal matrix with onlyith

=B*(I-¢®")B diagonal element equaling zero, thex d vectorv; U; A has
=A,BT(I-¢®")B. (12) the form
With the help of the SVD expressions Bf and B, it can viUsA=10,---,0,viUja(w;),0,---,0], (15)

be further proved that i — ¢;®* is full rank, Bf (I1—¢,®*)B , _

will have rankp, so will Uy (C; —¢&;C2)U,. This contradicts that IS, exceptth elen:ent, all others 5‘9“5" ZET0. )

the fact thatU(C; — ¢;C)U, is singular wherg; is a GE Notice thatA, = U;C,U, and{;®" is a diagonal matrix

of the matrix pencil. Thereford,— ¢,&* can only be singular with ith diagonal element equaling one, (14) can be rewritten

which means¢; is also a GE of(C; — £C,). Notice thatl @S

and®* are both diagonal matrice$, must equak’“: which

is theith diagonal element o®. Thenw; = Angle(¢;). ) 9
Because all frequencies are different from each other, = |sil ‘Vpra(Wi” : (16)

is a rank1 _reducing factor_of the_ matr_ix\p —&U,C2Up, 4 follows that

corresponding to a one-dimension eigen-space. According

to the relationship between the eigen-space and the matrix |si|? = —ir

column space, (the dimension of a matrix column space equals |v;“Apa(w,»)|

the dimension of a whole eigen-space spanned by all linearly

independent eigenvectors), we can further conclude that thgre

must bep distinctive GEs, each corresponding to a eigen-space ) ] ] ]

with one spanning basis. The p_recedmg algorithm still has ordet? gomputatlon_al
Since the SVD of a matrix exhibits the spectral distributioROMP!exity due to the SVD ofn x m matrix. The main

of the comprised signal [6], the principle singular values arRPJeC_t'Ve qf the two SVDs is to estimate noise variance and the

vectors reflect the information of the frequencies with largeBfinciple singular components @, respectively. Since only

power. This intuitively explains why the GEs are associated?” out of m principle singular values and vectors are required,
with the p frequencies with largest power. m the computation can be simplified by applying fast algorithms

From the process of the proof, we can also find sonyyth lower complexity, such as the power method [10]. For

relationships between the eigenvectors of the new matffaCh dominant singular valug and vector, the p;zwer method
pencil and the old one as shown below. has a computational order @< for a m x m matrix. To be

Corollary 1: Whenp = d, corresponding to a common GEstated, the power method works only when the gap between

¢,, the generalized eigenvector 6f —¢C, can be determined two singular values is large enough. For the series of principle

by U,v;, wherev; is the generalized eigenvector af, — singular values, this condition can generally be satisfied. With

§U*(§26 ' the help of power method, two kinds of simplifications are
¥

-available. The first one only applies power method in the step

So far, thep principle signal components can be esti inqU dA. with littl ¢ diff
mated without any performance loss, using reduced rank TL@‘_computlng p andA, with little periormance diference.

. X 4 s 9 3
ESPRIT technique with @m3 x 2 flops computation of two -IT—EIS resultzln andglgotrllthm Olf complexityn t;gm J::p ' tri
complete SVDs plus &p° flops of one GED. e second one directly applies power method on the matrix

Discussion: Although our basic interest is always to trac]ﬁ:“’_ '?Stefad (l)fcl’ V\tlh'Ch Ie(;ads lto a ;um?tu“%n of (’;he
the strongest signals, it is possible to extend this aIgorith‘f’r’i'nCIpe singular vectors and values @, for 1, an

to track anyp harmonics rather than the principle ones b, ﬁ antthxy forICg_tm. the Ina}m?hpen(gl(Apf;ZfUéngI_gﬁ).
choosing singular values and vectors accordingly. us, the compiexity I only In the order pin” + 5p=. ThiS

simplification seems to be a substitution of noisy matrices
for noise-free ones, however, intuitively, only insignificant
B. Power Estimation of the Harmonics errors will be introduced in the final output. This is because
In the case when only out of d frequencies are known, the substitution happens between the noise-immune principle
the estimates ofp amplitudes obtained by solving underSingular components, qud it is known that prmmple smgu!ar
determined linear equations of (1) will comprise large erro¥alués have good stability when small perturbation of noise
Alternatively, the power of thegeharmonics can be estimatedMalrix is present. In Section IV, it can be seen that this
in a subspace method requiring no further information. ~ Simplification introduce negligible performance loss in the
Let v; be the generalized eigenvector corresponding to tf@S€ ©f medium to high signal to noise ratio (SNR). To be
generalized eigenvalug. From the definition of generalized190rous, the approximation effect can be analyzed based on
eigen-problem, using the expressions (6) in the matrix penBitrix perturbation theorem [10].
(Ap = €U;CU,), we have

vidyvi = (ViU A)(SE&®™)(viU A)”

viApv; (17)

Approximation with Noisy Correlation Matrix

2In power method, the times of iteration to achieve convergence depends
on the ratio of two adjoint singular values. For symmetric/Hermitian matrix,
it usually converges very fast aridor 3 iterations are good enough.

USAS(I - £®*)A*U,v; = 0. (13)
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D. Summary of Reduced-Rank ESPRIT Algorithm ESPRIT, and our proposed algorithm approximat{fig and

The second simplification method discussed above can v&rg With Rz andR.,, as unfiltered ESPRIT. When the power
likely be implemented on-line for the retrieval of principleTethod is applied, it is indicated. _
signal components within rich sources. This can be regarded™i9- 1 shows that the estimated frequencies and powers of
as a rank reduced LS-ESPRIT algorithm as only one t#e harmonics obtained by the three algorithms. The stars rep-
two noisy matrices is truncated in the sense of least squaf@gent the true parameters of harmonics. The values displayed

approximation. The key steps of the proposed algorithm m&y diamonds, squares, and circles are the estimates generated
be summarized as follows. by the original, filtered and unfiltered ESPRITS, respectively.

The intervals between frequencies @€408, and the SNR
samples is set tobdB. The results are averaged over five realizations.
2) Apply thé direct SVD or a fast algorithm (e.g., the powelnl is clear that both filtered and unfiltered ESPRIT provide

method) to solvep principle singular values and vectorsls‘ﬂjlt'SfatCtory ac_?_trj]ra::y, and they ?ﬁ traf:k_ th r’grsnlltgl'(rzs with d
of R, and form matrices\, andU,,. argest power. The large error in the origina is cause

3) Compute thep generalized eigenvalugs and eigenvec- zy the factc;kr]s discussed |fn Stgctlct)n IIII-_Ar.]tI\NZenI_the SNR
tors v; of the matrix pencilA, — £U*R., U, ecreases, the accuracy of estimates slightly declines as can

4) Thep principle frequencies are the angles&f and the be seen in Fig.2.
power of these harmonics can be obtained by (17).

When the power method is applied, the total complexity of
this algorithm ispm? + 8p>. 09l

1) Construct the correlation matric®s,, andR,, from the

sorting by delay

0.8 3]

E. Extension to General Shift Invariant Algorithms *

The ideas presented above can be extended to general shif| o
invariant algorithms, such as the Matrix pencil and the State-ost ®
Space methods [9], [11]. The underlying data matrices can E%s
the data samples directly, then they are usually not symmet@c’ * SNR=S0B o408
or Hermitian. Nevertheless, common GEs exist between thes
new reduced rank matrix pencil and the original one. Thisoy °
conclusion can be proven in a way similar to that in Theorem™ ©
1. However, due to the loss of the property of Hermitian, oz ¥
the power of harmonics can no longer be obtained in them, *
way described in Section IlI-B. Unless working out all the ~
parameters ofl harmonics, the power/amplitude information o/ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

i d . 0.05 0.1 0.15 012 0.25 0.3 0.35 0.4 0.45
can not be recovered by the linear equation method, either. power of harmonics

If the power/amplitude of harmonics are not required, afy 1. Estimated frequency and power of harmonics when frequency interval
approach can be adopted to avoid the approximation of filterie@.0408, p = 10 and SNR5dB.
matrices by noisy ones, such &, and C, by R,, and
R, in the reduced-rank ESPRIT. This can be achieved by
constructing two noise-free cross-correlation matrices from the sorting by delay
sampled data as discussed in [3]. These two new correlation |
matrices contain no noise as the cross-correlation operatiogs- *
wipes out the noise components.

T

0.7 *0
*Q

V. SIMULATIONS 06 : , ¥
In our simulations20 harmonics with different frequencies *

are used. The amplitudes of all the harmonics are general%%f’ SNR=3dB * o
randomly using complex Gaussian function. To check the abi,| - Averaed vy e zatons °
ity of our algorithms to automatically track those harmonics N ©
with largest power, all harmonics are unordered with respect3- 0
to amplitude/power. The length of the sampling vectar, *
is set to 300 in all experiments. Sincen determines the o E o
resolution ability for frequencies when the noise variance,,| *
is fixed, without loss of generality, the frequencies of these .
harmonics are set uniformly, with intervals varying in different 9, ol ol o2 005 os o oa
experiments.Hereafter, we refer to the original ESPRIT in power of harmonics

[1] as original ESPRIT, our proposed algorithm requiring theyg. 2: Estimated frequency and power of harmonics when frequency interval
estimation of the noise variance in the first step as filteréd0.04, p =10 and SNR=3dB.

* O
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sorting by delay
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Interval=0.05
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V. CONCLUSIONS

We have shown that the rank reduction techniques can be
well organized in the ESPRIT type algorithms, which leads
to low-complexity algorithms in the estimation of principle
components in rich signal sources. These algorithms transform
the generalized eigen-problem in an original large space to
that in a smaller space depending on the number of desired
principle signal components. Proof is given on the transform,
and an extension to general shift invariant techniques is possi-
ble, which can be proved in a similar way. As only principle
singular values and vectors are required, fast algorithms such
as the power method can be applied to greatly simplify these

01 &

0 I I I I I |
0.25 0.3 0.35 0.4 0.45

power of harmonics

(1]

Fig. 3: Estimated frequency and power of harmonics obtained by unfiltered
ESPRIT with Power method (marked with triangles) and direct SVD (markec[iZ]
with circles and squares) when frequency interval0ig5, p = 10 and
SNR=10dB.

(3]

(4]

In Fig. 3, the results compared are obtained by the unfiltere[g]
ESPRIT uisng the power method , the unfiltered ESPRIT and
filtered ESPRIT using direct SVDs, marked with triangles,[6
circles and squares, accordingly. In experiments, the times of
iteration in the power method is set 20 as the ratio between [7]
adjoint singular values becomes smaller wijthincreasing. (g
However, this is still a notable saving of computation cos{
compared to the direct SVD. From the figure we can find that
the performance difference achieved by the power method ahd
direct SVDs is insignificant. With the SNR decreasing, thgo;
difference is enlarged gradually. However, the performance
deterioration can be partly prevented by increasing the timigd
of iteration.

algorithms and make them implementable in real time.
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