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Rank Reduced ESPRIT Techniques in the
Estimation of Principle Signal Components

Jian Zhang, Rodney A. Kennedy and Thushara D. Abhayapala

Abstract— In this paper, we present novel rank reduced ES-
PRIT algorithms to estimate principle signal components with
low computational complexity, which can typically be applied
in the high resolution identification of closely spaced wireless
multipath channels. These algorithms transform the generalized
eigen-problem from an original high dimensional space to a
lower dimensional space depending on the number of desired
principle signals. As only principle singular values and vectors
are required, fast algorithms such as the power method can be
applied to greatly simplify the proposed algorithm and make it
implementable in real time.

Index Terms— Rank Reduced ESPRIT, Estimation of Principle
Signal Components

I. I NTRODUCTION

ESPRIT is a signal subspace algorithm using a matrix-
shifting approach to achieve high resolution identification
of signals corrupted by noise [1], [2]. The applications of
ESPRIT and its variants (ESPRITs) include harmonic retrieval
[3], estimation of directions of arrival (DOA) in array signal
processing [2], filter design [4] and identification of closely
spaced wireless multipath channel [5]. In ESPRITs, the data
matrix or a matrix of some statistics of the data (such as
correlation) is decomposed into orthogonal signal and noise
subspaces using singular value decomposition (SVD), and
then the signal parameters are estimated using the rotation
invariance over the signal subspace by generalized eigen-
value decomposition (GED). Compared to the traditional
least squares methods, these algorithms can normally provide
much better performance on the accuracy and stability of
estimates. However, the computation of SVD and GED of
high dimensional matrices is often very intensive, and this
associated high computational cost makes these techniques, as
well as other subspace methods, less attractive for real-time
implementation. In this paper, we develop some rank reduced
ESPRIT algorithms to reduce the computational complexity.

Rank reduction is a general principle for finding the right
tradeoff between model bias and model variance when re-
constructing signals from noisy data. Abundant research has
been reported, for example, in [6]–[9]. These rank reduction
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techniques usually try to find a low rank approximation of the
original data matrix following some optimization criteria such
as the least squares and the minimum variance criteria. In the
SVD-based reduced rank methods, the low rank approximation
matrix is a result of keeping dominant singular values while
setting insignificant ones to zeros. Rank reduction technique
is inherent in some improved ESPRIT algorithms, such as
TLS-ESPRIT [2]. However, the reduced rank discussed in the
literature is constrained tod, the number of signal sources,
andd is usually required to be known as a prior or estimated
by other techniques.

The approach we address in this paper removes the con-
straint ond, and is suitable for any rankp ≤ d. Due to the ro-
tational invariance property of the formed data matrix, we will
show that there exists an approach which can greatly reduce
the computation complexity, with negligible error introduced.
Basically, this algorithm is designed to accurately identify the
principle signal components with affordable complexity when
the number of signal resources is very large, for example, the
identification of part of multipath signals with largest power
in a rich multipath environment. The computational cost is
roughly associated with the number of the desired principle
components.

The following notation is used in this paper. Matrices and
vectors are denoted by boldface upper-case and lower-case
letters, respectively. The conjugate transpose of a vector or
matrix is denoted by the superscript(·)∗, the transpose is
denoted by(·)T , and the pseudo-inverse of a matrix is denoted
by (·)†. Finally, I denotes the identity matrix and diag(· · · )
denotes a diagonal matrix.

II. DATA MODEL AND ESPRIT ALGORITHM

Since many applications can be generalized into a signal
model similar to the harmonic retrieval problem, we use the
latter as an example to address our algorithms. Consider
a signal consisting ofd harmonics with unknown constant
amplitudes and phases, and an additive noise that is assumed
zero-mean stationary complex white Gaussian random process
(CAWGN). The signal can be represented as

x(k) =
d∑
i=1

sie
jkωi + n(k), (1)

whereωi ∈ (−π, π) and si are the normalized frequencies
and complex amplitudes of theith harmonics, respectively,
and n(k) is the random additive noise with varianceσ2.
The objective is to estimate the unknown but deterministic
frequenciesωi from the measured data.
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Define severalm×1 vectors of samples from (1) as follows,

x(k) = [x(k), · · · , x(k +m− 1)]T ,

y(k) = [x(k + 1), · · · , x(k +m)]T ,

n(k) = [n(k), · · · , n(k +m− 1)]T , (2)

wherem > d1. Further define the autocorrelation matrix of the
sampling vectorx(k) asRxx = E

[
x(k)x∗(k)

]
, and the cross-

correlation matrix ofx(k) andy(k) asRxy = E
[
x(k)y∗(k)

]
.

These two matrices can be expressed as

Rxx = ASA∗ + σ2I, (3)

Rxy = ASΦ∗A∗ + σ2Z, (4)

where

Am×d =
[
a(ω1),a(ω2), · · · ,a(ωi), · · · ,a(ωd)

]
,

a(ωi)m×1 =
[
1, ejωi , ej2ωi , · · · , ej(m−1)ωi

]T
,

Sd×d = diag
(
|s1|2, |s2|2, · · · , |sd|2

)
,

Φd×d = diag
(
ejω1 , ejω2 , · · · , ejωd

)
, (5)

andZ = σ−2E
[
n(k)n∗(k+1)

]
is anm×m matrix with ones

on the first subdiagonal and zeros elsewhere.
The ESPRIT algorithm exploits the underlying deterministic

nature of the harmonics in (1), which is basically a matrix shift
invariance property. When the noise varianceσ2 is estimated
via the insignificant singular values of the matrixRxx, the
following two matrices are formed

C1 = Rxx − σ2I = ASA∗,

C2 = Rxy − σ2Z = ASΦ∗A∗. (6)

The frequencies are then determined by thed generalized
eigenvalues (GEs) of the matrix pencil(C1−ξC2) that lie on
the unit circle.

Substituting estimated frequencies into (1), the amplitudes
si can be obtained by solving a Vandermonde system using
least squares type algorithms [3], [8]. In ESPRIT, the power
of harmonics can also be solved directly according to the
generalized eigenvectors (GVs).

The estimates obtained by ESPRIT are asymptotically un-
biased (when the number of samples goes to infinity). In
practice, since the number of signal samples is finite, the noise
components contained in the estimates of correlation matrices
Rxx andRyy always deviate fromσ2I andσ2Z, respectively.
This deviation is one of the main sources causing errors in
the estimation. Besides, when the dimension of matrices is
large, the numerical error in the computation of SVD and GED
frequently causes noticeable estimation error, especially for
small singular values. This is due to the inherent instability
of SVD and GED operation on singular or ill-conditioned
matrices. Another error source, less noticed, is formed in the
process of tracking thed GEs, locating on the unit circle, out
of m GEs of the matrix pencilC1 − ξC2.

Part of these errors are mitigated by some improved ESRPIT
algorithms such as TLS-ESPRIT [2]. Combined with Total
Least Squares (TLS), TLS-ESPRIT further applies SVD on

1Generally,m � d for a good accuracy of estimates when the additive
noise is not small

the matricesC1 and C2 to extract components containing
less noise, and transform the generalized eigen-problem in an
instablem×m space to that in a more stabled× d space.

The computational load of ESPRITs is mainly from the
SVD and GED operation in terms of a high dimension matrix.
The basic ESPRIT algorithm needs one SVD and one GED
of m × m matrices, while all published TLS-ESPRIT type
algorithms require operations of at least two SVDs ofm×m
matrices and one GED ofd× d matrices. For generalm×m
matrices, the complexity of SVD is about4m3, and the
complexity of GED is about8m3 [10].

III. R EDUCED-RANK APPROXIMATION IN ESPRIT
ALGORITHM

From the analysis of error sources above, we see that a
smaller space usually implies better stability and simplicity
compared to a larger one. This motivates us to design stable
and less complex algorithms in a smaller space when onlyp
out of d harmonics need to be estimated.

A. Principle subspace and frequency estimation

SinceC1 in (6) is a Hermitian matrix, the SVD ofC1 has
the form

C1 = UΛU∗

= [Up Ur]
[

Λp 0
0 Λr

]
[Up Ur]∗ (7)

= UpΛpU∗
p + UrΛrU∗

r ,

where them×m diagonal matrixΛ contains singular values
in descending order, the unitary matrixU consists of left
singular vectors, which equal right singular vectors sinceC1

is Hermitian.Up andUr are the left and right submatrices of
U, associated with thep principle and the remainingm − p
smaller singular values, respectively.

Multiply the matrix pencil(C1− ξC2) by U∗
p from the left

and byUp from the right, we get a newp× p matrix pencil

(Λp − ξU∗
pC2Up), (8)

where we have utilized the orthogonality between the columns
of Up andUr, that is,U∗

pUp = I, U∗
pUr = 0.

For the new matrix pencil, we have the following results.
Theorem 1:In ESPRIT-type algorithms,C1 and C2 are

constructed as in (6), and the SVD ofC1 is described as in
(8). Then the matrix pencil(Λp−ξU∗

pC2Up) hasp distinctive
generalized eigenvaluesξi, i = 1, 2, · · · , p, and the angles of
these GEsξi are just thep frequenciesωi, corresponding top
harmonics with largest power.

Proof: First, using (6), rewriteΛp as

Λp = U∗
pC1Up = U∗

pAS
1
2 (S

1
2 )∗A∗Up , B∗B, (9)

where thed× p matrix B , (S
1
2 )∗A∗Up. From

p = Rank(Λp) = Rank(B∗B) ≤ Rank(B), (10)

we know Rank(B) = p. Then we can define the Moore-
Penrose inverse (pseudo inverse) ofB as

B† = (B∗B)−1B∗ = Λ−1
p B∗. (11)
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Using the expressions related toB, the matrix pencilU∗
p(C1−

ξiC2)Up can be rewritten as

U∗
p(C1 − ξiC2)Up =U∗

pAS
1
2 (I− ξiΦ∗)(S

1
2 )∗A∗Up

=B∗(I− ξiΦ∗)B

=ΛpB†(I− ξiΦ∗)B. (12)

With the help of the SVD expressions ofB andB†, it can
be further proved that ifI−ξiΦ∗ is full rank,B†(I−ξiΦ∗)B
will have rankp, so will U∗

p(C1− ξiC2)Up. This contradicts
the fact thatU∗

p(C1 − ξiC2)Up is singular whenξi is a GE
of the matrix pencil. Therefore,I− ξiΦ∗ can only be singular
which meansξi is also a GE of(C1 − ξC2). Notice thatI
andΦ∗ are both diagonal matrices,ξi must equalejωi which
is the ith diagonal element ofΦ. Thenωi = Angle(ξi).

Because all frequencies are different from each other,ξi
is a rank1 reducing factor of the matrixΛp − ξU∗

pC2Up,
corresponding to a one-dimension eigen-space. According
to the relationship between the eigen-space and the matrix
column space, (the dimension of a matrix column space equals
the dimension of a whole eigen-space spanned by all linearly
independent eigenvectors), we can further conclude that there
must bep distinctive GEs, each corresponding to a eigen-space
with one spanning basis.

Since the SVD of a matrix exhibits the spectral distribution
of the comprised signal [6], the principle singular values and
vectors reflect the information of the frequencies with largest
power. This intuitively explains why thep GEs are associated
with the p frequencies with largest power.

From the process of the proof, we can also find some
relationships between the eigenvectors of the new matrix
pencil and the old one as shown below.

Corollary 1: Whenp = d, corresponding to a common GE
ξi, the generalized eigenvector ofC1−ξC2 can be determined
by Upvi, wherevi is the generalized eigenvector ofΛp −
ξU∗

pC2Up.
So far, the p principle signal components can be esti-

mated without any performance loss, using reduced rank TLS-
ESPRIT technique with a4m3 × 2 flops computation of two
complete SVDs plus a8p3 flops of one GED.

Discussion: Although our basic interest is always to track
the strongest signals, it is possible to extend this algorithm
to track anyp harmonics rather than the principle ones by
choosing singular values and vectors accordingly.

B. Power Estimation of the Harmonics

In the case when onlyp out of d frequencies are known,
the estimates ofp amplitudes obtained by solving under-
determined linear equations of (1) will comprise large error.
Alternatively, the power of thesep harmonics can be estimated
in a subspace method requiring no further information.

Let vi be the generalized eigenvector corresponding to the
generalized eigenvalueξi. From the definition of generalized
eigen-problem, using the expressions (6) in the matrix pencil
(Λp − ξU∗

pC2Up), we have

U∗
pAS(I− ξiΦ∗)A∗Upvi = 0. (13)

Left multiply (13) by v∗i , yields

(v∗iU
∗
pA)S(I− ξiΦ∗)(v∗iU

∗
pA)∗ = 0. (14)

As S(I − ξiΦ∗) is a d × d diagonal matrix with onlyith
diagonal element equaling zero, the1× d vectorv∗iU

∗
pA has

the form

v∗iU
∗
pA = [0, · · · , 0,v∗iU∗

pa(ωi), 0, · · · , 0], (15)

that is, exceptith element, all others equal zero.
Notice thatΛp = U∗

pC1Up and ξiΦ∗ is a diagonal matrix
with ith diagonal element equaling one, (14) can be rewritten
as

v∗iΛpvi = (v∗iU
∗
pA)(S ξiΦ∗)(v∗iU

∗
pA)∗

= |si|2
∣∣v∗iΛpa(ωi)

∣∣2. (16)

It follows that

|si|2 =
v∗iΛpvi∣∣v∗iΛpa(ωi)

∣∣2 . (17)

C. Approximation with Noisy Correlation Matrix

The preceding algorithm still has orderm3 computational
complexity due to the SVD ofm × m matrix. The main
objective of the two SVDs is to estimate noise variance and the
principle singular components ofC1, respectively. Since only
p out ofm principle singular values and vectors are required,
the computation can be simplified by applying fast algorithms
with lower complexity, such as the power method [10]. For
each dominant singular value and vector, the power method
has a computational order ofm2 for am×m matrix2. To be
stated, the power method works only when the gap between
two singular values is large enough. For the series of principle
singular values, this condition can generally be satisfied. With
the help of power method, two kinds of simplifications are
available. The first one only applies power method in the step
of computingUp and Λp with little performance difference.
This results in an algorithm of complexity4m3 + pm2 + 8p3.
The second one directly applies power method on the matrix
Rxx, instead ofC1, which leads to a substitution of the
principle singular vectors and values ofRxx for Up and
Λp, andRxy for C2 in the matrix pencil(Λp − ξU∗

pC2Up).
Thus, the complexity is only in the order ofpm2 + 8p3. This
simplification seems to be a substitution of noisy matrices
for noise-free ones, however, intuitively, only insignificant
errors will be introduced in the final output. This is because
the substitution happens between the noise-immune principle
singular components, and it is known that principle singular
values have good stability when small perturbation of noise
matrix is present. In Section IV, it can be seen that this
simplification introduce negligible performance loss in the
case of medium to high signal to noise ratio (SNR). To be
rigorous, the approximation effect can be analyzed based on
matrix perturbation theorem [10].

2In power method, the times of iteration to achieve convergence depends
on the ratio of two adjoint singular values. For symmetric/Hermitian matrix,
it usually converges very fast and2 or 3 iterations are good enough.
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D. Summary of Reduced-Rank ESPRIT Algorithm

The second simplification method discussed above can very
likely be implemented on-line for the retrieval of principle
signal components within rich sources. This can be regarded
as a rank reduced LS-ESPRIT algorithm as only one of
two noisy matrices is truncated in the sense of least squares
approximation. The key steps of the proposed algorithm may
be summarized as follows.

1) Construct the correlation matricesRxx andRxy from the
samples.

2) Apply the direct SVD or a fast algorithm (e.g., the power
method) to solvep principle singular values and vectors
of Rxx, and form matricesΛp andUp.

3) Compute thep generalized eigenvaluesξi and eigenvec-
tors vi of the matrix pencilΛp − ξU∗

pRxyUp.
4) Thep principle frequencies are the angles ofξi, and the

power of these harmonics can be obtained by (17).

When the power method is applied, the total complexity of
this algorithm ispm2 + 8p3.

E. Extension to General Shift Invariant Algorithms

The ideas presented above can be extended to general shift
invariant algorithms, such as the Matrix pencil and the State-
Space methods [9], [11]. The underlying data matrices can be
the data samples directly, then they are usually not symmetric
or Hermitian. Nevertheless, common GEs exist between the
new reduced rank matrix pencil and the original one. This
conclusion can be proven in a way similar to that in Theorem
1. However, due to the loss of the property of Hermitian,
the power of harmonics can no longer be obtained in the
way described in Section III-B. Unless working out all the
parameters ofd harmonics, the power/amplitude information
can not be recovered by the linear equation method, either.

If the power/amplitude of harmonics are not required, an
approach can be adopted to avoid the approximation of filtered
matrices by noisy ones, such asC1 and C2 by Rxx and
Rxy in the reduced-rank ESPRIT. This can be achieved by
constructing two noise-free cross-correlation matrices from the
sampled data as discussed in [3]. These two new correlation
matrices contain no noise as the cross-correlation operation
wipes out the noise components.

IV. SIMULATIONS

In our simulations,20 harmonics with different frequencies
are used. The amplitudes of all the harmonics are generated
randomly using complex Gaussian function. To check the abil-
ity of our algorithms to automatically track those harmonics
with largest power, all harmonics are unordered with respect
to amplitude/power. The length of the sampling vector,m,
is set to 300 in all experiments. Sincem determines the
resolution ability for frequencies when the noise variance
is fixed, without loss of generality, the frequencies of these
harmonics are set uniformly, with intervals varying in different
experiments.Hereafter, we refer to the original ESPRIT in
[1] as original ESPRIT, our proposed algorithm requiring the
estimation of the noise variance in the first step as filtered

ESPRIT, and our proposed algorithm approximatingC1 and
C2 with Rxx andRxy as unfiltered ESPRIT. When the power
method is applied, it is indicated.

Fig. 1 shows that the estimated frequencies and powers of
the harmonics obtained by the three algorithms. The stars rep-
resent the true parameters of harmonics. The values displayed
by diamonds, squares, and circles are the estimates generated
by the original, filtered and unfiltered ESPRITs, respectively.
The intervals between frequencies are0.0408, and the SNR
is set to5dB. The results are averaged over five realizations.
It is clear that both filtered and unfiltered ESPRIT provide
satisfactory accuracy, and they do track thep harmonics with
largest power. The large error in the original ESPRIT is caused
by the factors discussed in Section III-A. When the SNR
decreases, the accuracy of estimates slightly declines as can
be seen in Fig. 2.
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Fig. 1: Estimated frequency and power of harmonics when frequency interval
is 0.0408, p = 10 and SNR=5dB.
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Fig. 2: Estimated frequency and power of harmonics when frequency interval
is 0.04, p = 10 and SNR=3dB.
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Fig. 3: Estimated frequency and power of harmonics obtained by unfiltered
ESPRIT with Power method (marked with triangles) and direct SVD (marked
with circles and squares) when frequency interval is0.05, p = 10 and
SNR=10dB.

In Fig. 3, the results compared are obtained by the unfiltered
ESPRIT uisng the power method , the unfiltered ESPRIT and
filtered ESPRIT using direct SVDs, marked with triangles,
circles and squares, accordingly. In experiments, the times of
iteration in the power method is set to20 as the ratio between
adjoint singular values becomes smaller withp increasing.
However, this is still a notable saving of computation cost
compared to the direct SVD. From the figure we can find that
the performance difference achieved by the power method and
direct SVDs is insignificant. With the SNR decreasing, the
difference is enlarged gradually. However, the performance
deterioration can be partly prevented by increasing the times
of iteration.

V. CONCLUSIONS

We have shown that the rank reduction techniques can be
well organized in the ESPRIT type algorithms, which leads
to low-complexity algorithms in the estimation of principle
components in rich signal sources. These algorithms transform
the generalized eigen-problem in an original large space to
that in a smaller space depending on the number of desired
principle signal components. Proof is given on the transform,
and an extension to general shift invariant techniques is possi-
ble, which can be proved in a similar way. As only principle
singular values and vectors are required, fast algorithms such
as the power method can be applied to greatly simplify these
algorithms and make them implementable in real time.
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