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A generalised space-time model based on Clarkes=Jakes model is

extended to the case of a non-isotropic distribution of scatterers. The

respective space-time correlation function and space-frequency cross

spectrum around the receiver are derived. A 3-D space-time plot of the

correlation function is shown for a specific scatterer distribution based

on a typical mobile radio scenario.

Introduction: The exploitation of temporal and spatial diversity can

significantly improve communication quality and associated system

performance in a rich-scattering wireless environment. This has been

demonstrated through proposals for space-time coded modulations

over multiple-input multiple-output (MIMO) radio channels which are

understood to be very beneficial for high data-rate systems, both

coherent [1], and non-coherent [2]. For the purposes of macroscopic

system design, better system models are required to obtain a more

rigorous evaluation of the proposed coding schemes. One such

scheme, based on a traditional Clarkes=Jakes model [3], has been

proposed in [4], where a rich isotropic distribution of scatterers is

assumed around the mobile station (MS), with no major scatterers

located around the base station (BS), and corresponding space-time

cross correlation and space-frequency cross spectrum functions are

derived. In this Letter we generalise [4] by incorporating a non-

isotropic distribution of scatterers around the MS.

In the context of this Letter, the correlation and spectrum functions

will be derived for a non-isotropic distribution of scatterers, assuming

multiple transmit antennas at the BS, for a corresponding Rayleigh

multiple-input single-output (MISO) or MIMO radio channel. The

closed form expressions that will be developed for the space-time

and space-frequency cross spectrum functions can be easily applied to

analysis of frequency flat and frequency selective fading MISO=MIMO

radio channels, respectively.

Space-time cross-correlation formulation: Consider two BS anten-

nas, located at y1 and y2, with no major scatterers and only char-

acterised by horizontal separation of an arbitrary number of wavelengths

(l), and NR approximately co-located receive antennas. For the sake of

discussion contained in this Letter, NR¼ 2 will be considered, in a

macrocellular wireless channel. The space-time cross-correlation

function can be defined as, in a manner similar to [4], and following

from [5],

rð y1; y2; tÞ ¼ rðdsp; tÞ

¼ s2expð jkdspÞ
ð
O
PðâaÞðexp½ jcos âað2pfDtcos xþ kz0cÞ�

� exp½ jsin âað2pfDtsin x� kz0sÞ�Þ dâa ð1Þ

where dsp¼ y1� y2 is the BS separation, k¼ 2p=l is the wave number,

â is a unit vector pointing in the direction of wave propagation, O
corresponds to the unit circle over which integration is performed, P(â)

is the angular power density distribution function around the MS of

scatterers and j¼
p
�1. Also with reference to (1), fD is the maximal

Doppler spread, x is the direction of movement of the MS and the

corresponding reference frame containing the scatterers, s is the

variance of the channel, and zc
0 and zs

0 , found using macrocellular far-

field assumptions [4], are as defined in [4, App. 1, eqn. (36, 37)],

z0c ¼ c1sin b; z0s ¼ c1cos b ð2Þ

where c1¼ dspsin b� a=d; a=d represents the ratio of distance, a, of

scatterers from the MS and the distance, d, of the MS to the centre of

the transmit antenna configuration, and b represents the angular posi-

tion of the MS with respect to the BS.

Similarly to [5], and using the 2-D modal expansion in [6], if one lets

â¼ (1, f) the following formulation is obtained for the space-time

correlation function

rðdsp; tÞ � Rc1c2
ðdsp; tÞ ¼ s2e jkdsp

�

ð2p
0

P1
m¼�1

gme
�jmfe jðcosfð2pfDtcosxþkz0cÞþsinfð2pfDtsinx�kz0sÞÞ df

ð3Þ

where as in [5], gm¼
Ð
0
2pP(j)e�jmj dj, and P(j) corresponds to P(â) in

(1). Then by making an appropriate change of variables let y¼fþc,ð2p
0

e jð�mfþzsinðfþcÞÞ ¼

ð2pþc

c
e jð�mðy�cÞþzsinyÞ dy

¼ e jmc
ð2pþc

c
e jð�myþzsinyÞ dy ¼ e jmc2p � JmðzÞ ð4Þ

where c¼ tan�1(b1=a1) and z¼ 2p
p
(a1

2
þ b1

2); b1¼ ( fDtsin x� zs
0=l)

and a1¼ ( fDtcos xþ zc
0=l); and Jm (�) is the mth order Bessel function

of the first kind.

Then the following is obtained for the space-time correlation

function,

Rc1c2
ðt; dspÞ ¼ s2expð jkdspÞ � 2p

P1
m¼�1

gme
imcJmðzÞ ð5Þ

Now for an isotropic scatterer distribution,

gm ¼

1

2p
; m ¼ 0

0; m 6¼ 0

8<
: ; and Rc1c2

ðdsp; tÞ ¼ s2expð jkdspÞJ0ðzÞ ð6Þ

which gives the space-time cross-correlation as defined in [4].

A 3-D plot of the magnitude of the cross-correlation function,

jRc1c2
(dsp, t)j, is shown in Fig. 1 for fD¼ 0.01, x¼ 7p=6 and b¼

p=4 assuming a Laplacian distribution [7], which gives gm as, [5],

gm ¼ e�jmb ð1� ð�1Þdm=2ezFmÞ

ð1þ s2m2=2Þð1� zÞ
ð7Þ

where z¼ e�p=(
p
2s); Fm¼ 1 for m even; and Fm¼ms=

p
2 for m odd.

The angular spread, Ss
2 of 10� given, is found from the square root of the

variance, [5]. jRc1c2
(dsp, t)j can also be plotted for all other common

angular power distributions.
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Fig. 1 3-D plot of magnitude of cross-correlation function, jRc(dsp,t)j, for
fD¼ 0.01, MS moving direction with respect to BS, x¼ 7p=6 and MS
position with respect to BS, b¼p=4, assuming Laplacian distribution with
angular spread of 10�

Space-frequency cross spectrum formulation: Following from (5),

and in a manner similar to the derivation of the space-frequency

cross spectrum given in [4, eqn. (3), p. 1176], a space-frequency cross

spectrum can be found for a non-isotropic distribution of scatterers.

We first observe that z can be reformulated as

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p½ fDtþ c1sinð b� xÞ�Þ2 þ ð2pc1cosðb� xÞÞ2

q
ð8Þ

The space-frequency cross spectrum is defined as Sc1c2(dsp, f )¼
4

F{Rc1c2
(t, dsp)} where F{�} is the Fourier transform with respect to t.

Thus
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Sc1c2 ðdsp; f Þ ¼ s2expð jkdspÞ � 2p
P1

m¼�1

ðgm � F feimcJmðzÞgÞ ð9Þ

For further simplification, using (5), and a result in [8], and the addition

theorem for Bessel functions, one can express eimcJm(z) as

eimcJmðzÞ ¼
P1

n¼�1

jnJnð2pð fDtþ c1sinðb� xÞÞÞJmþnðc1cosðb� xÞÞ

¼
P1

n¼�1

jnJmþnðc1cosðb� xÞÞ
P1

m0¼�1

Jnð2pfDtÞ

� Jn�m0 ð2pc1sinðb� xÞÞ ð10Þ

Thus since the space-frequency cross spectrum is defined with respect

to t we need only to find F{Jn(2pfDt)} for n¼�1� � �1. Thus using

a result from [9, p. 66] and [10, p. 197] we have

fFJnð2pfDtÞg ¼ � pfD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

f

fD

� �2
s0

@
1
A

�1

cos nsin�1 f

fD

� �� �
; f < fD

¼ �f nD f �nsin
np
2

� �
pfD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

fD

f

� �2
s0

@
1
A

�1

� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

f

fD

� �2
s0

@
1
A

�n

; f > fD

ð11Þ

where fD is now the maximal Doppler spread. The values �x1=�x2 for

n¼�1� � �1, and n 6¼ 0, depend on whether n > 0 and=or jnj is even,
in which case the transform is þx1=�x2; otherwise, if n< 0 and n is odd,

one has �x1=þx2. Thus following from (9) and (10), Sc1c2(dsp, f ), can be

expressed as

Sc1c2 ðdsp; f Þ

¼ s2expð jkdspÞ � 2p
P1

m¼�1

gm

� P1
k¼�1

jn Jmþnð2pc1cosðb� xÞÞ
�

�
P1

m0¼�1

½FfJnð2pfDtÞgJn�m0 ð2pc1sinðb� xÞÞ�
��

ð12Þ

where F{�} is as defined in (8).

It can also be readily observed that from (12), if we are summing over

n¼�1� � �1, then the term � x2 in (11) can be disregarded since x2 is

only nonzero for odd n, n¼�1� � �1, due to the sin(np=2) term in x2
and jnsin(np=2)þ j�nsin(�np=2)¼ 0. Thus (12) gives a closed form

expression for the space-frequency cross spectrum with a non-isotropic

distribution of scatterers.

Conclusion: Closed-form solutions were found for the space-time

cross-correlation and the space-frequency cross spectrum, both of

which can be applied to continuous Rayleigh fading MIMO channels

for both frequency flat and frequency selective fading wireless

scenarios, with a non-isotropic scatterer distribution. The method

was demonstrated for a Laplacian distribution, but it is equally appli-

cable for other common distribution functions in the assessment of

performance with various BS antenna spacings.
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