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Abstract. The large spectral efficiencies promised for multiple-input multiple-output (MIMO) wireless
fading channels are derived under certain conditions which do not fully take into account the spatial aspects
of the channel. Spatial correlation, due to limited angular spread or insufficient antenna spacing, signifi-
cantly reduces the performance of MIMO systems. In this paper we explore the effects of spatially selective
channels on the capacity of MIMO systems via a new capacity expression which is more general and re-
alistic than previous expressions. By including spatial information we derive a closed-form expression for
ergodic capacity which uses the physics of signal propagation combined with the statistics of the scattering
environment. This expression gives the capacity of a MIMO system in terms of antenna placement and
scattering environment and leads to valuable insights into the factors determining capacity for a wide range
of scattering models.
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1. Introduction

Multiple-Input Multiple-Output (MIMO) communication systems using multi-antenna
arrays simultaneously during transmission and reception have generated significant in-
terest in recent years. Theoretical work of [Foschini and Gans, 13; Telatar, 41] showed
the potential for significant capacity increases in wireless channels utilizing spatial di-
versity. Consider a system employing nT transmit antennas and nR receive antennas
in a narrowband flat fading channel. It was shown in [Foschini and Gans, 13] that as
min(nT, nR) tends to infinity then the capacity of the system grows proportionally to
min(nT, nR) for fixed transmit power, provided that the fading between antennas is in-
dependent and identically distributed (i.i.d.) Rayleigh. This linear capacity growth has
emerged as one of the most promising solutions for overcoming the demand for higher
bit rates in wireless communications. In reality, however, the capacity is significantly re-
duced when the fades are not independent, but correlated due to insufficient antenna sep-
aration or angular spread of the scatterers surrounding the arrays [Foschini and Gans, 13;
Shiu et al., 38].

A significant hurdle in analyzing the capacity of wireless fading MIMO systems
is the random nature of the channel. The ergodic, or mean, capacity is often used to
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characterize the random channel capacity. However, the ergodic calculation requires
extensive simulations which limits analysis into the physical factors determining MIMO
capacity. A closed form expression for the ergodic capacity is derived in [Telatar, 42]
for the special case of uncorrelated Rayleigh fading. However, as mentioned above,
i.i.d. Rayleigh fading models an unrealistic environment not often seen in practice.

Capacity results for various correlation models using Monte Carlo simulations are
studied in [Chizhik et al., 8; Chuah et al., 9; Driessen and Foschini, 12; Gorokhov, 19;
Pedersen et al., 31; Shiu et al., 38], and asymptotic results and bounds on the ef-
fects of correlated channels are presented in [Chen-Nee et al., 6; Gorokhov, 19;
Loyka and Kouki, 27; Pedersen et al., 31; Sengupta and Mitra, 37; Shiu et al., 38].
However, these simulations, bounds and asymptotic results have been for a limited set
of channel realizations and/or antenna configurations. For single antenna systems it
is sufficient to only consider received signal power and/or the time varying amplitude
distribution of the channel. However, for systems employing multiple antennas, con-
sideration must also be given to the angle of arrival (AOA) of the impinging signals as
well as the spatial geometry of the array. Most channel models do not include spatial
information (antenna locations and scattering environment) explicitly. Although spatial
information is represented by the correlation between channel matrix elements there is
no direct realizable physical representation, and, therefore does not easily lend itself to
insightful capacity results. In particular, of interest is the effect on channel capacity of
antenna placement, particularly in the realistic case when antenna arrays are restricted
in size, along with non-isotropic scattering environments.

In contrast, the contribution of this paper is an expression for MIMO capacity
which overcomes these limitations, that is, with additional theory for modelling scatter-
ing environments which we refine here, we derive a model which can be readily recon-
ciled with a multitude of scattering distributions and antenna configurations and allows
us to derive a closed form expression for the MIMO capacity.

In this paper, we exploit the convergence of ergodic capacity as the number of
transmit antennas is increased to derive a closed-form channel capacity expression which
depends on the correlation between the receive antennas. To model the correlation we
generalize the one-ring model [Lee, 24; Shiu et al., 38], to develop a closed form ex-
pression which depends on the antenna spacing and placement along with the mean
angle-of-arrival (AOA) and angular spread for a wide range of common scattering dis-
tributions. This allows for a capacity expression which can be evaluated for any general
spatial scenario, giving significant insights into the capacity of such systems, without the
need for multiple correlation models or extensive simulations.

The remainder of this paper is organized as follows. In section 2, we derive a closed
form expression for the ergodic capacity of a MIMO system and discuss limitations to
capacity scaling. In section 3, we develop a generalized 3D multipath channel model
which includes antenna locations and environmental factors to characterize the MIMO
wireless channel. Using this model, a closed-form spatial correlation expression for
general scattering environments is derived, and we summarize some common scattering
distributions. MIMO capacity is then analyzed in section 4 for a variety of physically re-
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alistic spatial scenarios, and spatial limitations to capacity growth are discussed. Finally,
we make some concluding remarks in section 5.

2. Convergence of ergodic capacity

Consider a MIMO system consisting of nT transmit antenna and nR receive antennas.
When the transmitted signal vector is composed of statistically independent equal power
components, each with a Gaussian distribution, the ergodic channel capacity was shown
to be [Telatar, 41; Foschini and Gans, 13],

Cerg = EH

{
log

∣∣∣∣I nR + η

nT
HH †

∣∣∣∣}, (1)

where H is the nR × nT random flat fading channel matrix, assumed known at the re-
ceiver, and normalized such that E{|hrt |2} = 1, where hrt is the channel gain from the
t th transmitter to the rth receiver. Note that the logarithm is base 2 and gives the capacity
in bits-per-second-per-Hertz (bps/Hz).

Let H = [h1 h2 . . . hnT], where ht is the nR × 1 complex zero-mean Gaussian
vector of channel gains corresponding to the t th transmit antenna, then the correlation
matrix at the receiver is defined as Rrx � E{hth†

t }, where the expectation is over all
transmitters and channel realizations, then

Rrx =


ρ11 ρ12 . . . ρ1nR

ρ21 ρ22
...

. . .
...

ρnR1 . . . ρnRnR

 , (2)

with elements Rrx|rr ′ = ρrr ′ corresponding to the spatial correlation between two sen-
sors r and r ′ at the receiver.

Consider the situation where the transmit array has uncorrelated transmit branches
corresponding to independent ht vectors. This can occur when the transmit antennas are
sufficiently separated for a given angular spread of the scatterers surrounding the trans-
mit array. For example, using the correlation expression developed in section 3, a two
dimensional isotropic scattering environment with antennas separated by 0.35λ gives
correlation of 0.1. However, for more realistic scattering environments, when the trans-
mitter is usually mounted high above the scatterers, the angular spread is considerably
less. For angular spread of 3◦ the antennas must be separated by around 9λ to achieve
the same level of correlation. With sufficient transmit antenna spacing the vectors ht are
independent and the sample correlation matrix, defined as

R̂rx � 1

nT

nT∑
t=1

hth
†
t , (3)
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converges to Rrx for large numbers of transmit antennas (nT → ∞). Observing that the
channel matrix product can be expressed as

HH † =
nT∑
t=1

hth
†
t , (4)

then for a large number of sufficiently separated transmit antennas the ergodic capacity
converges to the capacity C,

lim
nT→∞Cerg = C � log |I nR + ηRrx|. (5)

The convergence error of the ergodic capacity to the expression (5) is shown in fig-
ure 1 for increasing numbers of uncorrelated transmit antennas and various numbers of
receiver antennas. It is important to observe that the ergodic capacity approaches the
capacity C for finite numbers of transmit antennas, with faster convergence for smaller
numbers of receive antennas. Therefore, the capacity expression will be accurate for
many practical fixed wireless scenarios, where the receiver has a small number of an-
tennas whilst the base station is less restricted in geometrical size and is able to provide
a sufficient number of uncorrelated transmit branches. Therefore, provided the channel
does not contain keyholes1 and the transmit antennas are sufficient in number and sep-

Figure 1. Convergence error of ergodic capacity Cerg (1) to bound C (5) with increasing number of transmit
antennas for various numbers of receive antennas and SNR 10 dB.

1 It has been shown theoretically that some channels may exhibit low capacity even though there is no spatial
correlation at the transmitter or receiver [Chizhik et al., 7; Gesbert et al., 15]. However, no observations of
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aration, the capacity C provides a good estimate of the ergodic capacity Cerg. Note that
a bound similar to (5) has also been derived in [Abdi and Kaveh, 2] to demonstrate a
space–time cross-correlation model for a von-Mises scattering environment.

2.1. Capacity scaling limits

The capacity given by (5) is maximized when there is no correlation between the receive
antennas, i.e., Rrx = I nR , giving

Cmax = nR log(1 + η). (6)

Therefore, in the idealistic situation of zero correlation at both transmitter and receiver
arrays (corresponding to the i.i.d. case) we see the maximum capacity scaling is linear
in the number of receive antennas. In this case, the system achieves the equivalent of
nR independent nonfading subchannels, each with SNR η. This result agrees with the
traditional capacity formulation [Telatar, 42] which is widely used to advocate the use
of MIMO systems.

Conversely, when each pair of antenna elements at the receiver are fully correlated,
the correlation matrix becomes the nR × nR matrix of ones, Rrx = 1nR , and the capacity
of the MIMO system will be minimized to

Cmin = log(1 + nRη). (7)

Here the logarithmic capacity growth with increasing receiver antennas is due to an
effective increase in the average SNR of the single antenna case, due to the assumption
of independent noise at each receiver, and is widely known as a receiver diversity array
gain effect.

The capacity (5) provides an expression for the ergodic capacity without the need
for extensive simulations. In contrast to current simulation studies presented in the liter-
ature, which are difficult to relate to physical factors of the system, in the next section it
is shown that for essentially all common scattering distributions, and any array configu-
rations, it is possible to compute a closed form capacity expression.

3. Receiver spatial correlation for general distributions of Farfield scatterers

3.1. Channel model

The one-ring model was initially proposed in [Lee, 24] to model fixed wireless com-
munications systems where the base station is elevated and not obstructed by local scat-
tering, whilst the user is uniformly surrounded by scatterers. In [Shiu et al., 38] this
model was extended to include multiple transmit and receive antennas, and the capac-
ity was studied for various transmit angular spreads and receive antenna geometries. In

keyhole (pinhole) degenerate channel effects from practical measurements have appeared in the literature.
Therefore, in this paper we will assume nondegenerate channels only.
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Figure 2. Scattering model for a flat fading MIMO system. gt (ψ̂) represents the effective random complex
gain of the scatterers for a transmitted signal xt arriving at the receiver array from direction ψ̂ via any
number paths through the scattering environment. The sphere surrounding the receive antennas contains no
scatterers and is assumed large enough that any scatterers are farfield to all receive antennas located within.

this paper we model the multipath propagation and fading correlation using a general-
ized 3D one-ring model that allows for more general scattering environments at both the
transmit and receive arrays. This model allows for greater insights into the spatial fac-
tors determining channel capacity, in particular, closed-form capacity expressions can
be computed for a wide range of scattering environments and antenna geometries.

Consider the narrowband transmission of nT statistically independent uniform
power signals {x1, x2, . . . , xnT} through a general 3D flat fading scattering environment
with scatterers assumed distributed in the farfield from the receiver antennas, as shown
in figure 2, then the incoming signal from direction ψ̂ at the receiver is given by

�
(
ψ̂

) =
nT∑
t=1

xt gt
(
ψ̂

)
, (8)

where gt (ψ̂) is the effective random complex gain of the scatters for the transmitted
signal xt from the t th transmit antenna arriving at the receiver array from direction ψ̂ .
Since the scatterers are assumed farfield to the receiver antennas, signals impinging on
the receiver array will be plane waves, therefore, the received signal at the rth sensor
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located at yr is given by

zr =
∫
�

�
(
ψ̂

)
e−ikyr ·ψ̂ d�

(
ψ̂

) =
nT∑
t=1

xt

∫
�

gt
(
ψ̂

)
e−ikyr ·ψ̂ d�

(
ψ̂

)
, (9)

where k = 2π/λ is the wavenumber with λ the wavelength, and d�(ψ̂) is a surface
element of the unit sphere �. Therefore, the channel gain hrt from the t th antenna to the
rth receiver is given by

hrt =
∫
�

gt
(
ψ̂

)
e−ikyr ·ψ̂ d�

(
ψ̂

)
, (10)

with normalization
∫
�
E{|gt (ψ̂)|2} d�(ψ̂) = 1.

3.2. Correlation of the received complex envelopes

Define the normalized spatial correlation function between the complex envelopes of
two received signals r and r ′ located at positions yr and yr ′ , respectively, as

ρrr ′ = E{zrzr ′ }√
E{zrzr}E{zr ′zr ′ } , (11)

where x denotes the complex conjugate of x, and zr denotes the noiseless received signal
at receiver r.

From (9) the covariance between signals at sensors r and r ′ is given by

E{zrzr ′ } =E

{
nT∑
t=1

xt

∫
�

gt
(
ψ̂

)
e−ikyr ·ψ̂ d�

(
ψ̂

) nT∑
t ′=1

xt ′

∫
�

gt ′
(
ψ̂

′)
eikyr′ ·ψ̂ ′

d�
(
ψ̂

′)}

= σ 2
T

∫
�

nT∑
t=1

E
{
gt

(
ψ̂

)
gt

(
ψ̂

′)}
e−ik(yr ·ψ̂−yr′ ·ψ̂ ′

) d�
(
ψ̂

)
d�

(
ψ̂

′)
, (12)

where σ 2
T = E{|xt |2} ∀t is the transmit power for each antenna, and it is assumed the

transmitted symbols are independent across antennas and independent of the scattering
environment. Assuming a zero-mean uncorrelated scattering environment, the scattering
channel is characterized by the second-order statistics of the scattering gain function
gt (ψ̂), given by

E
{
gt

(
ψ̂

)
gt

(
ψ̂

′)} = Gt

(
ψ̂

)
δ
(
ψ̂ − ψ̂

′)
, (13)

where Gt(ψ̂) = E{|gt (ψ̂)|2}, then (12) simplifies to

E{zrzr ′ } = σ 2
T

∫
�

nT∑
t=1

Gt

(
ψ̂

)
e−ik(yr−yr′ )·ψ̂ d�

(
ψ̂

)
. (14)
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Substitution of (14) into (11) gives the correlation between the two receiver sensors as

ρrr ′ =
∫
�

P
(
ψ̂

)
e−ik(yr−yr′ )·ψ̂ d�

(
ψ̂

)
, (15)

where P(ψ̂) is the normalized average power received from direction ψ̂ , defined by

P
(
ψ̂

)
�

∑nT
t=1 Gt(ψ̂)∫

�

∑nT
t=1 Gt(ψ̂) d�(ψ̂)

. (16)

In two dimensional scattering environments the power distribution (16) is commonly
known as the power azimuth spectrum (PAS) [Kermoal et al., 23], or power azimuth
distribution (PAD) [Gesbert et al., 18].

To highlight the factors which effect spatial correlation the Jacobi-Anger plane
wave expansion is employed [Colton and Kress, 10],

eiky·ψ̂ =
∞∑

m=0

im(2m + 1)jm
(
k‖y‖)Pm(cos ξ), (17)

where ξ = � (y, ψ̂) denotes the angle between y and ψ̂ , jm(·) are the spherical Bessel
functions of the first kind, and Pm(·) are the Legendre polynomials of degree m. To
further separate the effects of the scattering and the sensor positioning, consider the
identity [Arfken, 4, p. 694]

Pm(cos ξ) = 4π

2m + 1

m∑
n=−m

Y n
m(̂y)Y

n
m

(
ψ̂

)
, (18)

where ŷ = y/‖y‖ and Y n
m(·) represent spherical harmonics [Colton and Kress, 10, p. 25],

then the spatial correlation (15) can be expressed as

ρrr ′ = 4π
∞∑

m=0

m∑
n=−m

(−i)mαn
m jm

(
k‖yr − yr ′‖)Y n

m

(
yr ′ − yr

‖yr − yr ′‖
)
, (19)

where coefficients αn
m characterize the scattering environment,

αn
m =

∫
�

P
(
ψ̂

)
Y n
m

(
ψ̂

)
d�

(
ψ̂

)
, (20)

and are independent of the antenna positions. The spatial correlation (19) is now com-
posed of a summation of terms, where each term has independent factors characterizing
the scattering environment and the antenna locations. Therefore, unlike previous mod-
els, where the antenna locations and the scattering environment are coupled, the separate
effects of antenna geometry and scattering environment on the channel capacity can now
be studied.
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Figure 3. Capacity of 2D and 3D isotropic scattering environments for fixed length aperture (1λ) uniform
linear (ULA) and uniform circular (UCA) arrays for increasing number of receive antennas. Insert: spatial
correlation between two antennas against spatial separation for the 2D and 3D isotropic scattering environ-

ments.

3.2.1. Isotropic scattering environment
For the special case of isotropic scattering (omnidirectional diffuse fields) the power
distribution is given by the constants, P(ψ̂) = 1/2π2 and P(ψ) = 1/2π , for the 3D and
2D scattering environments, respectively.2 In this case, the summation in (19) reduces
to a single term and the 3D and 2D spatial correlation can be shown to be:

ρ3D
rr ′ = j0

(
k‖yr − yr ′‖), (21)

ρ2D
rr ′ = J0

(
k‖yr − yr ′‖), (22)

which agree with the classical results [Cook et al., 11; Jakes, 20], where Jn(·) are the
Bessel functions of order n, and by definition j0(·) = sinc(·). With these analytic forms
for the spatial correlation we can compute the capacity (5). Figure 3 shows the theoret-
ical capacity for increasing antenna numbers for a fixed aperture uniform linear (ULA)
and circular (UCA) arrays in 2D and 3D isotropic scattering with SNR of 10 dB. It is
clear from comparison of the 2D and 3D capacities that any elevation spread has little
effect on the capacity of an array in the horizontal plane. This can be seen in the insert

2 The 2D scattering environment is a special case of the 3D case when the signals arrive from the azimuthal
plane only.
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of figure 3 where the spatial correlation for increasing spatial separation is shown for the
2D and 3D isotropic scattering environments, here the two functions J0(·) and j0(·) are
qualitatively similar, particularly for low spatial separation. Therefore, without loss of
generality, we focus on scattering environments where there is negligible power arriving
from elevation angles.

3.3. Two-dimensional scattering environment

Consider a 2D scattering environment where the signals arrive only from the azimuthal
plane, then y = (‖y‖, θy) and ψ̂ = (1, ψ) in polar coordinates, and (17) can be shown
to reduce to,

eiky·ψ̂ = J0
(
k‖y‖) + 2

∞∑
m=1

imJm
(
k‖y‖) cos(mξ) =

∞∑
m=−∞

Jm(k‖y‖)e−im(θy−π/2)eimψ.

(23)
Substitution of (23) into (15) gives the spatial correlation for a 2D environment as

ρrr ′ =
∞∑

m=−∞
αmJm

(
k‖yr − yr ′‖)eimθrr′ , (24)

where θrr ′ is the angle of the vector connecting yr and yr ′ . The coefficients αm char-
acterize any possible 2D scattering environment surrounding the receiver and are given
by

αm =
∫ 2π

0
P(ψ)e−imψ dψ, (25)

where P(ψ) is the average angular power distribution, or power azimuth distribution
(PAD).

Bessel functions Jn(x), |n| > 0 exhibit spatially high pass behavior, that is, for
fixed order n, Jn(x) starts small and becomes significant for arguments x ≈ O(n).
Therefore, to compute the spatial correlation for points closely located in space, only
a few terms in the sum (24) need to be evaluated in order to give a very good approxima-
tion [Jones et al., 21]. Thus, closed-form solutions for the correlation can be found pro-
vided closed-form expressions exist for the scattering coefficients (25). As summarized
next, for many common scattering distributions, there exists closed-form expressions for
the scattering coefficients αm and thus the capacity can be computed for a wide range of
realistic scattering environments.

3.4. Non-isotropic scattering environments

The spatial correlation as a function of receive antenna separation depends on the scat-
tering distribution surrounding the receiver. One of the most commonly used dis-
tributions is the isotropic scattering model, where the power is assumed to be uni-
form over all AOA [Jakes, 20]. However, as discussed in [Braun and Dersch, 5;
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Figure 4. Multipath signal energy modelled as a non-isotropic scattering distribution P(ψ) with mean
AOA ψ0 and angular spread σ (defined as the standard deviation of the distribution).

Patzold et al., 29, 30; Sadowsky and Katedziski, 35], and verified via experimental
measurement campaigns [Fuhl et al., 14; Lee, 25; Lo and Litva, 26; Rossi et al., 34;
Spencer et al., 39; Wang et al., 45], many realistic scattering environments have nonuni-
form AOA distributions.

Non-isotropic scattering distributions model multipath as energy arriving from a
particular direction with angular spread related to the non-isotropy parameter of the dis-
tribution, as shown in figure 4. The non-isotropic distributions are characterized by
the mean AOA ψo and the angular spread σ , defined as the standard deviation of the
distribution. Several distributions have been proposed for modelling the non-isotropic
scattering environment [Abdi et al., 1; Kalkan and Clarke, 22; Pedersen et al., 32;
Salz and Winters, 36; Spencer et al., 39; Vaughan, 44], in the following we outline several
common distributions along with the scattering parameter effects on spatial correlation
and capacity.

3.4.1. Uniform limited distributed field
When the energy arrives uniformly from a restricted range of azimuth angles ±% around
a mean AOA, ψ0 ∈ [−π, π), we have the uniform limited distribution

P(ψ) =
{
KU, |ψ − ψ0| � %,

0, elsewhere,
(26)

where KU is a normalization constant such that
∫ 2π

0 P(ψ) dψ = 1. In this case KU =
1/2% and the scattering environment coefficients (25) are given by

αm = sin(m%)

m%
e−imψ0 , (27)

which gives the equivalent correlation expression to that derived in [Salz and Winters, 36].
For % = π (isotropic scattering) (24) is given by a single term, and the correlation coef-
ficient becomes J0(k‖yr − yr ′‖), which agrees with earlier results.
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3.4.2. Truncated Gaussian distributed field
The Gaussian distribution was proposed in [Kalkan and Clarke, 22] for modelling the
distribution of scatterers as

P(ψ) = KGe−((ψ−ψ0)/(
√

2σG))
2
, ψ ∈ [−π, π), (28)

where σG is the standard deviation of the nontruncated distribution and is related to the
angular spread. KG is a normalization constant, which can be shown to be

KG = 1√
2πσGerf(π/

√
2σG)

, (29)

where erf(x) is the error function, defined as erf(x) = ∫ x

0 e−t2
dt . In this case (25) is

given by

αm = �{erf((π/2 + imσ 2
G)/(

√
2σG))}

erf(π/
√

2σG)em
2σG/2

e−imψ0 , (30)

which is well approximated by αm ≈ e−m2σG/2e−imψ0 for narrow angular spread [Teal
et al., 40].

3.4.3. Von-Mises distributed field
Another recently proposed non-isotropic scattering model is the von-Mises distribu-
tion [Abdi et al., 1],

P(ψ) = Kveκ cos(ψ−ψ0), ψ ∈ [−π, π), (31)

where κ � 0 represents the degree of non-isotropy and is related to the angular spread
of the AOA. Here the normalization constant Kv is given by

Kv = 1

2πI0(κ)
, (32)

where Im(·) is the modified Bessel function of the first kind. For κ = 0 (isotropic
scattering) the distribution becomes P(ψ) = 1/2π , while for small angular spread,
κ = ∞, the distribution is the Dirac delta function P(ψ) = δ(ψ−ψ0). For the truncated
von-Mises field the scattering environment coefficients are given by

αm = I−m(κ)

I0(κ)
e−imψ0 . (33)

3.4.4. Truncated Laplacian distributed field
For some scenarios the Laplacian distribution has been proposed as a good model of the
scattering distribution [Pedersen et al., 32; Spencer et al., 39]. The Laplacian distribution
is defined as

P(ψ) = KLe−√
2|ψ−ψ0|/σL, ψ ∈ [−π, π), (34)
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Figure 5. Comparison of common scattering distributions: uniform, Gaussian, von-Mises and Laplacian,
for angular spread σ = {20◦, 30◦, 60◦}.

where σL is the standard deviation of the nontruncated distribution and is related to the
angular spread of the AOA, and the normalization constant KL is given by

KL = 1√
2σL(1 − e−√

2π/σL)
. (35)

Here the scattering coefficients (25) can be expressed as [Teal et al., 40],

αm = (1 − (−1)�m/2�e−π/
√

2σLFm)

(1 + σ 2
Lm

2/2)(1 − e−π/
√

2σL)
, (36)

where Fm = 1 for even m, and Fm = mσ/
√

2 for odd m. In this case, the correlation
agrees with the recent derivation in [Tsai et al., 43], where the spatial correlation is de-
rived for a uniform circular array within a Laplacian distribution scattering environment.

The above distributions are shown in figure 5 for various angle spreads σ =
{20◦, 30◦, 60◦} about the mean AOA ψ0 = 0, where the angle spread is defined as the
standard deviation of the truncated distribution and is related to the nonisotropy parame-
ter %, σG, κ , or σL.

We now explore the effects on spatial correlation of angle spread and mean AOA
for the above distributions. In order to compare the spatial correlation we set the angle
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Figure 6. Spatial correlation between two antennas for mean AOA 90◦ (broadside) against spatial sep-
aration for uniform, Gaussian, von-Mises and Laplacian scattering distributions and angular spreads

σ = {1◦, 5◦, 20◦}.

spread to σ = {1◦, 5◦, 10◦} for each distribution and increase the separation distance
between the antennas, located on the x-axis. The spatial correlation for mean AOA
ψ0 = 90◦ (broadside) is shown in figure 6. As shown, the spatial correlation decreases
as the antenna spacing and/or the angular spread increases.3 Here we also see that the
scattering models all give similar spatial correlation for the same angular spread, particu-
larly for small spatial separations, indicating that the choice of non-isotropic distribution
is unimportant as the distribution variance dominates correlation. However, due to the
higher concentration of energy about the mean for the Laplacian distribution,4 for large
spatial separation the Laplacian model generally gives higher correlation than the other
three distributions for all angular spreads considered. Finally, we observe that in all
cases the von-Mises distribution gives spatial correlation nearly identical to that of the
Gaussian model. This agrees with observations made in [Abdi et al., 1], where it was
noted that the von-Mises distribution resembles a Gaussian pdf for large κ (small angular
spread) [Mardia, 28, p. 61].

In figure 7 the spatial correlation is shown for mean AOA ψ0 = 30◦ (60◦ from
broadside). Similar results are seen as for the broadside case, however, we see significant
increase in spatial correlation for all angle spreads and distributions for the same spatial

3 It is important to note that the correlation does not decrease monotonically with antenna separation, there-
fore, in certain scenarios increasing the antenna spacing may actually increase spatial correlation.

4 When compared with the other models for identical angular spread.



INTRODUCING SPACE INTO MIMO CAPACITY CALCULATIONS 429

Figure 7. Spatial correlation between two antennas on the x-axis for mean AOA 30◦ (60◦ from broad-
side) against spatial separation for uniform, Gaussian, von-Mises and Laplacian scattering distributions and

angular spreads σ = {1◦, 5◦, 20◦}.

separation as before. Therefore, due to the reduction of resolvable angular spread at the
antennas, the spatial correlation is increased as the mean AOA moves away from the
broadside angle, where the broadside angle defined as the angle perpendicular to the line
connecting the two antennas.

4. Capacity results

In this section we study the spatial effects of non-isotropic scattering and antenna geom-
etry on the capacity of MIMO systems. Using (5) and (24) along with the expressions for
the non-isotropic scattering coefficients given in the previous section, we compute the
capacity bound for a variety scattering environments for the uniform linear (ULA) and
uniform circular (UCA) arrays. In particular, of interest is the notion of linear in antenna
number capacity scaling widely used to advocate the use of MIMO systems [Foschini
and Gans, 13; Telatar, 42], and how this is effected by non-isotropic scattering and dense
array configurations. For all scenarios we consider a signal-to-noise ratio of η = 10 dB.
For comparison, the maximum (6) and minimum (7) capacities are also shown, corre-
sponding to no spatial correlation and full spatial correlation capacities, respectively.

First we consider the capacity of an 8 antenna fixed aperture (length/diameter) 3.5λ
array for each scattering distribution against the non-isotropy factor and for mean AOA
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Figure 8. Capacity for non-isotropic distributed scattering with mean AOA ψ0 = {0◦, 45◦, 90◦} and in-
creasing nonisotropy factor, for the 8 antenna uniform linear (ULA) and uniform circular (UCA) arrays of

aperture width (length/diameter) 3.5λ.

ψ0 = {0◦, 45◦, 90◦}. As shown in figure 8, the capacity increases for increasing non-
isotropy factor for the uniform, Gaussian, and Laplacian distributions, corresponding to
an increase in angle spread surrounding the receiver. For the von-Mises distribution, the
capacity decreases as κ increases, corresponding to a reduction in angular spread at the
receiver. For all distributions, the reduction in capacity with decreasing angular spread
is most pronounced for the ULA when the mean AOA is inline with the array (ψ0 = 0◦).
However, for the UCA the capacity is unaffected by mean AOA, advocating the use of
2D array configurations, which are less sensitive to the mean direction of signal arrival,
compared to the 1D linear arrays.

We now consider the capacity scaling of a MIMO system as the number of receive
antennas increases whilst the array aperture size remains fixed. First we consider the
ULA and UCA of aperture (length/diameter) D = {0.4λ, 0.6λ, 0.8λ} in an isotropic
scattering environment, shown in figure 9.

It can be observed from figure 9 that the capacity scales almost linearly with the
number of antennas before reducing to logarithmic growth after some saturation point.
The saturation point is clearly related to the aperture of the array for both the ULA and
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Figure 9. Capacity scaling of the uniform linear (ULA) and uniform circular (UCA) arrays with fixed
aperture (length/diameter) D = {0.4λ, 0.6λ, 0.8λ} in an isotropic scattering environment.

UCA, where smaller apertures saturate for lower numbers of receive antennas. The ca-
pacity scaling of the ULA and UCA is shown in figures 10 and 11, respectively, for fixed
aperture 4λ with angular spread σ = {1◦, 5◦, 20◦} of the various scattering distributions.
Again, for both ULA and UCA saturation is observed in the capacity scaling, where the
growth reduces from approximately linear to logarithmic after the number of antennas
reaches a distinct threshold. Note that the array aperture is sufficiently large so any sat-
uration is due to the reduction of angular spread at the receiver, which is clearly seen in
both figures.

To emphasis the effects of saturation with antenna numbers seen above, we can
write the capacity (5) as

C = Cmax + %C, (37)

where Cmax is the maximum antenna capacity (6), and %C = log |�rx|, where �rx is the
nR × nR matrix

�rx =



1
η

1 + η
ρ12 . . .

η

1 + η
ρ1nR

η

1 + η
ρ21 1

...

...
. . .

η

1 + η
ρnR1 . . . 1


. (38)
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Figure 10. Capacity scaling of the broadside uniform linear array with fixed aperture 4λ for angular spread
σ = {1◦, 5◦, 20◦} of the various scattering distributions.

Figure 11. Capacity scaling of the uniform circular array with fixed aperture 4λ for angular spread σ =
{1◦, 5◦, 20◦} of the various scattering distributions.
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(a) (b)

Figure 12. Capacity loss due to correlation of the broadside uniform linear array for: (a) fixed aperture
D = {0.5λ, 1.5λ, 2.5λ, 3.5λ, 4.5λ} in an isotropic scattering environment. (b) fixed aperture 4λ for angular

spreads σ = {1◦, 5◦, 10◦, 20◦} of the various scattering distributions.

Note that �rx is a positive semi-definite matrix with 0 � |+rx| � 1, thus %C � 0,
therefore %C represents the loss of capacity due to antenna correlation at the receiver.
The loss of capacity due to correlation is shown in figure 12(a) for a ULA for fixed aper-
ture D = {0.5λ, 1.5λ, 2.5λ, 3.5λ, 4.5λ} in an isotropic scattering environment. Here
the distinct saturation point in antenna number is clearly visible with increasing aper-
ture. Likewise, the loss in capacity is significant beyond an antenna saturation point for
increasing angular spread as shown in figure 12(b) for a ULA of fixed aperture 4λ.

Using a singular value decomposition of the channel matrix, the capacity of a
MIMO system can be shown to be equivalent to the sum of the capacities of min(nT, nR)

subchannels, each with independent power gains corresponding to the eigenvalues of
the channel matrix product HH † [Telatar, 41]. The subchannel gains depend on the
correlation between channel branches, and as the correlation increases some subchan-
nels have gains too small to convey information at any significant rate [Shiu et al., 38].
Therefore, as seen here, as the number of antennas increases for a fixed aperture, or an-
gular spread, due to increased channel branch correlation there exists a saturation point
at which the subchannels generated by any addition antennas have negligible gains and
do not increase the capacity, other than logarithmic array gain.

This saturation effect has significant implications for realizable MIMO systems,
as the saturation point gives the optimal number of antennas required to maximize ca-
pacity, after which there are negligible gains. Asymptotic results for the fixed aperture
ULA in isotropic scattering are studied in [Wei et al., 46], with identical independent
results in [Gesbert et al., 17]. However, the saturation point for fixed aperture arrays has
not been addressed so far, except for the special case of the UCA [Pollock et al., 33].
Promising results from a spatial model presented in [Abhayapala et al., 3] indicate the
throughput of a MIMO system is limited by the radius of the region containing the an-
tenna arrays, agreeing with observations in this paper. Likewise, to the authors’ knowl-
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edge, no analytical results exist for the capacity scaling saturation due to insufficient
angular spreads, although the effect on capacity due to limited angular spread at the
transmitter has been reported in [Shiu et al., 38], and observed elsewhere, e.g., [Gesbert
et al., 16], via simulation.

5. Conclusions

In i.i.d. Rayleigh fading channels the capacity of a multi-antenna system has been shown
to grow linearly with antenna numbers. However, in realistic propagation environments,
the fading is correlated due to insufficient antenna spacing or angular spread, and the
capacity is often significantly lower than that predicted for i.i.d. fading. By assuming a
sufficient number of sufficiently separated transmit antennas we have derived a closed-
form expression for the capacity of a MIMO random fading channel. Using a novel
channel model we separate the effects of the scattering environment and antenna array
configuration on the spatial correlation at the receiver, allowing for capacity evaluation
of systems for a wide variety of scattering environments and antenna placement.

We show that the angular spread surrounding the receiver dominates the spatial
correlation and thus capacity, rather than the choice of scattering distribution. However,
this may not hold for multi-modal distributions which were not discussed here, but are
fully captured by our analytical framework. For 1D arrays is was observed that the mean
AOA has a significant impact on the capacity of the system, advocating the use of 2D
arrays, which are less sensitive to the mean direction of signal arrival.

The capacity was also shown to suffer from a saturation effect in the number of
antennas for a fixed angular spread or array aperture. This saturation point, at which the
capacity scaling is reduced from linear to logarithmic increase with increasing antenna
numbers, is an important factor in the design of practical MIMO systems and needs
further investigation.

With the improved spatial channel modelling and capacity expressions presented
in this paper, it is hoped the spatial factors influencing the capacity of wireless multi-
antenna systems can be better exploited to aid in the design of realistic high-capac-
ity/high-quality wireless communication systems.
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