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ABSTRACT

In this paper a novel decomposition of spatial channels is
developed to provide insight into spatial aspects of multiple
antenna communication systems. The underlying physics
of the free space propagation is used to model the chan-
nel in scatterer free regions around the transmitter and the
receiver, and the rest of the complex scattering media is rep-
resented by a parametric model. The channel matrix is sep-
arated into a product of known and random matrices where
the known portion shows the effects of the physical con-
figuration of antenna elements. We use the model to show
the intrinsic degrees of freedom in a multi-antenna system.,
Potential applications of the model are briefly discussed.

1. INTRODUCTION

Multiple antenna systems has shown significant improve-
ment for communication over the wireless channel com-
pared to the traditional single antenna systems. The main
idea of these systems is to exploit the spatial aspects of mul-
tipath propagation to design spatial diversity receivers or
transmitters [ 1] and spatial multiplexing systems [2]. Max-
imal exploitation of spatially separated multiple antennas
in wireless communication needs realistic modelling of the
multi-input multi-output (MIMO) channe! models that in-
clude spatial aspects of signal propagation. Most of the ex-
isting channel models [3] assumed Rayleigh/Rice/Nakagami
fading envelopes for the received signal and/or independent
fading between each of the transmit-receiver antenna pairs.
These moedets have poor physical significance because the
antenna configuration is not modelled, hence they do not
provide any insight into spatial aspects of MIMO channels
and are not an ideal framework to build space-time commu-
nication systems.

Recent work related to better understanding of MIMO
systermns are reported in [4, 5, 6, 7, 8, 9]. The spatial channel
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meodel proposed in [8] is more general and realistic than the
usual independent models, however it is based on uniform
linear array antennas and discrete set of scatterers around
the transmitter and the receiver arrays. this limits its gener-
ality. Another similar model appeats in [9], where a general
physical model is used to derive a virtual channel represen-
tation comprising of sets of virtual departing angles, arrivat
angles and scatterers. Again this model is only applicable
to uniform linear arrays. Both of the above models have
been used in good effect to study the limitations of MIMO
systems.

The centribution of this work is the decomposition of a
general spatial channel model which inctudes physical pa-
rameters of antenna configurations and a tractable parame-
terization of complex scattering environment, to overcome
the above mentioned deficiencies in the traditional models.
We separate the physical spatial channel into three regions
of interest: (i) scatterer free region around the transmitter
antennas, (ii) scatterer free region around the receiver anten-
nas, and (iii) complex scattering media which is the comple-
ment of the union of regions in (i) and (ii). We use the un-
derlying physics of the free-space propagation to model the
channel in regions (i) and (ii), and the complex scattering
media (iii) is represented by a parametric model. With this
separation of the physical channel, we are able to decom-
pose the channel matrix of a MIMO system into a product of
three matrices, where two of them are fixed and known for a
given antenna orientations and the other representing the pa-
rameters of the scattering media (iii). We also show that the
combined spatial channel has an intrinsic spatial dimension-
ality governed by the minimum radii of balls which contains
the transmitter and receiver antenna regions respectively.

2. SPATIAL CHANNEL MODEL

Consider a MIMO system with () transmit antennas located
at positions x4, ¢ = 1,2,...,Q from a transmitter ori-
gin and P receiver antennas located at positions zp, p =
1,2,..., P from a receiver origin, within balls of radius
rr and rg respectively, as shown in Fig.1. We assume that



Figure 1: A general scattering model for a flat fading MIMO
system. rt and rg are the radii of spheres which enclose
the transmitter and the receiver arrays. A{g, $) represents
the gain of the complex scattering environment for signals
leaving the transmitter scattering free region from direction
t?) and arriving at the receiver scattering free region from
direction .

scatters are distributed outside balls of radii 715 (> r1) and
rrs (> rr). Thus, the wireless channel has three spatial re-
gions, namely, scattering free balls encompassing transmit
antennas and receiver antennas, and the rest of the space as-
sumed to be a complex scattering media. We assume that
the surface of transmitter/receiver scattering free ball is in
the farfield of the transmitter/receiver origin.

In this paper, we only consider flat fading channel en-
vironment where propagation delay is always less than the
symbol period. Our attention is aimed to understand fading
due to spatial effects rather than temporal effects.

Let u = [u1,u2,...,ug| be the vector of baseband
transmitted signals from the @ transmitters during a sig-
naling interval, and let A(E), &) be the complex gain of a
signal leaving from the transmitter-scattering-free ball at an
angle ¢ and entering the receiver-scattering-free ball at an
angle 3, then the baseband received signal during a signal-
ing interval by the pth receiver antenna located at 2, from
the receiver origin is given by

Q -5 —~ o~
w= [ [ S uA@ @t ap s,
g=1

)
where n,, is the Additive White Gaussian Noise {AWGN)
at the pth receiver antenna, and the integrations are over the
unit sphere.

Now we use (1) to express the vector of received signals
as

v=Hu+mn, @

where v = {v1,v2,...,vp], n = [ny1,n2,...,mp|, with
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[]’ the vector transpose, and H is a P x ¢} channel matrix
with (p, ¢) element given by

(Hy= [ [4@.p ettt g @

Equation (3) is a physically sound way of medelling a spa-
tial channel where the factors e*®+'® and e~*%»% repre-
sents the free-space wave propagation inside the scattering
free transmit and receiver regions respectively, and A(a&, P)
capiures complex gains due to scatterers. However, the inte-
gral representation (3} is not directly usable in applications.
In the next section, we use modal analysis to convert (3)
into a form which we can exploit and reveal the underlying
structure of the channel matrix H.

3. MODAL DECOMPOSITION OF CHANNEL
MATRIX

Our analysis in this paper considers the 2-dimensional space'
using spatial basis functions on a circle. However, the re-
sults can be extended to 3-dimensional space by using spher-
ical harmonics on a sphere and will be reported in a future
publication. _

Consider the Fourier series expansion of €/*%'® given by
the Jacobi-Anger expansion [10, p. 67],

oo
eikm«t, — Z [Jm(k,x)e—im(qiz—ﬂ/z)] ime @

m=—0cQ

where J,.(-) are the Bessel functions of integer order m,
x = (z,¢;) and ;i; = (1,¢) in polar coordinate system.
Bessel functions® J,,{-} for |m| > 1 in (4) have a spatial
high pass character (Jo(-) is spatially low pass). That is,
Jin () starts small increasing monotonically to its maximum
at arguments around O{m} before decaying slowly. It was
shown in [11] that J,,(kr) = 0 for |m| > ker/2. Thus, we
can safely truncate the series (4) by 2M 4 1 terms where
M = [ker/2] where [-] is the ceiling operator and e
2.7183. Now, we write
— MT
eikxq-qb — Z [Jm(kxq)e‘im(¢q~1r/2)] eimd:’

m=—Mrz

~

)

forz, < rr, ¢ = 1,...,Q where &, = (z,,¢,) and
Myt = [kert/2]. Note that we have chosen Mt such that
(5) hold for each antenna within a circular region of radius
r1. Similarly we can write
My
e—ikzp-(b — Z [Jm(kzp)eim(tpp—n/Z)] e-—imtp’ ®

m=—Mn

1 This models the situation in 3D where the multipath propagation is re-
stricted to the horizontal plane, having no component arriving at significant
elevations, Thus the signal field is assumed to be height invariant.

2Note that J_ (-} = (=1)™ i ().



for z, <Tr, p=1,..., P where 2, = (2, pp) and Mg =
[kerr/2].
By substituting (5) and (6) into (3) we express the chan-
nel matrix as
H=JHJ}, )

where
Jr =

J_ngy (kezy et (91—%)

(8)
JA[R (k’zl)ﬁ_iﬂh(‘p _%)
J_pp(kzp)ettiter= Tar (kzpleiMalor—%

Jr=

Iy (kzyJem M=)

)
Tagy (k)M =5)

J_ Ay (A‘IQ )e_iMT(d’Q % J]\,{T(k.‘IEQ)eu‘ﬁ (¢g—%)

and Hgis a (2Mg + 1) x (2My + 1) matrix with (£, m)
element given by

{H}em =/ f Al ) e M
1] 1]

M09 dgdy (10)

fort=1,...,2Mg+1,m=1,...,2Mr+1. Wename Jy
as the receiver configuration matrix, Jr as the transmitter
configuration matrix and H as the scattering matrix.

Note that the scattering gain function A(¢,¢) is peri-
odic in both ¢ and ¢, hence it is natural to expand it as a
2-dimensional Fourier series

AG,e) = 30 3 Bumeitoemme,

€=0 m=0

(1

It follows that

(12)

{H}em = Bo—atg—1m—rr—1

forf=1,...,2Mg + LLm=1,...,2M; + 1.
We have following comments regarding the channel ma-
trix given by (7) and the subsequent developments:

i. Equation (7) decomposes the conventional block chan-
nel matrix H into a product of three matrices Jg,
Jr1, and H according to the three different regions
of propagation in a MIMO wireless communication
system as shown in Fig.|.

. The receiver configuration matrix Jy is known and
fixed for a given receiver antenna array structure. It
includes antenna positions and orientations relative
to the receiver origin and characterizes the effect of
finite separation of antennas on the overall channel
matrix H,
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iii. Similarly, the transmitter configuration matrix J1 is
known for a given transmit antenna structure and de-
scribes its effects on the overall channel.

iv. The scattering matrix H is generally unknown and
parameterized by {8pn}, € € [-Mp : Mp], m €
[— A7 : Ady]. For a random scattering environment,
Bt are random variables and for a rich scattering en-
vironment, 3;,, are independent of each other.

v. In the wireless literature on MIMO systems, the ele-
ments of H are modelled as random variables. How-
ever in our model, deterministic portions due to trans-
mit and receiver antenna configurations are factored
out leaving only the parameters of the scattering en-
vironment to be modelled as random variables. This
is a clear advantage of the current model over existing
models since one can explicitly see the role of antenna
configuration within the model.

4, DEGREES OF FREEDOM IN SPATIAL
CHANNELS

In this section, we wish to quantify the Spatial Degrees of
Freedom (SPDoF) in a given MIMO system. In other words,
what is the number of free parameters available when we
have ) transmit antennas and P receiver antennas inside
balls of radii r1 and rr respectively, Intuitively, it is not the
number of antennas but the area or volume of the spatial
region which contains the antennas, controls the number of
SPDoF in a given MIMO system. In this section, we outline
the number of SPDoF offered by three critical regions in our
MIMO channel model.

The rank of the channel matrix H determines the effec-
tive number of independent parallel channels between the
transmit array to the receiver array. In some of the literature,
it is considered to have rank of min{Q, P} by assuming in-
dependent channel elements. However, when the antenna
cenfiguration take into account the ¢lements of H are not
independent of each other. Equation (7) factors out effects
of antenna configuration to separate matrices, thus

rank{ H} = min {rank{Jr }, rank{ H}, rank{.J1}}.
(13)
Recall that the number of columns Mg and My in receive
and transmit configuration matrices are determined by the
radii of the receive and transmit balls (circular regions for
2D case) rg and rr, respectively. Thus, the rank of these
matrices cannot be exceed Afp and Afr by increasing the
number of antennas. Therefore, if P > Az and @ > My
antennas are located inside the circular regions of radius rg
and r then the maximum rank of the antenna configuration
matrices wilt be 2Afz + 1 and 2My + 1, respectively.



A rich scattering environment is capable of providing
the maximum number of independent links between trans-
mitter modes m to receiver modes® £, thus it has sufficient
independent scattering coefficients 3., Therefors, the scat-
tering matrix H ; of a rich environment has the greatest rank
of min{2My + 1, 2M7 + 1}. However if the scattering me-
dia is not rich, i.e., not enough reflectors/scatteres such as
trees, buildings etc., then the scattering coefficients could
depend on each other and the rank of H; could be less than
min{2Mg+1,2M1-+1}. To conclude this section, we make
the following proposition:

Proposition 1 Spatial degrees of freedom of a MIMO wire-
less system in a rich scattering environment is given by

kerp
2

kerg
2

where k = 2/ X is the wavenumber corresponding to wave-
length A of the carrier, P and @ are the number of receiver
and transmitter antenna elements located inside the balls of
radii rg and rr, respectively.

min {2] 1+1,P2f 14+1,Q} (14)

5. APPLICATIONS

We believe that the development in this paper has wide range
of applications. In this section we briefly discuss some of
the possible applications.

There has been larger number of papers showing the ca-
pacity gain of MIMO systems (e.g., [2]). Recent work has
shown the limitation of MIMO systems due to channel cor-
relation [6, 7]. Using channel decomposition developed in
this paper, we can further analyze the MIMO capacity in
terms of physical antenna configuration.

Basic spatial diversity systems assumed uncorrelated sig-
nals at each diversity branch. This assumption is invalid in
most practical systems where finite antenna separation and
non isotropic scattering cause correlated signals. With the
current channel model, we can redevelop spatial diversity
systems taking into account the effects of antenna separa-
tion.

The model can also be used to design new spatial mul-
tiplexing systems or improve existing systems taking into
consideration of deterministic portions of the channel ma-
trix. Recall that the BLAST [2] and most of the space-time
coding systems assumed uncorrelated received signals,

6. CONCLUSIONS

The channel matrix of a MIMO system can be factored into
deterministic and random matrices where the deterministic
portion depends on receiver and transmitter antenna config-
urations.

¥Note the distinction between the mode to mode channels provided by
H; and the antenna fo antenna channels provided by H.
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