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ABSTRACT 

We investigate the behaviour of MIMO capacity when the 
size of the antenna array is constrained. By increasing the 
number of antennas within a small region in space the an- 
tenna array becomes dense and spatial correlation inhibits 
capacity growth. A theoretically derived antenna saturation 
point is shown to exist for dense m a y  MIMO systems, at 
which there is no capacity growth with increasing antenna 
numbers. We show this saturation point increases linearly 
with the radius of the region containing the antenna array 
and,is independent of the number of antennas. 

1. INTRODUCTION 

Multiple-Input Multiple-Output (MIMO) communications 
systems using multi-antenna m a y s  simultaneously during 
transmission and reception have generated significant inter- 
est in recent years. Theoretical work of [ I ]  and [21 showed 
the potential for significant capacity increases in wireless 
channels via spatial niultiplexing with sparse antenna ar- 
rays. However, in reality the capacity is significantly re- 
duced when the signals received by different antennas are 
correlated [3], corresponding to the antennas being placed 
close together. 

In this paper we theoretically analyze the effect on ca- 
pacity of increasing numbers of antennas in a uniform circu- 
lar array of fixed radius. As the number of antennas grows 
the antenna array becomes dense and spatial correlation sig- 
nificantly limits the capacity. We argue that using a circular 
array is the hest use of the space available since this topol- 
ogy maximizes the distance between each antenna and all its 
neighbors for every antenna. Under these conditions we de- 
rive a theoretical saturation point, where no further capacity 
gain is achieved with increasing numbers of antennas. 

Recent.independent works [4,5] have studied dense lin- 
ear arrays, however, to the authors knowledge no work ex- 
ists on 2D arrays, or given the number of antennas required 
to saturate the capacity, as addressed here. 

2. CONVERGENCE OF ERGODIC CAPACITY 

Consider a MIMO system consisting of S transmitters and 
Q receivers, let the transmitted signals be statistically inde- 
pendent equal power components each with a Gaussian dis- 
tribution, then the ergodic channel capacity is given by 111, 

where H is the normalized Q x S random flat fading chan- 
nel matrix known at the receiver, 7 is the average signal-to- 
noise ratio (SNR), IQ is the Q x Q identity matrix, 1 . I is 
the determinant operator, and t the Hermitian operator. The 
scaling factor l /Q ensures the total received power remains 
independent of the number of receiver antennas [61. 

Let H = [hlh2 . . . hs], where h, is the Q x 1 complex 
vector of channel gains corresponding to the sth transmit 
antenna, then the correlation matrix at the receiver is de- 
fined as RQ 4 E { h,hb}, Vs, where R Q ( ~ ,  q )  = ppq is 
the spatial correlation between two sensors p and q at the 
receiver. 

Consider the situation where the transmit array has well 
separated antennas such that the transmitter covariance ma- 
trix Rs = I S ,  corresponding to independent h, vectors, 
$en the sample correlation matrix at the receiver is given by 
RQ e% ,!-‘Es s=l h,hfwhich converges to RQ for large 
numbers of transmit antennas (S i CO). Observing that 
H H t  = ~ ~ = 1  h,hj then for a large number of well sep- 
arated transmit antennas the ergodic capacity converges to 
the deterministic quantity G, 
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2.1. Maximum Theoretical Capacity 

In the case of uncorrelated receiver antennas RQ = IQ we 
get the maximum theoretical capacity 
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which is identical to the identity channel case ( H  = I )  
shown in [Z], therefore, for a large number of receivers we 
have 

which is the absolute maximum capacity achievable for an 
ideal MIMO system. 

3. CAPACITY OF A UNIFORM CIRCULAR ARRAY 
IN A ZD ISOTROPIC DIFFUSE FIELD 

The capacity formula (2) can be expanded by the product of 
eigenvalues within the determinant, giving, 

where Xp’ E ~ ( R Q )  are the Q eigenvalues of the spatial 
correlation matrix RQ. Therefore, we see that the capacity 
is governed by the eigenvalues of the spatial correlation ma- 
trix, and as such their properties dictate the behavior of the 
capacity given differing scattering environments, antenna 
numbers and placement. 

Consider a uniform circular array (UCA) with radius T 

and Q receiver elements. Denote the set {de}:=;‘ as the 
distance between any element and the other Q - 1 elements 
in the array (in a clockwise or anticlockwise direction), with 
do = 0 being the distance between the element and itself, 
then 

de b Zrsin(ne/Q). (6) 

For the special case of scattering over all angles in the plane 
we have a 2D isotropic diffuse field (often referred to as a 
rich scattering environment) at the receiver and the spatial 
correlation between any element on the UCA and its eth 
neighbor is given by [7] 

pe 4 J o ( k d e )  (7) 
where Jo(.)  are Bessel functions of the first kind, and k = 
2n/X is the wavenumber. Due to UCA symmetry, for e > 0, 
pe = PQ-e ,  and the correlation matrix becomes a Q x Q 
symmetric circulant matrix, 

where r.1 and 1.1 are the ceiling and floor operators respec- 
tively, and 

r x l  22 . . .  xN 1 

2 1  1 1 1 2  23 . ”  

defines the circulant matrix. 

3.1. Eigenvalues of Spatial Correlation Matrix RQ 

The eigenvalues of the symmetric circulant matrix RQ are 
given by a simple closed form expression [XI 

For a UCA in a 2D isotropic diffuse field the correlation co- 
efficients are real and symmetric, hence (IO) represents the 
Discrete Cosine Transform (DCT) of the spatial correlation 
coefficients 

Q-1 

e=o 
A?) = pe COS ( 2 ~ m l / Q ) .  (11) 

Since RQ is a positive-semidefinite Hermitian matrix and 
with the properties of the DCT it is easy to show A, E R, 
X 2 0, and XQ-.,, = A, = Lm, that is, the eigenvalues 
are real, non-negative and symmetric. 

Theorem 1 (eigenvalue threshold). For a UCA ofradius T 

in a 2D isotropic diffusefield define the eigenvalue thresh- 
old: 

M 4 ~ T ~ T / A ]  (12) 

then, f o r  any Q 2 2M + 1 rhere exists afinite set ofnon- 
vanishing eigenvalues, {AgnQ’}K=-M, with sef  size inde- 
pendent of Q. 

Before proving Theorem 1 we clarify its significance 
with the following interpretation: 

For any UCA in a 2 0  isotropic diffusefield there is afi-  
nite set of signifcant spatial correlation matrix eigenvalues, 
where the set size increases linearly with the radius of the 
array and is independent of rhe number of antennas. 

Proof(skerch). Substitution of (7)  and (6) into (1 1) gives 

9-1 
= J o ( 2 k r s i n ( d / Q ) )  cos(2mne/&) (13) 

P=O 

letting E = ne/Q and assuming a large number of antennas, 
we can approximate (13) with the integral 

A?) -- ~ ~ ~ J ~ ( 2 k r s i n ~ ) c o s ( 2 m ~ ) d ~  (14) 

f o r m  E [0, [(Q - 1)/21]. Using the identity [9, p.321 

J;(z)  = ~ ~ J ~ ( ~ = s i n ~ ) c o s ( ~ ~ ~ ) ~ ~  (15) 

then the eigenvalues can he expressed as 

A?) -- QJ$(kr )  (16) 
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which is asymptotically equal to (13) with the antenna num- 
ber. 

Using the the following bound [lo, p.3621 on the bessel 
functions for n 2 0 

the eigenvalues are then upper-bounded by 

Since Gamma function r(m + 1) increases faster than the 
exponential ( T T / A ) ~  then (18) will rapidly approach 0 for 
some 7n > 0 for which r(m + 1) > ( R T , ' A ) ~ .  Using a re- 
laxed Stirling lower bound' for r ( m  + l), we wish to find 
m for which (m/e)m > ( R T / A ) ~ ,  which is clearly satis- 
fied when m > 7 ier /A ,  asserting that m must he an integer 
we see that the eigenvalues vanish for m > r.rrer/A], thus 
giving the eigenvalue threshold in (12). 

Given the symmetric nature of the eigenvalues then for 
any number of antennas, Q 2 2M + 1, there is a finite set 
of 2M + 1 non-vanishing eigenvalues, 

= { A - n n , A - M + l , .  " , Ao,. " , AM-1, AA4) (19) 

whose number of elements grows only with the radius of the 
may,  and is independent on the number of antennas. U 

Fig. 1 shows the eigenvalues of the spatial correlation 
matrix RQ for various UCA radii in a 2D isotropic diffuse 
field. Shown as a solid black line, it can be seen that the the- 
oretical eigenvalue threshold derived in Theorem 1 defines 
the boundary between the significant and vanishing eigen- 
values for each radius. 

3.2. Capacity Growth Limits: Antenna Saturation 

Due to the dependence of (5 )  on the eigenvalues of the spa- 
tial correlation matrix we see that Theorem 1 has signif- 
icant implications on capacity growth with increasing an- 
tenna numbers. In this section we show that this fixed set 
size of eigenvalues, regardless of the number of antennas, 
leads to an antenna saturation effect on MIMO capacity. 

Theorem 2 (antenna saturation point). For a UCA of ra- 
dius T in a ZD isotropic difirsefield define a saturation point 
QM as the minimum number of antennas required to gener- 
ate afull  set ofsignificant eigenvalues A?") E ~ ( R Q ,  1; 

Q ~ 5 2 M + 1  (20) 

'qZ + 1) > d%GzZ e-=  > z= e - = ,  > o 

? 

Fig. 1. The eigenvalues of the spatial correlation matrix for va r -  
ous UCA radii in a 2D isotropic diffuse scattering field. The dark 
solid line represents the theoretical eigenvalue threshold derived 
in Theorem I,  and clearly shows the boundag between the signifi- 
cant and vanishing eigenvalues of the spatial correlation matrix for 
each array radius 

then, f o r  any Q 2 Qn, the channel capacity is given by  the 
constant 

Before giving a proof of Theorem 2 we give the follow- 
ing interpretation: 

For a MIMO system with a UCA in a 2 0  isotropic dif- 
f isef ie ld  there exists a saturation point in the number of an- 
tennas, which is dependent only on the radius of the array, 
after which the addition of more antennas gives no cnpacir)' 
gain. 

Pmof (sketch). Using the symmetric nature of the eigenval- 
ues and assuming an odd number of antennas the capac- 
ity (5) can be written as2 

10-1\12 
I _  .,,~ 

c= log 1 + 3:) . (22) 
( Q )  m=-(Q-1)/2 

Consider the UCA placed in a 2D isotropic diffuse field, 
then as a direct result of Theorem 1 for Q 2 2M + 1 the 
channel capacity given by (22) is well approximated using 
the set of 2 M  + 1 non-vanishing eigenvalues, that is, 

'from Theorem 1 the case of even Q gives identical results, however to 
simplify notation we assume an odd number of antennas 
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Given two UCAs of equal radius r with antenna numbers 
Q1, QZ 2 2 M  + 1, and spatial correlation matrix eigenval- 
ues AE” and A!+!?) respectively, then from (16) we have 
the following relationship between the non-zero eigenval- 
ues of systems with different numbers of receive antennas, 

with the approximation asymptotically equal with the num- 
ber of antennas. Define Qw 4 2M + 1 as the minimum 
number of antennas required to generate the full set of non- 
zero eigenvalues, then letting Q1 = QM and Q2 = Q we 
have 

where t ~ ( R Q ~ , )  are the eigenvalues of the spatial 
correlation matrix R g , .  Thus the non-zero eigenvalues for 
any UCA of radius T with number of antennas Q 2 Q M  are 
simply scaled versions of the eigenvalues generated by an 
m a y  with QM antennas. Substituting (25) into (23) gives 

which is independent of Q, hence the capacity growth be- 
comes zero once the antenna number reaches the saturation 
point given by Qhf. U 

It can he observed from Fig. 2 that the capacity (2) does 
indeed increase approximately with the maximum theoreti- 
cal capacity (3) up until the theoretical saturation point de- 
fined in Theorem 2 ,  after which no capacity gain is achieved 
with increasing antenna number. 

4. DISCUSSION 

We have derived a capacity saturation point, which depends 
only on the radius of the m a y ,  whereby further increases in 
the number of antennas fails to give further capacity gains. 
This result has significant implications for practical MIMO 
systems as the saturation point gives the minimum number 
of number of antennas required to achieve maximum capac- 
ity for a given region. Further to the UCA case, empirical 
studies using more general spatial correlation models [ 1 I ]  
have shown’that there are only ever 2 r ~ e r l A l  + 1 signif- 
icant eigenvalues generated by arbitrarily placed antennas 
within a circular region of radius T .  We believe the satura- 
tion point derived here fur UCAs also holds for any antenna 
configuration within a circular region and we are currently 
developing theoretical results to support this. 

. .  

Fig. 2. Capacity of MIMO systems fur various antenna num- 
bers of a UCA with radii T = 0.1,0.3,0.5, and 0.7 wavelengths 
in a 2D isotropic diffuse scattering field, along with the theoretical 
limits. As indicated by the dashed lines for each radii, the Antenna 
Saturation Point theoretically derived in  Theorem 2 gives a good 
indication where the MIMO system saturates and hence increasing 
antenna numbers gives no further capacity gain. 
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