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ABSTRACT 

We develop a general mathematical model for nearfield multipath 
scattering as a basis far studying the spatial limits imposed an 
multi-antenna wireless communication systems. This model gen- 
eralizes the Herglotz Wave Function, which is an important tool in 
the study of inverse scattering problems, to a form where the scat- 
terers can be nearfield. This permits the development of the most 
general form of spatial correlation which is known to constrain the 
capacity of wireless systems. 

1. INTRODUCTION 

A standard model for a multipath field in R3 is to represent it as a 
supelposition of plane waves from discrete directions: 

P 

where the plane wave of index p has complex amplitude ap  E @, 
the propagation direction is denoted by the unit vector &, and x . y 
denotes the scalar product between vectors x, y E R3. 

A straightforward generalization of ( I )  is 

U(.) = Js2 g(y^)e'kZ.G ds(y^), (2 )  

where S2 denotes the unit sphere, s(y^) is a surface element of 6' 
with unit normal y^ and g E L'(Sz)  is the kernel representing an 
angular amplitude distribution of farfield sources. Representation 
(2) implies any sources which contribute to the field are farfield 
ones. 

When g is in L z ( S 2 ) ,  a stronger condition than g E L'(S2) ,  
it is known as a Herglotz Kemel, and representation (2) is known 
as the Herglorz Wave Funcrion [ I ,  p.551. Herglotz wave functions 
primarily find use in inverse scattering problems where it is natural 
to find a scattered field satisfy the condition g E L z ( S z ) .  

In our context, we are interested in using representations of 
the form (2). or generalizations thereof, to model any physically 
realizable scattering environment. If we use (2) then we exclude 
fields which have components from nearfield sources, and if, fur- 
ther, g E' L'(Sz) then we exclude some farfield sources as well 
including those of the form (1). There is a need for a more gen- 
eral representation than (2) which has been used to model spatial 
correlation in wireless communication scattering scenarios [2]. 

The natural arena for the Herglotz Kernel is the Hilbert Space 
L 2 ( S z )  with the natural inner product defined on 5'. However, 
important classes of multipath fields cannot be directly associated 
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with kernels belonging to such spaces. Our objective is to rework 
(2) to find a integral representation for multipath where the kernel 
associated with practically important scattering fields can be asso- 
ciated with a Hilbert Space corresponding to finite energy signals. 
Then the full machinery of Hilbert Space theory can be brought 
to bear on the representation to transparently render its properties 
which to a large degree fully emulate the remarkable properties of 
the classical Herglotz wave function - yielding an infinite number 
of orthonormal representations for multipath fields and associated 
L2 Fourier Series. As a by-product our theory subsumes and pro- 
vides a modest simplification to the results given in [I]. 

2. PROBLEM FORMULATION 

2.1. Subspace Interpretation 

Fields of the form ( I ) ,  (2) and Herglotz wave functions satisfy the 
homogeneous Helmholtz equation in R3, sometimes referred to as 
the reduced wave equation: 

nu(.) + kZu(x) = 0, (3) 
where A is the Laplacian, and k is the wave number given by 
the real positive constant k = 2a/X. Equation (3) holds in any 
region of space, a subset of R3, that excludes any sources. That all 
such solutions to (3) for a given source-free region define a linear 
subspace of functions follows from the linearity and homogeneity 
of (3). That is, if U I  (x) and U Z ( X )  are solutions to (3) in a region 
then mlul(x) + azuz(x) is also a solution in the same region. 

2.2. Helmholtz Balls 

In (2) the kernel is defined on Sz and implicitly the sources may be 
regarded as being defined on an infinite sphere. Many of the spe- 
cial properties that can be attributed to the Herglotz wave function 
are actually a manifestation of the high degree of spherical sym- 
metry and the implicit choice of spherically symmetric domains 
(albeit infinite domains). Hence in studying (3) we expect highly 
structured solutions whenever the region o f  interest is a ball 

& ~ { x E R 3 :  IIxlI<R}, (4) 
where R is the radius (usually finite but possibly infinite). We 
write the above problem more compactly as follows. 

KEY PROBLEM. Derermine the complete subspace of solutions 
U U(.) to 

A u + k 2 u =  O> in 53,. ( 5 )  
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Physically this means we wish to understand the complete set 
of valid wavefields for arbitrary source locations with the only con- 
dition that the sources are not in Bk. 

Our task will be to find a Hilbert Space formulation where 
we can study the geometry of solutions to ( 5 )  using complete or- 
thonormal sequences and the like. In what follows we assume the 
reader is well-familiar with separable Hilbert Spaces 13.41. 

Given we are dealing with spherical regions. we often uti- 
lize a spherical coordinate system {r, 0, $) representing radius, co- 
latitude and longitude. In a coordinate system independent form 
we have I I (r ,8 ,  r$ ) ,  11x11 representing radius T ,  and Z repre- 
senting the direction 0 and r$ . 

2.3. Modal Representation 

From [I],  solutions to ( 5 )  can be represented as the following entire 
series expansion (which converges in the mean) 

where j n ( k ~ ~ x ~ ~ )  is the spherical Bessel function of integer order 
n, a: are complex coefficients, and YF(Z) = Yn"(0, $) are the 
spherical harmonics (orthonormal on S2) given by 

Y,m(O,+) n 2 n f p ( n - I m l ) ! ( c o s 8 ) e ' - m ,  (7) li' 4s (n+ Iml)! 

P,!"(.) are the associated Legendre functions, and we have intro- 
duced the shorthand Em," a E:=-, 

We can interpret the countable set 

{ A r ( x ) }  {i"jn(klla:II)YZ(Z)} (8) 

as specifying a basis for the subspace of solutions to'(5). These 
basis functions are orthogonal over any spherically symmetric re- 
gion. The sense in which these can be normalized for any size ball 
is now determined. 

Denote the volume element at x as 

d v ( x )  k r 2 s i n # d + d 8 d r ,  (9) 

and define the inner product' and associated induced norm by 

(f,&; L, f(~)s(z)h~(ll41) d o ( = ) ,  ( 1 0 4  

and 

parametrized by a non-negative bounded real weighting function 
hR(r) t 0 that may depend on either R or r. 

'This is actually a class of inner products given that the radial weight- 
ing term hR(7.j can take different forms. We are assuming that hn(r)  
is chosen such that we do have an inner product, panicularly we require 
that (f, f ) a z  == 0 implies f = 0 which is not obviously satisfied. To 
avoid clutte?for the inner product we suppress in the notation the explicit 
dependence on h R ( T ) .  

Then, with a suitable choice of weight function hn(r) .  the set 
of functions satisfying I l f l l &  < 00 is a separable Hilben Space, 
and solutions of ( 5 )  are a s&t subspace. This subspace naturally 
forms a Hilbert Space. 

The {Ar(x)}  are orthogonal with respect to the inner prod- 
uct (IO). This follows from the orthonormality of the spherical 
harmonics defined on the unit sphere, Sz, which induces orthogo- 
nality of our wave expansion over Bk leading to 

(A?,A:),; = 6,,6,, h ~ ( r )  [ j m ( k r ) 1 2 r 2 d ~  (12) 

where 6,, and 6,, are delta functions. Equation (12) shows or- 
thogonality holds independently of the choice of the non-negative 
bounded real function hR(r) 2 0. However, hn(r)  does influence 
the normalization, as we explore next. 

2.4. Complete Orthonormal Sequences 

Onhonormality as distinct from orthogonality is subtly connected 
with the size of the spherical region. Beginning with the unnormal- 
ized set (8). equation (12) indicates how to achieve orthonormality 

1" 

noting the normalizing factor is a function of both n and R. Whence, 
given completeness, any solution U(.) to our problem ( 5 )  has rep- 
resentation (in the sense of convergence in the mean of the induced 
norm) 

(14) 

P Z R  V".)ak (15a) 

m 
U = ( U > ( O Z R ) B ;  V'n;R, 

m," 

where we have the Fourier coefficient 

Jn; . ( x ) ( - i ) " j " ( lC I I x I I )~h~( r )  d v ( z )  

( J : ~ R ( T )  l j n ( k r ) 1 2 ~ 2 d r ) 1 i 2  
0 5 b )  - - 

2.5. Field Representations 

Direct comparison of (14) and (15) with (6) leads to 

(U(.)> iP;R(4)Bk 
( 1 6 4  

m a, = 
4 s ( J t h ~ ( r )  [3n(kr) ]2r2dr)"2 

J , ~ U ( x ) ~ ( ~ i ) " j n ( k l l x I I ) h R ( I I x I I )  du(x )  
. (16b) 

Jsklin(k11211)12hR(llxII) du(x )  

Hence there are a plethora of ways to compute these coefficients 
based on different values of R and different choices of hR(r). 
Here are some of the more interesting choices for hn(r) and the 
resulting expressions for a: (16): 

EXAMPLE 1. Ifh~(llx11) = 6(11xll - TO) where 0 < rn  5 R 
andj , (kro)  # 0 then 

- - 

where ur0 (Z) is U(.) restricred to the shell ~~x~~ = rn. Thar is, 
pmvided k is not a Dirichlet eigenvalue we can use the Spherical 
Harmonic Transform 10 determine a," [ll. 
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 EXAMPLE^. Ifh~(llz11) = lrhen wehaverhemostnaturalcase 
for ajni te  sphere (R  < mi 

J,; .(a:)(-i)"j~(klla:lI)Y,modu(a:) 
(18h) - - 

4 1 r J ~ V . , ( k r ) ] ~ r ~ d r  

The denominator in (18) will be writren 
R 

&(R)  a 1 [ 3 n ( k r ) ] 2 r 2 d r  (19) 

for which there are known closed form expressions. 

 EXAMPLE^. Ifhn(IIZ1I) = l / R , a n d l e t R +  mthenwehove  
the most natural case for the infinire sphere. In this case we use 
the expression 

ro simplib denominator of ( I  6 )  ro glean 

3. ORTHONORMAL EXPANSIONS IN BALLS 

3.1. Finite Sphere Case 

We now focus on the natural inner product, where hR( 11x11) = 1. 
We show that there is a more general representation than (6) when 
dealing with spherical regions BL of radius R. 
THEOREM 1 (EXPANSION FOR FINITE SOURCE-FREE BALL). 
Consider the space ofjnite energy solutions ro the homogeneous 
Helmholtz equation Au + k2u = 0 in a spherical domain of 
radius R < 00. Then any bounded solurion U can be exwessed in 

are orrhonormal with respect to the innerproduct 

and are square summable, that is, p E e* 
Pmoj The orthonormality of (23) is a special case of (13) with 
hR(llz11) = 1. By Parseval 

3.2. Infinite Sphere Case 

We now consider the case where the region is the whole space R3 
which can be regarded as an infinite spherical volume. In this case 
we use ~ R ( \ \ Z \ \ )  = 1/R and let R i CO. As we will see, the re- 
sults indicate that the expansion in ( 6 )  is most naturally associated 
with the infinite sphere. 

THEOREM 2 (EXPANSION FOR INFTNITE SOURCE-FREE BALL). 
Let U be any bounded solurion to the homogeneous Helmholtz 
equation nu. + k2u = 0 in W3. Then U can be expressed in terms 
of an expansion 

4.) = cP& k\/5i" jn(k11zl / )y~(Z) (27) 
m," 

such that 

are orthonormal with respect ro the natural innerproduct 

and the Fourier coeficients are given by 

and are square summable, that is, Boo E C2. 

Proox The orthonormality of (28) is a special case of (13) with 
0 

Now we present a key representation result - captured in 
Theorem 3.22 in [ I ]  -for a class of solutions to the homogeneous 
Helmholtz equation. 

THEOREM 3 (CLASSICAL HERCLOTZ WAVE FUNCTION). &tu 
be any bounded solution to the homogeneous Helmholtz equation 
AU + k2u = 0 in E3 satisfiing the growth condirion 

h~(l iz l l )  = l / R a n d  letting R + 00. 

1 
lim - /u(z)I 'du(a:) < m. (31) 

R - ~ J  R 1; 
Then we hove the representation for U 

U(.) = ~ / b(B)e"r'Sds(y^) 

b ( Z ) A  ~0;,Y,"(P) t L'(S2) (33) 

(32) 
2 4  gz 

where b ( Z )  is, up to a constant, the Herglotz Kernel and can be . 
expressed as the Inverse Spherical Harmonic Transform 

m,n 
of the Fourier coe@cienrs Pm E C2 given in Theorem 2. 

Prooj By Parseval 

which is finite by the growth condition (31). Hence 0, E C2 
which implies that (33) is well-defined and in L2(Sz).  Then (33) 
can be inverted and this implies 0: = (b ,  Y,"),., leading to 
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which have appeared in the literature. The kemel can be associated 
with a farfield angular distribution of power from the scattering 
environment. With the generalized Herglotz Wave Function there 
are two further advantages: i) nearfield sources and scatterers can 
now be incorporated; and ii) the kernel can be chosen in Lz(Sz)  
from which the theorv of Hilbert Suaces can be amlied. We men- (36a) .. 
tion without proof, due to space limitations, that the generalized 
Herglotz Wave Function has a single layer and double layer poten- 
tial interpretation defined on a spherical boundary This potential 

= (") b ( i j )  x 
2 T J z  § 

{411Ci"j,(kllx(()Y,m(P)y,m}ds(0) (36b) function is the analogue of (2). 
*." 

0 
by the Jacobi-Anger Expansion [I] 

COMMENT. Comparing (6), (21) and (30) we can see rhut 

0:- = (+ 2 7 4  = (A&) a,, vm,n. (37) 

"z." 
Clearly II&lI$ < w iffllall$ < w where a 

3.3. Generalized Herglotz Wave Functions 

As previously mentioned (32) is a Herglotz Wave Function, up to 
a constant. We now show how to generalize the classical Herglotz 
wave function to broaden its applicability and more transparently 
render its derivation and properties. 

Let H be the separable Hilbert Space of solutions to the ho- 
mogeneous Helmholtz equation AIL + k2u = 0 in p {x E 
R3 : llxll 5 R}, with inner product 

{a:} 

(.f,ds; /", f(z)g(2)d4x), .f,s E x. (38) 

DEFINITION (GENERALIZED HERGLOTZ WAVE FUNCT1ON)Let 
p:R be a complere orthonormal sequence in the separable Hilbert 
Space of solurions to the homogeneous Helmholtz equation given 
b y A ~ ~ + k 2 u = 0 i n B ~ ~ { x E i W 3 :  11x l lSR)rhen  

2) = (9,Y,"),,v:R. (39) 

is a Generalized Herglotz Wave Function with Generalized Her- 
glotz Kernel g E L2(s2). 

The proof of Theorem 3, particularly in (35). showed that this 
reduces to the classical Herglotz Wave Function. The essence of 
the Generalized Herglotz Wave Function is that a field can be rep- 
resented by a Lz-function defined on the unit sphere 8' and this is 
captured by (39). 

Fig. 1 indicates the relationships between the various represen- 
tations. It shows that the classical Herglotz Wave Function can be 
viewed as a isomorphism between the space of square integrable 
functions defined on the unit sphere 8' and the space of wavefields 
generated by sources no closer than distance R from the origin. 

4. APPLICATIONS 

4.1. Spatial Correlation 

In [2] the expression (2) (which is a form of Herglotz Wave Func- 
tion except that the kernel can be in L 1 ( S 2 )  and not only space 
L'(8')) was used to render in closed form an expression spatial 
correlation which subsumed a number of other explicit models 

4.2. Channel Representation 

The Generalized Herglotz Wave Function permits one to dispense 
with a potential complicated source and scatter geometry and re- 
place it with a fully equivalent distribution defined on a spherical 
region. This decomposition of space and the model it implies will 
be presented in a future publication. 

u(2) E H 
WAVE-FIELD I N  c EP 

g ( Z )  t L2(92) 
GENERALIZED HERGLOTZ 

KERNEL ON 8' 

Fig. 1: Isomorphisms between the Wave Field U(%) in W, the 
Fourier Coefficients vcR in i!' and the Herglotz Kemel g(9) in 
L'(Sz). The mapping between the Generalized Herglotz Ker- 
nel and the Wave Field, C,,,(g, YF)s2pzR is the Generalized 
Herglotz Wave Function. 

5. REFERENCES 

[I] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic 
Scattering Theov ,  Springer-Verlag. Berlin, Germany, second 
edition, 1998. 

[Z] P. D. Teal, T. D. Abhayapala, and R. A. Kennedy, "Spa- 
tial Correlation for General Distributions of Scatterers," in 
Proc. IEEE Int. Con$ Acousr., Speech, Signal Processing, 
ICASSP'ZOOZ, Orlando, Florida, May 2002, vol. 3, pp. 2833- 
2836. 

131 F. Riesz and B. Sz.-Nagy, Functional Analysis, Dover Publi- 
cations Inc., New York, NY, second edition, 1990. 

[4] L. Debnath and P, Mikusiriski, Introduction to Hilbert Spaces 
with Applications, Academic Press, San Diego, CA, 1999. 

IV - 663 


