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Abstract 
We present a new upper bound on capacity for multiple- 
input multiple-output (MIMO) wireless fading channels 
which is more general and realistic than previous capac- 
ity expressions. By including spatial information at the 
antenna arrays we derive a closed form upper bound on 
capacity which uses the physics of signal propagation 
combined with statistics of the scattering environment. 
This expression gives the capacity of a MIMO system in 
terms of antenna placement and scattering environnient 
and leads to valuable insights into the factors determin- 
ing capacity for a wide range of scattering models. 

I. Introduction 
Multiple-Input Multiple-Output (MIMO) communicz+ 
tion systems using multi-antenna arrays simultaneously 
during transmission and reception have generated sig- 
nificant interest in recent years. Theoretical work of [I) 
and [Z] showed the potential for significant capacity in- 
creases in wireless channels utilizing spatial diversity. 
However, in reality the capacity is significantly reduced 
when the signals received by different antennas are cor- 
related, corresponding to  a reduction of the effective 
number of subchannels between transmit and receive 
antennap [Z, 3). Previous studies have given insiichts 
and bounds into the effects of correlated channels [?-5], 
however most have been for a limited set of channel re- 
alizations and antenna configurations. The restriction 
on most previous works has been the use of a random 
channel matrix model describing both the scattering 
environment and the antenna configurations. 

These simulations or estimates based on channel 
matrix models, though likely to mimic reality, have sev- 
eral important problems: 

1. It ls difficult to  relate channel models with redis- 
tic scattering environments. 

2. The ergodic calculation limits analysis into the 
physical factors determining MIMO capacity. 

3. No spatial information a t  either the transmitter 

or receiver is explicitly used. 

In contrast, the contribution of this paper is an u p  
per hound for MIMO capacity which overcomes these 
limitations, that is, with additional theory for mod- 
elling scattering environments which we refine here, we 
derive a model which can be readily reconciled with a 
multitude of scattering models and antenna configura- 
tions and allows us to derive a closed form upper bound 
for the MIMO capacity. 

11. Ergodic Capacity of Multiple 

Consider a M N O  system consisting of S transmitting 
antenna with statistically independent power compe 
nents each with Gaussian distributed signals, and Q 
receiving antennas. Let x = [q, z2,. . . , zsIT be the 
vector of symbols sent by the S transmitting anten- 
nas, n = [nl, n2,. . . be the zero mean additive 
white gaussian noise vector each with variance U’, and 
g = [VI, 312,. . . , be the vector of received symbols, 
where T denotes the vector transpose, then 

Antenna Systems 

y = H x + n  (1) 

where H is a Q x S complex channel matrix, assumed 
to  be constant over the symbol period. The channel a- 
pacity for the deterministic channel is then given by 12) 

I (2) 
1 c, =log I~ + -HV,H~ I ua 

where V, = E {zxt} is the covariance matrix of the 
transmitted symbols x, with E { . }  the expectation op 
erator, 1. I is the determinant operator, and t the Hermi- 
tian operator. For a random channel model the channel 
matrix is stochastic hence the capacity given by (2) is 
also random. In this situation the mean (ergodic) ca- 
pacity is obtained by takimg the expectation of capacity 
CH over all possible channel realizations, 
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For the special case of uncorrelated Rayleigh MIMO 
fading channel a closed form expression for (3) is de- 
rived in [l], however, for correlated fading channels 
Monte Carlo simulations [3,6], or asymptotic results 
for large number of antennas (71, are used to  provide 
estimates of capacity. Some analytical lower and u p  
per bounds on the ergodic capacity have been derived 
(e.g., see [2,3]), more recently, 141 gave an upper bound 
on ergodic capacity based on the correlation between 
each channel matrix element. However, these special 
cases, simulations, and bounds offer little insight and 
fail to provide a rigorous demonstration into factors de- 
termining capacity. Current channel matrix models do 
not include spatial information explicitly, although it is 
represented by the correlation between channel matrix 
elements it has no direct realizable physical representa- 
tion and therefore does not easily lend itself to insightful 
capacity results. In particular, of interest is the effect 
on channel capacity of antenna placement at both the 
transmitter and receiver, particularly in the realistic 
w e  when antenna arrays are restricted in size, along 
with nonisotropic scattering around the receiver. 

In contrast, we develop an upper bound on MIMO 
capacity based on the spatial correlation of the signals 
at the receiver and the statistics of the scattering en- 
vironment. Our bound overcomes limitations of pre- 
vious capacity calculations hy showing the effects on 
MIMO capacity of antenna array geometry for any com- 
mon scattering environment (e.g. von-Mises, gaussian, 
truncated gaussian, uniform, piecewise constant, poly- 
nomial, Laplacian, Fourier series expansion) around the 
receiver. 

111. Upper Bound on Ergodic Capacity 
We follow the approach first presented in 131 and more 
recently in [4], where Jensen's inequality is used to o b  
tain an upper bound on E {CH} ,  that is, since log I . I 
is a concave function we have E {log I . I} -< log \E {.} I, 
hence the ergodic capacity (3) is upper bounded as 

Let r = [r1,r2,. . . , r0lT be the vector of noiseless sig- 
nals received by the Q receiver antennas, i.e., r = HI, 
then assuming independent transmitted symbols, we 
can write 

V , ~ E { T C ~ } E E { H V , H ' } .  (5) 

Substitution of the received symbls covariance ma- 
trix (5) into the capacity hound (4) gives 

Figure 1: Proposed scattering model for a flat fad- 
ing MIMO system. A,($) represents the total complex 
gain of the scatters for signal xo arriving a t  the re- 
ceiver array from direction $ via any number of paths 
through the scattering environment. The sphere sur- 
rounding the receive antennas contains no scatters and 
is assumed large enough that any scatters on its surface 
are considered farfield to the receiver sensors. 

Therefore we see the covariance between signals at the 
receiver determines the upper bound on MIMO capac- 
ity. In the follow section we show this bound can be 
calculated for any scattering environment and is de- 
pendent only on the power distribution of the signals 
surrounding the receiver array and the array geometry. 

IV. Receiver Spatial Correlation for 
General Distributions of Farfield 

Scatters 
Consider the narrowband transmission of S indepen- 
dent symbols x through a general scattering environ- 
ment with scatters assumed distributed in the farfield 
from the receiver sensors, as shown in Fig. 1, tben the 
received signal at the pth sensor is given by 

where zp is the location of the pth receiver sensor, 
k = % / A  is the wavenumber with X the wavelength, fj 
is a unit vector pointing in the direction of wave prop  
agation, and A,($) is the total complex gain of the 
scatters for signal xs arriving at the receiver array from 
direction fj. The integration is over the unit sphere for a 
3-dimensional multipath environment or the unit circle 
in the 2-dimensional case. 

Define the normalized spatial correlation between 
the complex envelopes of the received signal at two sen- 

1537 



sors p and q as 

From (7) we get the covariance between signals at ?en- 
sorsp and q as 

where U: = E (z.z:} is the transmitted power of an- 
tenna s, and we have assumed the transmitted symbols 
are independent across antennas and independent of 
the scattering environment. Assuming that the com- 
plex scattering gains from one direction is independent 
from another, i.e., 

then, 

. .  

'(11) 

Hence the correlation between two receiver sensor po- 
sitions is given by 

e - ik ( zp - zv ) . i i&( -  Y) 

Define 

as the normalized average power density distribution of 
signals from direction @, then the correlation between 
the received signals at two sensors p and q is given by 

P m = L  P(G)e-"".-'.'."s(P). (14) 

Here we see that the spatial correlation between two 
sensors at the receiver is dependent on the average 

power density distribution of surrounding scattering en- 
vironment due to the transmitted symbols and the ar- 
ray geometry. 

Similarly we can define 

as the normalized received average power density distri- 
bution over direction fj for signals only from transmitter 
s, then 

where 

is the total average power received at a sensor, and 

U:? = J ,  U 3  {lAS(G)l2) M G )  (18) 

is the average power received at a sensor from transmit- 
ter s. Therefore the average power distribution P(G) 
contains all information regarding the transmitter and 
surrounding scattering environment. 

V. Capacity of a MIMO system with 
random scattering environment 

From (5) and (8)  we can then write 

1 -v, 6 2  = qrQ (19) 

where q = o:/u2 is the average received signa-twnoise 
ratio (SNR) at each receiver branch, and rQ is the Q x 
Q received signal spatial correlation matrix 

P11 " '  P1Q 

r, P [ f '._ j ] (20) 
PQ1 ... PQQ 

where each pw depends on antenna placement and the 
power distribution of the scattering environment (in- 
corporating any transmitter information) given by (14). 
The hound on capacity in (4) can now he expressed as 

c 5 log 110 + vrpi (21) 

which is the upper hound on capacity for the MIMO 
system given the scattering environment and transmit- 
ter configuration, described by the average power den- 
sity distribution P(y^), and the receive antenna place- 
ment. Quality in (21) is achieved when the transmitter 
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antenna elements are far apart from each other and the 
number of transmitter antennas is large (S - CO) [SI. 
Therefore, in the case of a large number of uncorrelated 
transmitters the left hand side of (21) gives the capac- 
ity achievable given the scattering environment power 
distribution P(@) and the number of receiver antennas 
and their configuration. 

VI. Capacity Growth Limits 
For a large number of uncorrelated transmitters, the ca- 
pacity given by (21) is maximized when there is no cor- 
relation between the receive antennas, i.e., rQ = IQ, 
giving, 

Cm, = QIog(1-t d. (22) 
Therefore, in the idealistic situation of zero correlation 
between both transmitter antennas and receiver anten- 
nag we see the best capacity growth achievable is linear 
in the number of antennas a t  the receiver. This result 
agrees with the traditional capacity formulation [l, 21 
which is widely used to advocate the use of MIMO sys- 
tems. 

Conversely, when there is perfect correlation be- 
tween each pair of antenna elements the correlation ma- 
trix becomes the Q x Q matrix of ones, rQ = l ~ ,  and 
the capacity of the MIMO system will be minimized, 

Cmin = log(l+ Qd. (23) 
Here the logarithmic capacity growth is simply an effec- 
tive increase in the average SNR of the single antenna 
receiver case, due to the assumption of independent 
noise at each antenna, and is often referred to as an 
antenna gain effect. 

VII. Two Dimensional Scattering 

In the 2D scattering environment the signals arrive only 
from the azimuthal plane and we can use the two di- 
mensional modal expansion of planes waves [9] 

Environment 

n=--m 

where 4, and &, are the angles to I and B ,  respec- 
tively. Substitution of (24) into (14) gives the spatial 
correlation for a 2D environment as 

m 

p, = i"flnJn(kllrp - zqll)e'"mpq (25) 

where 4, is the angle of the vector connecting xp and 
xq.  The coefficients on characterize any possible scat- 
tering environment and are given by 

"=-CO 

pn = lh p('p)e-'n'd'p (26) 

. . .  

D 1  I I 8  IO 12 1. I B  18 m P 
N u n b . d M n u .  

Figure 2: Theoretical upper bounds on capacity of 
MIMO systems for various receiver antenna numbers 
of a uniform linear (ULA) and uniform circular array 
(UCA) with aperture width (length/diameter) D=0.2, 
and 0.3 wavelengths in a 2D isotropic diffuse scattering 
field, along with the theoretical maximum capacity. 

with P ( p )  the average power density distribution over 
'p the angle to the scatters. For essentially all common 
choices of P('p): von-Mises, gaussian, truncated gaus- 
sian, uniform, piecewise constant, polynomial, Lapla- 
cian, Fourier series expansion, etc., there is a closed 
form expression for the 8, [IO]. Therefore we have 
a closed form representation for the spatial correla- 
tion (25) and hence for the capacity bound of the sys- 
tem (21). 

Example: Two Dimensionnl Omnidirectional Dzf- 
fwe Field 

For the special case of scattering over aU angles in 
the plane the received normalized average power re- 
duces to p ( ~ )  = 1/27r,'p E [0,27r), giving the spatial 
correlation between any two points in the plane as 

PPT = Jdkllzp - 41) (27) 

which i s  identical to the classical result in 1111. The 
capacity for the uniform linear and circular arrays of 
increasing receiver antenna numbers is shown in Fig. 2 
for a two dimensional omn-directional d i k e  field. 

VIII. Three Dimensional Scattering 
Environment 

In the case of a 3D scattering environment a similar 
derivation as above can be used, where instead of the 
2D modal expansion a spherical harmonic expansion of 
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the plane waves is used [9], 

1:28) 

where 9 = z/llzll, j , , ( . )  are the spherical Bessel func- 
tions, and 

u x q  = ynm(s., i(29) 

where 0, and & are the elevation and azimuth of the 
unit vector 9, respectively, and P,”(.) are the sssoci- 
ated Legendre functions of the first kind. Substitution 
of (28) into (14) gives the spatial correlation for a 3D 
scattering environment as 

m 

where coefficients flnm describe the scattering environ- 
ment, 

Prim = J ,  P(B)Y:m6)d.(B). 1132) 

As for the two dimensional scattering environment, 
for many common choices of P ( p )  there exists a closed 
form expression for the flnm [lo] and hence the capac- 
ity bound (21) can be computed for these scattering 
environments. 

Ezamvle: Three Dimensional Omni-directional Dif- 
fuse Field 

For the special case of scattering over all direct.ons 
the on,,, are zero for all but Boo = 1/4s, hence the 
spatial correlation (31) becomes 

Ppq = jo(Hzp - Zqll) = sinC(kIlzp - 1:33) 

which is identical to the classical result in 1121 for a 
3 dimensional scattering environment. The capacity 
for the uniform linear, circular, and spherical arrays of 
increasing receiver antenna numbers is shown in Fig. 2 
for a three dimensional omni-directional diffuse field. 

M. Conclusions 
We have derived a new upper bound on capacity for 
MIMO wireless fading channels by separating the ef- 
fect of the scattering environment and antenna array 
configuration. Based on the spatial correlation of the 

-0t- 

Figure 3 Theoretical upper bounds on capacity of 
MIMO systems for various receiver antenna numbers 
of a uniform linear (ULA), uniform circular (UCA), 
and uniform spherical array (USA) with aperture width 
(length/diameter) D=0.2, and 0.3 wavelengths in a 3D 
isotropic difise scattering field, along with the t h e  
retical maximum capacity. 

signals a t  the receiver and the statistics of the scat- 
tering environment, our bound overcomes limitations 
of previous capacity calculations by showing the ef- 
fects on MIMO capacity of antenna array geometry for 
any common scattering environment (von-Mises, gaus- 
sian, truncated gaussian, uniform, piecewise constant, 
polynomial, Laplacian, Fourier series expansion, etc.) 
around the receiver. This new bound offers significant 
insights into the factors determining capacity, in partic- 
ular, those of the antenna array geometry and number 
of antennas, which are becoming increasingly more im- 
portant for realistic MIMO system designs. 
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