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Abstract 
A novel method for coherent broadband direction of arrival 
(DOA) estimation is introduced based on physics of signal 
propagation. This technique does not require any prelimi- 
nary knowledge of DOA angles nor the number of sources 
to be estimated. As an illustration, two simulation examples 
covering single and multi-group scenarios are presented. 

I. Introduction 
The problem of estimation of direction of arrival (DOA) 
broadband sources has renewed applications in wireless com- 
munication systems due to the use of multiple antenna re- 
ceivers. In a complex multipath environmenc received sig- 
nal from different directions may be correlated, which pre- 
vents the application of narrowband DOA estimation tech- 
niques to estimate DOA. 

Wang and Kaveh [I] introduced the use of focusing ma- 
trices for the purpose of coherent signal-subspace process- 
ing for DOA estimation of farfield wideband sources. These 
focusing matrices are used for the alignment of the signal 
subspaces of narrowband components within the bandwidth 
of the signals, followed by the averaging of narrowband ar- 
ray data covariance matrices into a single covariance ma- 
trix, thus achieving a substantial reduction in data. Now, 
any signal subspace direction finding procedure, (such as 
MUSIC [2] or its variants), maximum likelihood (IvlL), or 
minimum variance (MV), can be applied to this averaged 
covariance matrix to obtain the desired parameter estimates. 
The problem with the above theory being that it requires 
knowledge of the direction of arrivals which are unknown 
and is applicable to only a pair of sources. In later years, 
the technique was developed and refined [3], [4] to account 
for multiple sources but the problem of prior information 
about the DOA still remained. In this paper, we have used 
modal analysis technique to propose novel focusing matri- 
ces that do not require preliminary DOA estimates and are 
completely independent of the signal environment. 

The spatial resampling method is one technique that does 
not require preliminary knowledge of DOA in order to lo- 
calize wideband sources. It was first introduced by Krolik 

and Swinger [SI and is motivated by treating the output of 
a discrete array as being the result of spatially sampling a 
continuous linear array. The same concept is also known 
as an interpolated array approach used in [6]. Krolik and 
Swingler [5] used digital interpolation methods to resample 
the array data. An alternative technique is suggested in this 
paper. Under this technique a set of resampling matrices has 
been proposed which is same for the full field of view of the 
array data, unlike in the case of [61. 

The number of computations can be reduced by com- 
bining the focusing matrices and spatial resampling ma&- 
ces to form modal covariance matrices. Simulation results 
show that the method works well for single group as well 
as multi-group sources at lower and upper frequency hand 
ratios without preliminary DOA estimates. 

11. Problem Formulation 
Let us consideradoublesided linear array of 2Q+1 sensors, 
located at distances a+, q = -Q,. . . ,O, 1,. . . , Q from the 
array origin, which receives signals from V wideband sources 
in space. Let 6 = [O, ,  02,. . .,Ow], be a vector contain- 
ing bearings of each source with reference to the array axis 
where 0, is the direction of the uth source. We assume that 
the source signal and the noise are confined in a bandwidth 
of k E [kl, k.], where k1 and k. are lower and upper band 
edges respectively. We use wavenumber k = Zxf / c  where 
f is the frequency in Hz and c is the speed of wave propa- 
gation, to represent frequency in this paper. The signal re- 
ceived al each sensor is Discrete Fourier Transformed into 
M distinct frequency bins within the design bandwidth. The 
array output in the mth frequency bin can be represented as: 

x(km) = C@.; km)sn(km) + n(km),  

where, se(.) is the signal received from the uth source at the 
origin, n(.) is the uncorrelated noise data and 
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where []' denotes the transpose operator and % = a. We 
write (1) in matrix form as 

z(km) = A(e;km)S(km) + n(km), (3) 

for m = 1,. . . , M where 

A(0;k) = [ a ( e l ; k ) ,  ..., a ( s , ; k ) ] ,  

s ( k )  = [Sl(k), . . . , Sdk)]'. 

(4) 

(5) 
We wish to determine the direction of arrival (DOP.) 0 

The correlation matrix of the observed data in the mth 

and 

from the observed data ~(k,). 

frequency bin is defined as 

Rz(km) = E { o ( L ) z ( k m ) H } ,  (6) 

where [.I" denotes conjugate transpose operation and E is 
the expectation operator. Substituting (3) in (6), we get 

Rz(km) =A(e;km,)R,(km)AH(Q;km) (7) 

+ E{n(lc,)n(km)H} 

where 
Rs(km) = E ( ~ ( L b ( l c , ) ~ ) ,  (8) 

is the source correlation matrix. Here, we assume thau the 
source signals and noise are uncorrelated. 

111. Focusing Matrices for Coherent Wideband 
Processing 

In this section, we briefly outline the focusing method. The 
first step following the frequency decomposition of the ar- 
ray data vector is to align or focus the signal space at all 
frequency bins into a common one at a reference freqwncy 
by focusing matrices T(k,) that satisfy 

T ( L ) A ( e ;  k,) = A(8; ko), m = 1 , .  . . , M ,  (9) 

where ko E [kl, k,] is some reference frequency and A(@ k )  
is the direction matrix defined by (4). Applying the Lf f o  
cusing matrices to the respective array data vectors (3) gives 
the following focused array data vector, 

T(km)z(km) =A(@; ko)s(km) + T(km)dkm) 
m=1, ..., M 

Then the focused and frequency averaged data covariance 
matrix is given by 

M 
R = T ( ~ ) E ( z ( k m ) s H ( k m ) } T H ( k m ) .  (10) 

,=l 

We use (6). (7) and (9) to get 

R = 4 0 ;  ko)%AH(e; ko) +&ire (11) 

where 
M - 

Rs = 1 R,(k,), (12) 
m=l 

and 

M 
%i= = 1 T(km)E{n(km)nH(km)}TH(k,). (13) 

The focused data covariance matrix (11) is now in a form 
in which almost any narrowband direction finding proce- 
dure may be applied. Here, we apply the minimum-variance 
(MV) method of spatial spectral estimation [7] to the fre- 
quency averaged data covariance matrix R. 

Several methods of forming focusing matrices have been 
suggested in the literature. The focusing methods of [1,3.4, 
81 require preliminary DOA estimates in order to construct 
the focusing matrices. This constitutes a severe disadvan- 
tage in practical applications since it leads to biased DOA 
estimates. 

We now use modal analysis techniques to propose novel 
focusing matrices which do not require preliminary DOA 
estimates and are completely independent of the signal en- 
vironment. Here we only consider a linear (possibly nonuni- 
form) array but it may be generalized to arbitrary array con- 
figurations. 

m=l 

Using Jacobi-Anger expansion [9] we may write 

e--ikr cos 0 = 1 in@ + l ) j , (ks)  P,(cose), 
m 

(14) 

wherej,(.) is the spherical Bessel function and P,(.) is the 
Legendre function. The series expansion (14) gives an in- 
sight into the spatial wavefield along a linear array. Observe 
that in each term of the series, the arrival angle 6 depen- 
dency is separated out from the sensor location zp and the 
frequency k. Therefore we may use the above expansion to 
write the array DOA matrix A(Q; h )  as a product of two 
matrices, one depending on DOA angles and the other de- 
pending on frequency and sensor locations. Before reaching 
this step, there are certain hurdles to overcome; for example, 
expansion (14) has an infinite number of terms, thus we can 
not use it to represent finite-dimensional matrices. 

For a finite aperture array with finite bandwidth signal 
environment, the series (14) can be safely truncated by fi- 
nite number of terms (say N) without generating significant 
modelling errors. We show this somewhat informally below. 

Figure I shows plots of a few spherical Bessel functions 
jnk)  against its argument. We can observe from Figure 1 
that for a given ks, the function jn(kz) + 0 as n be- 
comes large. This observation is supported by the following 
asymptotic form [lo] 

"=O 

for kx << n. (15) (kz)" 
'n(kx) 1.3.5.. . (2n+ 1) 
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Fig. 1: spherical Bessel functions of order n = 
0,5,10,15,20. 

Therefore, we can notice that the factor (Zn + l ) jn (kxq)  in 
(14) decays as n grows larger beyond n = kx,. Suppose 
that the minimum frequency of the signal band is kl. Then 
we can truncate (14) to N terms if N > klxo. where ZQ is 
the distance to the Qth sensor (the maximum array dimen- 
sion). It is difficult to derive an analytical expression for N, 
but a convenient rule of thumb [ I l l  is N - Zktsq. More 
recent work [ 121 shows that the series (14) can be truncated 
by N = k m / Z  terms with negligible error. 

Now we substitute the first N + 1 terms of (14) into (2) 
and thus write the array steering vector.for farfield sources 

where 

J ( k )  = (17) 
2.0 + 1)jokZ-q . . . iN(2N + 1)jNkZ-Q 

1)jokzq . . . i N ( 2 N  + 1 ) j ~ k Z g  

We use (16) in (4) to write the array DOA matrix for farfield 
signal environment as 

A(@; k)  = J ( k ) P ( B ) ,  (18) 

where the (N + 1 )  x V matrix 

. (19) 

Po(co~81) . . . PO(COS~V)  
p(e) = 

p~(cOS81) . . . p~(COs8v) 

The (2Q + 1) x (N + 1) matrix J ( k )  depends on the fre- 
quency k and the sensor locations and is independent of the 

DOA of the signals. Suppose (ZQ + 1) > (N + 1 )  and 
J ( k )  has full rank N + 1 if the sensor locations are chosen 
appropriately. With this assumption and using (18). we can 
propose a set of focusing matrices T(k,,,) given by 

T ( k m )  = J ( k o )  [ J H ( k m )  J ( L ) ] - l  J H ( k m )  
m = 1 ,  ..., M (20) 

which satisfies the focusingrequuement (9); recall that ko is 
the reference frequency. 

The major advantage of the focusing matrices (20) over 
the existing methods is that these matrices do not need pre- 
liminary DOA estimates and accurately focus signal arrivals 
from all directions. Also note that these matrices can be 
calculated beforehand for a given array geometry and fre- 
quency band of interest. 

IV. Spatial Resampling Methods 
Spatial resampling is another method 151 used to focus the 
wideband array data to a single frequency so that existing 
narrowband techniques may be used to estimate the DOA. 
The basic idea of spatial sampling is outlined below. 

length spacing for each frequency bin with the same effec- 
tive array aperture in terms of wavelength. Thus for M fre- 
quencies, there are M arrays and the sensor separation of 
the mth array is X,/Z where A,,, = 2r /km.  If each array 
has Z Q  + 1 sensors, then the aperture length is the same for 
all frequencies in terms of corresponding wavelength. Then 
the mth array steering vector for farfield sources is given by 

Suppose we have a separate uniform array with half wave- 

a(& k,) = 
[einQcceO , , , erxcasO e-mcosE p r Q  cos 0 

=a(8) ,  
I I ,  1 ,  I . . . ,  

m = 1 ,..., M .  

That is the steering vectors of all arrays are equal and hence 
from (4) the DOA matrices of all arrays are the same: 

A(")(@; km) = A(@),  m = 1, .. . , M ,  (21) 

where A("')(@ k )  is the DOA matrix of the mth subarray. 
Hence if we have M arrays for each frequency bin with the 
same aperture, then their covariance matrices can be aver- 
aged over frequency without losing DOA information. The 
average covariance matrix can then be used with existing 
narrowband DOA techniques to estimate DOA angles. 

Of course it is not actually practical to have a separate 
array for each frequency. This problem can be overcome 
by having a single array and using the received array data 
to form the array data for M (virtual) arrays by interpola- 
tiodextrapolation of the received array data. This is tan- 
tamount to constructing a continuous sensor using the re- 
ceived array data and resampling it. There are several meth- 
ods reported in the literature. In [6] the field of view of the 
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anay is divided into several sectors, and a different inter- 
polation matrix is calculated for each sector using a least 
squares fit. 

We will now show how to use the modal techniques to 
find a transformation matrix to calculate array data for M 
virtual arrays given the output of a single array. Sensor lo- 
cations for the real array can be arbitrary on a line, i.e., there 
is no requirement for it to be a uniformly spaced array. From 
(18) the real array DOA matrix in the mth frequency bin is 
given by 

and the DOA matrix of the mth virtual array at frequency 
k ,  would be 

A ( 0 ; k m )  = J ( k m ) P ( B ) ,  (22) 

A(m)(C3; k,) = J ( k , ) P ( e ) ,  (23) 

where from (17) with kmxp = pr, 

J(km) = 

1 O 2 . 0 +  l ) jo(-~Q) ... iN(2N+l ) j~ ( -nQ)  r io(2, 0 + l ) j o ( ~ Q )  . . . i N ( 2 N  + l)j,(sQ) 
=aJ, m = 1 ,  ..., M 
- 

which is a constant matrix, independent of m and k,. There- 
fore we can write 

(24) 
A(,)@;&) = Jp(e) ,  

= A ( 8 )  m = l ,  ..., M ,  

which is same for all frequency bins. By manipulating, (22) 
and (24). and using the pseudo inverse of J(k,)  we obtain 
the least-square solution 

A("')(@ k,) = T ( k m ) A ( B ; k m ) ,  m = 1,. . . , M ,  (25) 

where 

T ( k )  =J[JH(k, )J(k , ) ] - 'JH(km) ,  m =  1, ..., M ,  

are the spatial resampling matrices. Now these spatial re- 
sampling matrices (they act as focusing matrices) can be 
used to align the array data in different frequency bins, so 
that narrowband DOA techniques can be applied. Similar 
to the focusing matrices (20). these spatial resampling ma- 
trices (26). do not require preliminary DOA estimatiori and 
depend only on the m y  geometry and the frequency. 

(26) 

V. Modal Space Processing 
Observe that the proposed focusing matrices (20) anit the 
spatial re-sampling matrices (26) have a common (general- 
ized inverse) matrix factor 

G(k,) [JH(km)J(km)]-'JH(k,,,),  m = 1,. . . :, M ,  
(27) 

Fig. 2: The estimated spatial spectrum of the correlated 
sources using the algorithm of [l]. 

and only differ by the frequency independent factors Jo(ko) 
and 7. Also note that from (18). 

G ( k m ) A ( e ;  k) = P ( 0 ) ,  m = 1,. . . , M ,  (28)  

i.e., G(k , )  transforms the array DOA matrix into a fre- 
quency invariant DOA matrix. Therefore we can use G(k , )  
instead of T(k , )  to align the broadband array data to form 
a frequency averaged covariance matrix. Intuitively, one can 
say that the matrices G(k , )  transform the 2Q + 1 array data 
vector z(k,) into a N + 1 modal data vector. Now we can 
estimate the frequency averaged modal covariance matrix as 

= G(li , )  z(km)zH(k,, ,)  G x ( k m )  (29) 
M 

m=l 

and the MV spectral estimate 

1 Z(f3) = [::I:] 8-1 p ( c o ~ ~ ) , . . . ~ N ( c o s e ) ] '  

(30) 
Comments: 

1. This method (one can refer it as the Modal Space Pro- 
cessing (MSP) method) involves less computation com- 
pared to the other two methods since the modal space 
has less dimensions ( N  + 1) than the signal subspace 
(2Q + 1). 

2. As for the other two methods. the modal space method 
does not require preliminary DOA estimates. 

3. One can consider the modal space method as a super- 
set of focusing matrices and spatial resampling meth- 
ods. 
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Fig. 3: The estimated spatial spectrum of the correlated 
sources using Modal Space Processing. 

VI. Simulation 
In this section, the simulation results have been presented 
in order to demonstrate the effectiveness of MSP method. 
A linear array of 19 nonuniformly spaced sensors has been 
used for MSP technique. The use of nonuniformly spaced 
sensor array for broadband application has been discussed 
in 1131. The sensor spacing is kept uniform while perform- 
ing the simulation of examples that follow the algorithms 
suggested in past literature [1,3]. These simulations are pre- 
sented in this section for comparison of results. The source 
signal and the noise are stationary zero-mean white Gaus- 
sian processes. Noise at each sensor is independent of the 
other. Signal received at each sensor is Discrete Fourier 
Transformed to get 33 uniformly spaced narrow-band fre- 
quency bins within the desired bandwidth. For each trial, 
64 independent snapshots are generated for every frequency 
bins. The frequency averaged modal covariance matrix is 
calculated using the relation (29). The sources are then lo- 
calized by using Minimum Variance (MV) direction finding 
procedure (30) as implemented for narrow-band source lo- 
calization. 

VI.1. A group of two sources 
The signal environment consists of two completely come- 
lated sources at angles 8 = [38O 43'1. Let si@) be the 
source at 38'. and the source at 43' is delayed version of 
sl(t) and is given by sz(t )  = s l ( t  - to)  with to = 0.125s 
or equivalently in frequency domain sa(f) = sl(f)e-Jft.. 
Here, s l ( f )  is FourierTransfonned signal sl(t). The signal- 
to-noise ratio is 10dB. 

The signals used lie within a bandwidth of 40Hz with 
midband frequency at 1OOHz. This gives a lower band edge 
(ft = 80Hz) to upper band edge (f" = 120Hz) ratio of 
2 : 3. All the signal parameters are kept identical to those 
described in [I]. The signals are captured by a linear m a y  

e i.. s3 ( 0  P 

1 

Fig. 4: The estimated spatial spectrum of the correlated 
sources using prior angle estimation of 53O 

Fig. 5: The estimated spatial spectrum of the Multigroup 
sources using algorithm of [31 

of 19 sources. Fig. 3 shows the s p m a l  estimate obtained 
using MSP. The vertical lines indicate the correct direction 
of arrival of the sources. For comparison, the results ob- 
tained using the method described in [I] has shown in Fig. 2. 
A preliminary angle estimate of 40.4" has been necessary 
to correctly estimate the direction of arrivals using the later 
technique whereas no prior knowledge of angles is required 
for MSP technique. The graphs reveal that both processes 
localize the sources with fine accuracy. However, a focusing 
angle of 53" in the case of [ll will result in Fig. 4 which 
cannot resolve the true direction of arrivals. 

VI.2. Three groups of five sources 
The number of sources are now increased to five with bear- 
ings 8 = [53O 58' 98' 103O 145"]. Complete correlation 
exists between first and second source. A frequency band of 
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Fig. 6 The estimated spatial spectrum of the Multigroup 
sources using Modal Space Processing 

f = [SO : 1201Hz is used to compare the results with those 
obtained using the focusing matrix proposed in 131 . Fif- 
teen independent trials were carried out that showed similar 
results. 

Fig. 6 shows one realization obtained by using MSP with 
MV spectral estimate. Here the number of modes used is 
N=1.5. Reducing the value of N degrades the performance 
of the procedure while increasing its value produces no ap- 
preciable improvement. The number of sensors is 19 and 
are nonuni fody  spaced. All the sources are clearly de- 
tected without any prior knowledge of source environment. 
These results can be compared with Fig. 5 that shows the 
spatial spectrum of multigroup sources using the techniique 
described in [3]. However, prior knowledge of source di- 
rections is required by this technique and preliminary angle 
estimates used for this example is 0 = 153” 55” 59O 913.7” 
100.5O 104.3’ 144O]. 

The above simulation is performed for wider band of fre- 
quency, bandwidth [300 : 3000]Hz, and the results show that 
MSP produces better results (Fig 7) as compared to the tech- 
nique proposed in 131 (Fig 8). A total number of 45 sensors 
and 55 frequency bins are used in the simulation. 

VII. Conclusion 
A novel method (MSP) for coherent broadband direction of 
arrival estimation is inuoduced. The method does no1 re- 
quire any preliminary knowledge of DOA angles nor the 
number of sources. 
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