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Modeling Multipath Scattering Environments
Using Generalized Herglotz Wave Functions

Rodney A. Kennedy, Thushara D. Abhayapala, and Tony S. Pollock

Abstract-We develop a general mathematical model for where the plane wave of indgxhas complex amplitude, <
nearfield multipath scattering as a basis for studying the spatial C, the propagation direction is denoted by the unit vegigr
limits imposed on multi-antenna wireless communication systems. andx -y denotes the scalar product between vecigng € R°.
This model generalizes the Herglotz Wave Function, which is an A straightforward generalization of (1) is
important tool in the study of inverse scattering problems, to a
form where the scatterers can be nearfield. This permits the de- o
velopment of the most general form of spatial correlation which is u(x) = / g(g) ™Y ds(y), @)
known to be the principle factor in the determination of the capac- /8
ity of wireless systems.

Index Terms—Multipath channel modeling, Wireless channels, whereS? denotes the unit sphere(y) is a surface element of

Herglotz wave functions, Nearfield sources. S? with unit normaly andg € L'(S?) is the kernel representing
an angular amplitude distribution of farfield sources. Represen-
I. INTRODUCTION tation (2) implies any sources which contribute to the field are

. L . .. farfield ones.
Multipath modeling in wireless and mobile communication

tends to be very naive and simplistic. Often multipath is repre- Wheng is in L?(S?), a stronger condition thane L'(S?), it
sented as a superposition of a low number of paths usually wiEknown as &ierglotz Kerneland representation (2) is known
quite artificial scattering geometries such as having scatteréfstheHerglotz Wave Functioft, p.55]. Herglotz wave func-
uniformly spaced on a circle. At the other extreme with a difions primarily find use in inverse scattering problems where

fuse model there is often an incorrect use of identities due fgS nNatural to find a scattered field satisfying the condition

confusion between two dimensional and three dimensional d#-= L?(8?).
fuse field identities. It is a fallacy to assert that any such mul- In our context, we are interested in using representations of
tipath model simplifies the analysis of wireless systems or cére form (2), or generalizations thereof, to model any physically
reliably make predictions for realistic situations. One is comealizable scattering environment. If we use (2) then we exclude
fronted with either having a model that is far too restrictive anfields which have components from nearfield sources, and if,
incapable of providing a compete description of the achievalflather, g € L?(S?) then we exclude some farfield sources as
physical range of channels, or having an unnecessarily complell including those of the form (1). Representation (2) has
cated model which is neither complete nor parsimonious (tHaten used to model spatial correlation in wireless communica-
is, it overparametrizes a strict subset of physical channels). tion scattering scenarios [2]. However, there is a need for even
In this paper we develop a general complete representatimore general representations than (2) such as in the case when
for multipath which suffers none of the above problems béhe sources and scatterers are in the nearfield. This paper devel-
cause it deals directly with the physics of the multipath prolmps such a representation.
lem. In our framework it is not necessary to distinguish be- 1 |ogical arena for the Herglotz Kernel is the Hilbert Space
tween nearfield, farfield, specular or diffuse as all cases are hin(gz) with the natural inner product defined 8A. However,
dled transparently provided the region occupied by our Sensgfs,oriant classes of multipath fields cannot be directly asso-
is physically separated from the sources. Further, the expregiied with kernels belonging to such spaces. Our objective
sions we obtain lead naturally to parsimonious representatiqeg rework (2) to find a integral representation for multipath
for multipath although this is not explored in this paper. fig|ds where the kernel associated with practically important
A standard model for a multipath field R'S IS torepresentit geattering fields can be associated with a Hilbert Space corre-
as a superposition of plane waves from discrete directions: sponding to finite energy signals. Then the full machinery of
_ kg Hilbert Space theory can be brought to bear on the represen-
u(x) = Zape s (1) tation to transparently render its properties, which to a large
P degree fully emulate the remarkable properties of the classical
The authors are with National ICT Australia, and the Department of TeIecorH—ergIOtZ wave function. We will see that this leads to an infinite
munications Engineering, Research School of Information Sciences and Engitmber of orthonormal representations for multipath fields and
neering, The Australian National University, Canberra ACT 0200, Australigsgociated,? Fourier Series. As a by-product our theory sub-
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pmes and provides a modest simplification to the results given
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Il. PROBLEM FORMULATION wherej, (k||z|) is the spherical Bessel function of integer or-
dern, o™ are complex coefficients, artd™(z) = Y, (0, ¢)
are the spherical harmonics (orthonormalSd given by

Fields of the form (1), (2) and Herglotz wave functions sat-
isfy the homogeneous Helmholtz equationRA, sometimes . s [2n+1(n—|m|)
referred to as the reduced wave equation: Y,"(0,4) = it (n+ |m))

A. Subspace Interpretation

L bpml im
!Pn (cos@)e™?,  (7)

2 _
Au(z) + ku(x) =0, (3) Prl;m‘(-) are the associated Legendre functions, and we have in-
N 00 n

whereA is the Laplacian, and is the wave number given by ffoducedine shorthangmm = 2n=0 2im=—n (1.6}
the real positive constakt= 27/ [1,3]. Equation (3) holds in Example 3 (Point Sources).The fundamental solution to the
any region of space, a subsetRf, that excludes any sourcesHelmholtz equation, which is that of a point sourceatis
That all such solutions to (3) for a given source-free region dgiven by
fine a linear subspace of functions follows from the linearity .

. o i ik
an_d homogen_e|ty of (3). That is, if; (x) anduz(m) are so O(z,y) 2 —hf))(kH:c _ y”) =
lutions to (3) in a region themu, () + asus(x) is also a 4
solution in the same region.

eikllz—yll @
Arlle — y|
whereh("(-) is the ordern spherical hankel function [3,7]. In
the spherical coordinate system the fundamental solution has
B. Helmholtz Balls an expansion, called the addition theorem for the fundamental

The kernel in (2) is defined o8¢ and implicitly the sources solution,

may be regarded as being defined on an infinite sphere. Man _ ; &N MYV may)

of the special properties that can be attributed to the Herglotzmm’y) Zkzjn (k||$H)h” (k”yH)Y" @)Y @), 6)
wave function are actually a manifestation of the high degree
of spherical symmetry and the implicit choice of sphericallyalid for ||z|| < [|y||, from which we glean

symmetric domains (albeit infinite domains). Hence in studying 1

(3) we expect highly structured solutions whenever the region Q™ = (_wikhm (k||y\|)YT@). (10)
of interest is a ball " dr "

are the coefficients in expansi@).

m,n

B £ {z € R: ||z| < R}, ,
We can interpret the countable set

whereR is the radius (usually finite but possibly infinite). We

m A n m(s

write the above problem more compactly as follows. {A” (w>} - {Zn]” <k”$”)yn (w)} (11)
SPATIAL CONCENTRATION PROBLEM 5. Determine the com- as specifying a basis for the subspace of solutions to (5). These
plete subspace of solutions= u(x) to basis functions are orthogonal over any spherically symmetric

region. The sense in which these can be normalized for any size

Au+ k*u =0, in IB%‘;. (5) ballis now determined.
Denote the volume elementatas
Physically this means we wish to understand the complete A o .

set of valid wave-fields for arbitrary source locations with the dv(a) = r”sin0 d o dr, (12)

only condition that all the sources are nofip. . . . :
Our task will be to find a Hilbert Space formulation Wheré’jmd define the inner proddaind associated induced norm by

we can study the geometry of solutions to (5) using complete N R
orthonormal sequences and the like. In what follows we assumé’* 953, = /]E3 f@)g(@)hs(||2])) dv(z), (13a)
the reader is well-familiar with separable Hilbert Spaces [4, 5]. g

Given we are dealing with spherical regions, we often uti- = / he(r)r? [ f(r,@)g(r, @) ds(Z) dr, (13b)
lize a spherical coordinate systém 6, ¢) representing radius, 0 s?
co-latitude and longitude. In a coordinate system independ
form we havex = (r, 0, ¢), ||| representing radius, andx

representing the directighand¢ . HfH]ZB;d N <f’f>]B3 ;/ |f(w)|2hn(\|a:||)dv(w), (14)
R R IB?I’{

C. Modal Representation parametrized by a non-negative bounded real weighting func-

From [1], solutions to (5) can be represented as the followirtig" = (7) = 0 that may depend on eithét or 7.

entire series expansion (which converges in the mean) 1This is actually a class of inner products given that the radial weighting term

hr(r) can take different forms. We are assuming that(r) is chosen such
_ n_m\ m(z that we do have an inner product, particularly we require {ifaff)zs =0
u(m) 2(47” ¥n ) Jn <kaH)Yn (a:), (6) implies f = 0 which is not obviously satisfied. To avoid clutter, for'the inner
m,n product we suppress in the notation the explicit dependende:gn).
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Then, with a suitable choice of weight functidn,(r), the whereu,, (%) is u(x) restricted to the shellz|| = ro. That s,
set of functions sausfym@f”mg < oo is a separable Hilbert providedk is not a Dirichlet eigenvalue we can use the Spheri-
Space, and solutions of (5) aré a strict subspace. This subspealeHarmonic Transform to determin€?” [1, 8, 9].

naturally forms a Hilbert Space.

The{A™(x)} are orthogonal with respect to the inner prodEgsgglfasflr:;ehgéwng{< iot)hen we have the most natural
uct (13). This follows from the orthonormality of the spherlca?

harmonics defined on the unit sphef, which induces or- fBS u(@) (=) jn (Kl 2|) Y, () dv()

thogonality of our wave expansion ov&f, leading to ay' = (21a)
J}Be Jn(k\lwll)Pdv( )

R
<ATa Al >]B>3 = 67“1 5mp/ hR(r) [ 'n(kr)]2 r?dr (15) f]E3 u ]n (ka”) (i) d’U(:B) (21b)
R 0

4 jin (kr))2r2d

whered,, andd,,, are delta functions. Equation (15) shows 7rf0 Jn k)l dr

orthogonality holds independently of the choice of the nori-he denominator i21) will be written

negative bounded real function,(r) > 0. However,hz(r) R

does influence the normalization, as we explore next. Tn(R) & / [jn (kr)]2 72 dr (22)

0

D. Complete Orthonormal Sequences for which there are known closed form expressions.

Orthonormality is subtly connected with the size of the Sph%xample 6. If i (||2]|) = 1/R, and letR — oo then we have

ical region. Beginning with the unnormalized set (11), equatiqfle most natural case for the infinite sphere. In this case we use
(15) indicates how to achieve orthonormality, givening the ofne expression

thonormal basis functions,

1R 1
fon ) A{ injn(kumn)ym(a) } (16) RIEHOOE/O P2 (kr))* dr = 5o (23)
Pnir man 1/2
() har) [Galkr)2r2dr) > ] to simplify denominator of19)to glean

m

note that normalizing factor is a function of bothand R. o (—i)"E? . -
Whence, given completeness, any solutig) to our prob-  “n = Rh_{noo onR /Bgu(‘”)ﬂn(k“wu)yﬁn(‘”) dv(z). (24)
lem (5) has representation (in the sense of convergence in the "

mean of the induced norm) [1l. ORTHONORMAL EXPANSIONS INBALLS
w= Z B e O (17) A. Finite Sphere Case |
m,n We now focus on the natural inner product, where

hy(||z]]) = 1. We show that there is a more general repre-

with Fourier coefficients sentation than (6) when dealing with spherical regiBrisof

mR A <u7 @ﬁnka (18a) radiusR.
R
Cans p— Theorem 1 (Expansion for Finite Source-Free Ball). Con-
_ fB% u(@)(—i)"jn (k”wH)Yn (@)ha(r) dv(z) (18b) sider the space of finite energy solutions to the homogeneous

1/2 Helmholtz equatiom\u + k%u = 0 in a spherical domairB?

(fo P (r) [in (k)] r2 dr) _ (
of radius R < oo. Then any bounded solutiancan be ex-

E. Field Representations pressed in terms of an expansion
Direct comparison of (17) and (18) with (6) leads to i jn (k|2 ))) Y, (&)
Z B (25)
< (pn R >B3 jﬂ( )]
oy = (19a)

47 ([ () [ () 2 72 dr) such that

sw(e)Y, () (=) jn (k||| he(||2||) dv(z m s [In kllxl)Y," ()
_ @@ g Fliz)ha(lel) de@) @) 2] ][fyn( )>} @ e

S Lin (Kllz]) 2R ([l]]) do(a)
are orthonormal with respect to the inner product
Hence there are a plethora of ways to compute these coefficients

based on different values @t and different choices o .(r). s 2 / Fe)TE] do(a), e
Here are some of the more interesting choicedfdr) and the 3
resulting expressions fer!”* (19):

Example 4. If hy(||z]]) = 6(||lz| — ro) where0 < rq < R, " "
andjn(kTo) 7é 0 then n;R <U, @n;R>B% (283)

1 —i)"jn (k| z||) Y, (T)

m Y (%) ds(® [ uia Uw
On = m/y ury (T)Y;" (@) ds(®),  (20) /B% (z) RAGIRE dv(z).  (28b)

The Fourier Coefficientg are given by
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and are square summable, that ¢ ¢2. u(xz) € H

3 3
Proof. The orthonormality of (26) is a special case of (16) with WAVE-FIELD IN Bj; C R

hy(||z]]) = 1. Using the Parseval Relation we have /7 \
/BZ?R ‘PZL;R <u:€0;n;R> 3
S = G, = [ ) <0 @9 2 5
Z<9R’Ynm>s2@"m5R \5 € /2
. . m,n n; R

by the finite energy of., that is,|| 8r||% = ||u||]23:;2 <oo. [ GENERALIZED FOURIER <u Onen) B, Y,

HERGLOTZ WAVE COEFFICIENTS mon
FUNCTION

R3 which can be regarded as an infinite spherical volume. In
this case we usé,(|z|) = 1/R and letR — co. As we , 2
will see, the results indicate that the expansion in (6) is most ) € L(S%)

naturally associated with the infinite sphere. GENERALIZED HERGLOTZ
KERNEL ONS?

B. Infinite Sphere Case
We now consider the case where the region is the whole space \Xm, Y," >S2 Z Brir Yo"

Theorem 2 (Expansion for Infinite Source-Free Ball). Letu Fi .
|§e Isomorphisms between the Wave Fieldx) in H, the Fourier
be any bounded solution to the homogeneous Helmholtz eqy mc'emsﬁn + in £2 and the Herglotz Kemey(Z) in L2(S%). The

tion Au + k?u = 0in R3. Thenu can be expressed in terms ofnapping between the Generalized Herglotz Kernel and the Wave Field,
an expansion Em n(gm >§2 g IS the Generalized Herglotz Wave Function.

u(@) =) B kV2ija (kl2])Y," (@) (30) whereb(z) is, up to a constant factor, the Herglotz Kernel and

mm can be expressed as the Inverse Spherical Harmonic Transform
such that Z ﬂgbm Ynm € .2 (SQ) (36)
{ent e Luvaim, (ke v @} (31) ™ -
™m,n mn of the Fourier coefficients.. € ¢? given in Theorem 2.

are orthonormal with respect to the natural inner product Proof. By Parseval

o a 1 m o2 2 a . 1 2
(f,9)B3, _1%5201%/33 flz dv(z), (32) ;yﬁn;g = [lullzs. APNR/BQU@H dv(z) (37)
and the Fourier coefficients are given by which is finite by the growth condition (34). Henge, < /2
which implies that (36) is well-defined and ik (S?). Then
Brie = <U(iﬂ), 902700(33»33 (33a) (36) can be inverted and this implig§* = (b, Y™)s2, leading
to
l'm " k T dU 33b m, . m m m
and are square summable, that i, € /2. which equals /
Proof. The orthonormality of (31) is a special case of (16) with —
() = 1/ and letingR 20 5 ule) = ([ e TIE @) >
Now we present a key representation result — captured in ’ ok i (k ma 39a
Theorem 3.22 in [1] — for a class of solutions to the homoge- k; Vaki ‘7"( ”xH) @) (39
neous Helmholtz equation. = (7)/ b(y) x
212 2
Theorem 3 (Classical Herglotz Wave Function).Let u be " 'nS_ o _ N
any bounded solution to the homogeneous Helmholtz equation {47722 Jn (Kllz]|) Yy (a:)Y,;”(y)}ds(y) (39b)
Au + k*u = 0 in R? satisfying the growth condition mn
o ) ¢'**¥ by the Jacobi-Anger Expansion [1] O
lim — |u()|” dv(x) < oco. (34)
oo it By, COMMENT. Comparing(6), (24) and(33) we can see that

Then we have the representation for

m = (272/5 Jar=(\W2)ay, Vmon.  (40)
u(x) = % L. b(@)e™ ™Y ds(g)

(85)  Clearly[|8..|% < o iff |2 < oo wherea £ {am}
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C. Generalized Herglotz Wave Functions B. Channel Representation

As previously mentioned (35) is a Herglotz Wave Function. The Generalized Herglotz Wave Function permits one to dis-

We now show how to generalize the classical Herglotz wai§nSe With a potential complicated source and scatter geometry
function to broaden its applicability and more transparently reAd replace it with a fully equivalent distribution defined on a
der its derivation and properties. _sphe_rlcal_reglon. This de(_:omposmon of space and the model it
Let H be the separable Hilbert Space of solutions to the hW—]p“eS will be presented in a future publication.
mogeneous Helmholtz equatidou + k*u = 0in B?, £ {x € _ _
R3: x| < R}, with inner product C. Single Layer Potentials
Finally, we can make a connection with the theory of Sin-
A - gle Layer Potentials [1]. Consider the Single Layer Potential
(f:9)ps, = /133 fx)g(@)dv(z), f.g€M. (41) defined on a sphere of radiiswhich can be written
R

Definition 1 (Generalized Herglotz Wave Function). Let u(z) = - Va(y) (x, Ry) ds(y), |zl <R (44)
©m . be a complete orthonormal sequence in the separable
Hilbert Space of solutions to the homogeneous Helmholtz equéierey () € L%(S?) is the density defined d?, and®(-, -)
tion given byAu + k?u = 0in B3 £ {;c € R3: |z|| < R} is the fundamental solution given in (8). Equation (44) can be
then interpreted as the field in the bal? of radius R expressed
as the superposition of point sources on its bound@&y (the
v = <gR, yy>82¢;nm. (42) sphere of radiug). N _ .
Now given the addition theorem (9) we can substitute into
is a Generalized Herglotz Wave Function with Generalizé44) and obtain

Herglotz Kernelg, € L?(S?). , , A~

emeb, € L(S') | u(@) = ik 3 (K2l A2 (R)Y (@)
That this definition does reduce to the classical Herglotz mn

Wave Function was demonstrated in the proof of Theorem 3,

particularly (38). The essence of the Generalized Herglotz . V(Y)Y (y)ds(y)  (459)
Wave Function is that a field can be represented by a finite en-

ergy function defined on the unit sphé&®and this is captured = Yrer

by (42).

=ik Y A, hP(KR)j (k|| )Y (@) (45b)

m,n

Fig. 1 indicates the relationships between the various repre-
sentations. It shows that the classical and generalized Herglotz
Wave Functions can be viewed as a isomorphism between Wigere ;). is the Spherical Harmonic Transform of density
space of square integrable functions defined on the unit sphéerg-). By comparison with the modal representation (6) we
S? and the space of wave-fields generated by sources no clasge that for all validn andn
than distancek from the origin. In the case when we have 1

: : . . m 4 m
farfield sourcesR — oo, using the approach in section 1lI-B, = —————al. (46)
g : : : T kR (KR) "
we obtain Fig. 2 which shows how the various general Fourier "

expansions (akin to Fig. 1) “collapse” to the classical Herglo&o the coefficients”,, have the advantage ovet” that they

n

Wave Function Theory. We can infer that are in¢2 wheneven),(-) € L2(S?), due to the Parseval Rela-
tion of the Spherical Harmonics. Numerically, the expansion
19l = 118l = llullgs. < oo (43) (45) with coefficients (46) can be much superior to its math-

ematical equivalent (6) provided one finds a means to com-
pute the termh( (kR)j, (k||l=||) without directly computing
IV. APPLICATIONS the product. This can be gleaned from the asymptotics of the
spherical hankel function
A. Spatial Correlation 5
n n
In [2], expansion (2), with kernel i} (S?), was used to ren- hy (kr) = O(%) , asn— oo (47)
der in closed form an expression for the spatial correlation. This
spatial correlation expression subsumed a number of other &L fixedr. _
plicit models which have appeared in the literature. The kernel!n SUmmary, (44) can be viewed as another form of General-
can be associated with a farfield angular distribution of powt€d Herglotz Wave Function. The relationships derived above
from the scattering environment. With the generalized Herglo®d additional ones are shown in Fig. 3.
Wave Function there are three further advantages: i) nearfield
sources and scatterers can now be incorporated; ii) an expres- V. CONCLUSIONS
sion can be made over any finite ball, parametrizedbpro- In general, multipath may be a manifestation of specular or
vided it excludes all sources; and iii) the kernel can be chosenrdiffuse, farfield or nearfield sources. Modeling of such multi-
L?(S?) from which the theory of Hilbert Spaces can be applieghath has been considered in a form which can be interpreted as
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u(xz) € H
WAVE FIELD

k ~ zkz"l? ~ m
 — ~(Y)e ds Bntxn
/3 e ¥ @) ¥)

FOURIER
CLASSICAL HERGLOTZ

\\ 2 ) ( . ) 5
WAVE FUNCTION / COEFFICIENTS \ /B u y)jn(k||y||)Pn(:Tc 7) dv(y)

~—

9o (E) € L*(S?)
CLASSICAL HERGLOTZ
KERNEL ONS?

Fig. 2: Mappings between the Wave Fieldx), the Fourier Coefficients;;!  and the Classical Herglotz Kerngl, ().

u(x) € H
WAVE FIELD

sz% hn (kR)jn (k|2 []) Yo" (2)

(="
\ kTn(R)hi (kR) Je
m 2 >
’(pR ZB Ry) dS( ) ’Yn;R7 é -7 ~ X
{ / S . FOURIER drk ;::0 jn(R)hﬁf)(kR)
INGLE LAYER COEFFICIENTS @7
POTENTIAL / /B‘ u(y)jn (kllyl) Po(Z-7) do(y)

Yr(T) € L*(S?)
SINGLE LAYER POTENTIAL
DENSITY ON S?

Fig. 3: Mappings between the Wave Fieldx), the Fourier Coefficients;;? , and the Single Layer Potential Density ).
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