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Modeling Multipath Scattering Environments
Using Generalized Herglotz Wave Functions

Rodney A. Kennedy, Thushara D. Abhayapala, and Tony S. Pollock

Abstract—We develop a general mathematical model for
nearfield multipath scattering as a basis for studying the spatial
limits imposed on multi-antenna wireless communication systems.
This model generalizes the Herglotz Wave Function, which is an
important tool in the study of inverse scattering problems, to a
form where the scatterers can be nearfield. This permits the de-
velopment of the most general form of spatial correlation which is
known to be the principle factor in the determination of the capac-
ity of wireless systems.

Index Terms—Multipath channel modeling, Wireless channels,
Herglotz wave functions, Nearfield sources.

I. I NTRODUCTION

Multipath modeling in wireless and mobile communication
tends to be very naive and simplistic. Often multipath is repre-
sented as a superposition of a low number of paths usually with
quite artificial scattering geometries such as having scatterers
uniformly spaced on a circle. At the other extreme with a dif-
fuse model there is often an incorrect use of identities due to
confusion between two dimensional and three dimensional dif-
fuse field identities. It is a fallacy to assert that any such mul-
tipath model simplifies the analysis of wireless systems or can
reliably make predictions for realistic situations. One is con-
fronted with either having a model that is far too restrictive and
incapable of providing a compete description of the achievable
physical range of channels, or having an unnecessarily compli-
cated model which is neither complete nor parsimonious (that
is, it overparametrizes a strict subset of physical channels).

In this paper we develop a general complete representation
for multipath which suffers none of the above problems be-
cause it deals directly with the physics of the multipath prob-
lem. In our framework it is not necessary to distinguish be-
tween nearfield, farfield, specular or diffuse as all cases are han-
dled transparently provided the region occupied by our sensors
is physically separated from the sources. Further, the expres-
sions we obtain lead naturally to parsimonious representations
for multipath although this is not explored in this paper.

A standard model for a multipath field inR3 is to represent it
as a superposition of plane waves from discrete directions:

u(x) =
∑
p

ap e
ikx·byp , (1)
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where the plane wave of indexp has complex amplitudeap ∈
C, the propagation direction is denoted by the unit vectorŷp
andx ·y denotes the scalar product between vectorsx,y ∈ R3.
A straightforward generalization of (1) is

u(x) =
∫

S2
g(ŷ) eikx·by ds(ŷ), (2)

whereS2 denotes the unit sphere,s(ŷ) is a surface element of
S2 with unit normal̂y andg ∈ L1(S2) is the kernel representing
an angular amplitude distribution of farfield sources. Represen-
tation (2) implies any sources which contribute to the field are
farfield ones.

Wheng is inL2(S2), a stronger condition thang ∈ L1(S2), it
is known as aHerglotz Kernel, and representation (2) is known
as theHerglotz Wave Function[1, p.55]. Herglotz wave func-
tions primarily find use in inverse scattering problems where
it is natural to find a scattered field satisfying the condition
g ∈ L2(S2).

In our context, we are interested in using representations of
the form (2), or generalizations thereof, to model any physically
realizable scattering environment. If we use (2) then we exclude
fields which have components from nearfield sources, and if,
further,g ∈ L2(S2) then we exclude some farfield sources as
well including those of the form (1). Representation (2) has
been used to model spatial correlation in wireless communica-
tion scattering scenarios [2]. However, there is a need for even
more general representations than (2) such as in the case when
the sources and scatterers are in the nearfield. This paper devel-
ops such a representation.

The logical arena for the Herglotz Kernel is the Hilbert Space
L2(S2) with the natural inner product defined onS2. However,
important classes of multipath fields cannot be directly asso-
ciated with kernels belonging to such spaces. Our objective
is to rework (2) to find a integral representation for multipath
fields where the kernel associated with practically important
scattering fields can be associated with a Hilbert Space corre-
sponding to finite energy signals. Then the full machinery of
Hilbert Space theory can be brought to bear on the represen-
tation to transparently render its properties, which to a large
degree fully emulate the remarkable properties of the classical
Herglotz wave function. We will see that this leads to an infinite
number of orthonormal representations for multipath fields and
associatedL2 Fourier Series. As a by-product our theory sub-
sumes and provides a modest simplification to the results given
in [1].



88 Proceedings 4th Australian Communication Theory Workshop 2003

II. PROBLEM FORMULATION

A. Subspace Interpretation

Fields of the form (1), (2) and Herglotz wave functions sat-
isfy the homogeneous Helmholtz equation inR3, sometimes
referred to as the reduced wave equation:

4u(x) + k2u(x) = 0, (3)

where4 is the Laplacian, andk is the wave number given by
the real positive constantk = 2π/λ [1,3]. Equation (3) holds in
any region of space, a subset ofR3, that excludes any sources.
That all such solutions to (3) for a given source-free region de-
fine a linear subspace of functions follows from the linearity
and homogeneity of (3). That is, ifu1(x) andu2(x) are so-
lutions to (3) in a region thenα1u1(x) + α2u2(x) is also a
solution in the same region.

B. Helmholtz Balls

The kernel in (2) is defined onS2 and implicitly the sources
may be regarded as being defined on an infinite sphere. Many
of the special properties that can be attributed to the Herglotz
wave function are actually a manifestation of the high degree
of spherical symmetry and the implicit choice of spherically
symmetric domains (albeit infinite domains). Hence in studying
(3) we expect highly structured solutions whenever the region
of interest is a ball

B3
R ,

{
x ∈ R3 : ‖x‖ ≤ R

}
, (4)

whereR is the radius (usually finite but possibly infinite). We
write the above problem more compactly as follows.

SPATIAL CONCENTRATION PROBLEM 5. Determine the com-
plete subspace of solutionsu ≡ u(x) to

4u+ k2u = 0, in B3
R. (5)

Physically this means we wish to understand the complete
set of valid wave-fields for arbitrary source locations with the
only condition that all the sources are not inB3

R.
Our task will be to find a Hilbert Space formulation where

we can study the geometry of solutions to (5) using complete
orthonormal sequences and the like. In what follows we assume
the reader is well-familiar with separable Hilbert Spaces [4,5].

Given we are dealing with spherical regions, we often uti-
lize a spherical coordinate system(r, θ, φ) representing radius,
co-latitude and longitude. In a coordinate system independent
form we havex ≡ (r, θ, φ), ‖x‖ representing radiusr, andx̂
representing the directionθ andφ .

C. Modal Representation

From [1], solutions to (5) can be represented as the following
entire series expansion (which converges in the mean)

u(x) =
∑
m,n

(
4πinαmn

)
jn
(
k‖x‖

)
Y mn (x̂), (6)

wherejn
(
k‖x‖

)
is the spherical Bessel function of integer or-

dern, αmn are complex coefficients, andY mn (x̂) ≡ Y mn (θ, φ)
are the spherical harmonics (orthonormal onS2) given by

Y mn (θ, φ) ,

√
2n+ 1

4π
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ) eimφ, (7)

P
|m|
n (·) are the associated Legendre functions, and we have in-

troduced the shorthand
∑
m,n ,

∑∞
n=0

∑n
m=−n [1,6].

Example 3 (Point Sources).The fundamental solution to the
Helmholtz equation, which is that of a point source aty, is
given by

Φ(x,y) ,
ik

4π
h(1)

0

(
k‖x− y‖

)
≡ eik‖x−y‖

4π‖x− y‖
(8)

whereh(1)
n (·) is the ordern spherical hankel function [3,7]. In

the spherical coordinate system the fundamental solution has
an expansion, called the addition theorem for the fundamental
solution,

Φ(x,y) = ik
∑
m,n

jn
(
k‖x‖

)
h(1)
n

(
k‖y‖

)
Y mn (x̂)Y mn (ŷ), (9)

valid for ‖x‖ < ‖y‖, from which we glean

αmn =
(−i)n−1k

4π
h(1)
n

(
k‖y‖

)
Y mn (ŷ). (10)

are the coefficients in expansion(6).

We can interpret the countable set{
Amn (x)

}
,
{
injn

(
k‖x‖

)
Y mn (x̂)

}
(11)

as specifying a basis for the subspace of solutions to (5). These
basis functions are orthogonal over any spherically symmetric
region. The sense in which these can be normalized for any size
ball is now determined.

Denote the volume element atx as

dv(x) , r2 sin θ dφ dθ dr, (12)

and define the inner product1 and associated induced norm by

〈f, g〉B3
R

,
∫

B3
R

f(x)g(x)hR

(
‖x‖

)
dv(x), (13a)

≡
∫ R

0

hR(r)r2
∫

S2
f(r, x̂) g(r, x̂) ds(x̂) dr, (13b)

and∥∥f∥∥2

B3
R

,
〈
f, f
〉

B3
R

≡
∫

B3
R

∣∣f(x)
∣∣2hR

(
‖x‖

)
dv(x), (14)

parametrized by a non-negative bounded real weighting func-
tion hR(r) ≥ 0 that may depend on eitherR or r.

1This is actually a class of inner products given that the radial weighting term
hR(r) can take different forms. We are assuming thathR(r) is chosen such
that we do have an inner product, particularly we require that〈f, f〉B3

R
= 0

impliesf = 0 which is not obviously satisfied. To avoid clutter, for the inner
product we suppress in the notation the explicit dependence onhR(r).
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Then, with a suitable choice of weight functionhR(r), the
set of functions satisfying‖f‖2B3

R
< ∞ is a separable Hilbert

Space, and solutions of (5) are a strict subspace. This subspace
naturally forms a Hilbert Space.

The
{
Amn (x)

}
are orthogonal with respect to the inner prod-

uct (13). This follows from the orthonormality of the spherical
harmonics defined on the unit sphere,S2, which induces or-
thogonality of our wave expansion overB3

R leading to

〈Amn , Apq〉B3
R

= δnq δmp

∫ R

0

hR(r)
[
jn(kr)]2 r2 dr (15)

whereδnq andδmp are delta functions. Equation (15) shows
orthogonality holds independently of the choice of the non-
negative bounded real functionhR(r) ≥ 0. However,hR(r)
does influence the normalization, as we explore next.

D. Complete Orthonormal Sequences

Orthonormality is subtly connected with the size of the spher-
ical region. Beginning with the unnormalized set (11), equation
(15) indicates how to achieve orthonormality, givening the or-
thonormal basis functions,

{
ϕmn;R

}
m,n

,

{
injn

(
k‖x‖

)
Y mn (x̂)(∫ R

0
hR(r)

[
jn(kr)]2 r2 dr

)1/2
}
m,n

(16)

note that normalizing factor is a function of bothn andR.
Whence, given completeness, any solutionu(x) to our prob-
lem (5) has representation (in the sense of convergence in the
mean of the induced norm)

u =
∑
m,n

βmn;R ϕ
m
n;R, (17)

with Fourier coefficients

βmn;R ,
〈
u, ϕmn;R

〉
B3

R

(18a)

=

∫
B3

R
u(x)(−i)njn

(
k‖x‖

)
Y mn (x̂)hR(r) dv(x)(∫ R

0
hR(r) [jn(kr)]2 r2 dr

)1/2 (18b)

E. Field Representations

Direct comparison of (17) and (18) with (6) leads to

αmn =

〈
u(x), ϕmn;R(x)

〉
B3

R

4π
(∫ R

0
hR(r) [jn(kr)]2 r2 dr

)1/2 (19a)

=

∫
B3

R
u(x)Y mn (x̂)(−i)njn

(
k‖x‖

)
hR

(
‖x‖

)
dv(x)∫

B3
R
[jn
(
k‖x‖

)
]2hR

(
‖x‖

)
dv(x)

. (19b)

Hence there are a plethora of ways to compute these coefficients
based on different values ofR and different choices ofhR(r).
Here are some of the more interesting choices forhR(r) and the
resulting expressions forαmn (19):

Example 4. If hR

(
‖x‖

)
= δ

(
‖x‖ − r0

)
where0 < r0 ≤ R,

andjn(kr0) 6= 0 then

αmn =
1

4πinjn(kr0)

∫
S2
ur0(x̂)Y mn (x̂) ds(x̂), (20)

whereur0(x̂) is u(x) restricted to the shell‖x‖ = r0. That is,
providedk is not a Dirichlet eigenvalue we can use the Spheri-
cal Harmonic Transform to determineαmn [1,8,9].

Example 5. If hR

(
‖x‖

)
= 1 then we have the most natural

case for a finite sphere (R <∞)

αmn =

∫
B3

R
u(x)(−i)njn

(
k‖x‖

)
Y mn (x̂) dv(x)∫

B3
R
[jn
(
k‖x‖

)
]2 dv(x)

(21a)

=

∫
B3

R
u(x)(−i)njn

(
k‖x‖

)
Y mn (x̂) dv(x)

4π
∫ R
0

[jn(kr)]2 r2 dr
(21b)

The denominator in(21)will be written

Jn(R) ,
∫ R

0

[jn(kr)]2 r2 dr (22)

for which there are known closed form expressions.

Example 6. If hR

(
‖x‖

)
= 1/R, and letR→∞ then we have

the most natural case for the infinite sphere. In this case we use
the expression

lim
R→∞

1
R

∫ R

0

r2[jn(kr)]2 dr =
1

2k2
(23)

to simplify denominator of(19) to glean

αmn = lim
R→∞

(−i)nk2

2πR

∫
B3

R

u(x)jn
(
k‖x‖

)
Y mn (x̂) dv(x). (24)

III. O RTHONORMAL EXPANSIONS IN BALLS

A. Finite Sphere Case

We now focus on the natural inner product, where
hR

(
‖x‖

)
= 1. We show that there is a more general repre-

sentation than (6) when dealing with spherical regionsB3
R of

radiusR.

Theorem 1 (Expansion for Finite Source-Free Ball).Con-
sider the space of finite energy solutions to the homogeneous
Helmholtz equation4u + k2u = 0 in a spherical domainB3

R

of radiusR < ∞. Then any bounded solutionu can be ex-
pressed in terms of an expansion

u(x) =
∑
m,n

βmn;R

injn
(
k‖x‖

)
Y mn (x̂)

[Jn(R)]1/2
(25)

such that{
ϕmn;R(x)

}
m,n

,
{ injn(k‖x‖)Y mn (x̂)

[Jn(R)]1/2

}
m,n

(26)

are orthonormal with respect to the inner product

〈f, g〉B3
R

,
∫

B3
R

f(x)g(x) dv(x). (27)

The Fourier Coefficientsβ are given by

βmn;R =
〈
u, ϕmn;R

〉
B3

R

(28a)

=
∫

B3
R

u(x)
(−i)njn

(
k‖x‖

)
Y mn (x̂)

[Jn(R)]1/2
dv(x). (28b)
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and are square summable, that is,β ∈ `2.

Proof. The orthonormality of (26) is a special case of (16) with
hR

(
‖x‖

)
= 1. Using the Parseval Relation we have

∑
m,n

∣∣βmn;R

∣∣2= 〈u, u〉B3
R

=
∫

B3
R

∣∣u(x)
∣∣2 dv(x) <∞ (29)

by the finite energy ofu, that is,‖βR‖2`2 = ‖u‖2B3
R
<∞.

B. Infinite Sphere Case

We now consider the case where the region is the whole space
R3 which can be regarded as an infinite spherical volume. In
this case we usehR

(
‖x‖

)
= 1/R and letR → ∞. As we

will see, the results indicate that the expansion in (6) is most
naturally associated with the infinite sphere.

Theorem 2 (Expansion for Infinite Source-Free Ball).Letu
be any bounded solution to the homogeneous Helmholtz equa-
tion4u+ k2u = 0 in R3. Thenu can be expressed in terms of
an expansion

u(x) =
∑
m,n

βmn;∞ k
√

2 injn
(
k‖x‖

)
Y mn (x̂) (30)

such that{
ϕmn;∞

}
m,n

,
{
k
√

2 injn
(
k‖x‖

)
Y mn (x̂)

}
m,n

(31)

are orthonormal with respect to the natural inner product

〈f, g〉B3
∞

, lim
R→∞

1
R

∫
B3

R

f(x)g(x) dv(x), (32)

and the Fourier coefficients are given by

βmn;∞ =
〈
u(x), ϕmn;∞(x)

〉
B3
∞

(33a)

= lim
R→∞

(−i)nk
√

2
R

∫
B3

R

u(x)jn
(
k‖x‖

)
Y mn (x̂) dv(x) (33b)

and are square summable, that is,β∞ ∈ `2.

Proof. The orthonormality of (31) is a special case of (16) with
hR

(
‖x‖

)
= 1/R and lettingR→∞.

Now we present a key representation result — captured in
Theorem 3.22 in [1] — for a class of solutions to the homoge-
neous Helmholtz equation.

Theorem 3 (Classical Herglotz Wave Function).Let u be
any bounded solution to the homogeneous Helmholtz equation
4u+ k2u = 0 in R3 satisfying the growth condition

lim
R→∞

1
R

∫
B3

R

∣∣u(x)
∣∣2 dv(x) <∞. (34)

Then we have the representation foru

u(x) =
k

2π
√

2

∫
S2
b(x̂)eikx·by ds(ŷ) (35)

u(x) ∈ H
WAVE-FIELD IN B3

R ⊂ R3

˙
u, ϕm

n;R

¸
B3

R

�� X
m,n

˙
u, ϕm

n;R

¸
B3

R
Y m

n

yy

βm
n;R ∈ `2

FOURIER
COEFFICIENTS

X
m,n

βm
n;R ϕ

m
n;R

AA

X
m,n

βm
n;R Y

m
n

��
gR(bx) ∈ L2(S2)

GENERALIZED HERGLOTZ
KERNEL ON S2

˙
gR, Y

m
n

¸
S2

CC

X
m,n

˙
gR, Y

m
n

¸
S2ϕ

m
n;R

GENERALIZED
HERGLOTZ WAVE

FUNCTION

99

Fig. 1: Isomorphisms between the Wave Fieldu(x) in H, the Fourier
Coefficientsβm

n;R in `2 and the Herglotz KernelgR(bx) in L2(S2). The
mapping between the Generalized Herglotz Kernel and the Wave Field,P

m,n

˙
gR, Y m

n

¸
S2ϕ

m
n;R is the Generalized Herglotz Wave Function.

whereb(x̂) is, up to a constant factor, the Herglotz Kernel and
can be expressed as the Inverse Spherical Harmonic Transform

b(x̂) ,
∑
m,n

βmn;∞ Y
m
n (x̂) ∈ L2(S2) (36)

of the Fourier coefficientsβ∞ ∈ `2 given in Theorem 2.

Proof. By Parseval∑
m,n

∣∣βmn;∞

∣∣2= ‖u‖2B3
∞

, lim
R→∞

1
R

∫
B3

R

∣∣u(x)
∣∣2 dv(x) (37)

which is finite by the growth condition (34). Henceβ∞ ∈ `2

which implies that (36) is well-defined and inL2(S2). Then
(36) can be inverted and this impliesβmn = 〈b, Y mn 〉S2 , leading
to

u =
∑
m,n

βmn ϕ
m
n;∞ =

∑
m,n

〈
b, Y mn

〉
S2ϕ

m
n;∞, (38)

which equals

u(x) =
∑
m,n

(∫
S2
b(ŷ)Y mn (ŷ) ds(ŷ)

)
×

√
2k injn

(
k‖x‖

)
Y mn (x̂) (39a)

=
( k

2π
√

2

)∫
S2
b(ŷ)×{

4π
∑
m,n

injn
(
k‖x‖

)
Y mn (x̂)Y mn (ŷ)︸ ︷︷ ︸

eikx·by by the Jacobi-Anger Expansion [1]

}
ds(ŷ) (39b)

COMMENT. Comparing(6), (24)and (33)we can see that

βmn;∞ =
(2π

√
2

k

)
αmn ≡

(
λ
√

2
)
αmn , ∀m,n. (40)

Clearly‖β∞‖2`2 <∞ iff ‖α‖2`2 <∞ whereα ,
{
αmn
}
m,n

.
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C. Generalized Herglotz Wave Functions

As previously mentioned (35) is a Herglotz Wave Function.
We now show how to generalize the classical Herglotz wave
function to broaden its applicability and more transparently ren-
der its derivation and properties.

LetH be the separable Hilbert Space of solutions to the ho-
mogeneous Helmholtz equation4u+ k2u = 0 in B3

R ,
{
x ∈

R3 : ‖x‖ ≤ R
}

, with inner product

〈f, g〉B3
R

,
∫

B3
R

f(x)g(x) dv(x), f, g ∈ H. (41)

Definition 1 (Generalized Herglotz Wave Function). Let
ϕmn;R be a complete orthonormal sequence in the separable
Hilbert Space of solutions to the homogeneous Helmholtz equa-
tion given by4u + k2u = 0 in B3

R ,
{
x ∈ R3 : ‖x‖ ≤ R

}
then

v =
〈
gR, Y

m
n

〉
S2ϕ

m
n;R. (42)

is a Generalized Herglotz Wave Function with Generalized
Herglotz KernelgR ∈ L2(S2).

That this definition does reduce to the classical Herglotz
Wave Function was demonstrated in the proof of Theorem 3,
particularly (38). The essence of the Generalized Herglotz
Wave Function is that a field can be represented by a finite en-
ergy function defined on the unit sphereS2 and this is captured
by (42).

Fig. 1 indicates the relationships between the various repre-
sentations. It shows that the classical and generalized Herglotz
Wave Functions can be viewed as a isomorphism between the
space of square integrable functions defined on the unit sphere
S2 and the space of wave-fields generated by sources no closer
than distanceR from the origin. In the case when we have
farfield sources,R → ∞, using the approach in section III-B,
we obtain Fig. 2 which shows how the various general Fourier
expansions (akin to Fig. 1) “collapse” to the classical Herglotz
Wave Function Theory. We can infer that

‖g∞‖2S2 = ‖βmn;∞‖2`2 = ‖u‖2B3
∞
<∞. (43)

IV. A PPLICATIONS

A. Spatial Correlation

In [2], expansion (2), with kernel inL1(S2), was used to ren-
der in closed form an expression for the spatial correlation. This
spatial correlation expression subsumed a number of other ex-
plicit models which have appeared in the literature. The kernel
can be associated with a farfield angular distribution of power
from the scattering environment. With the generalized Herglotz
Wave Function there are three further advantages: i) nearfield
sources and scatterers can now be incorporated; ii) an expres-
sion can be made over any finite ball, parametrized byR, pro-
vided it excludes all sources; and iii) the kernel can be chosen in
L2(S2) from which the theory of Hilbert Spaces can be applied.

B. Channel Representation

The Generalized Herglotz Wave Function permits one to dis-
pense with a potential complicated source and scatter geometry
and replace it with a fully equivalent distribution defined on a
spherical region. This decomposition of space and the model it
implies will be presented in a future publication.

C. Single Layer Potentials

Finally, we can make a connection with the theory of Sin-
gle Layer Potentials [1]. Consider the Single Layer Potential
defined on a sphere of radiusR which can be written

u(x) =
∫

S2
ψR(ŷ) Φ(x, Rŷ) ds(ŷ), ‖x‖ < R (44)

whereψR(·) ∈ L2(S2) is the density defined onS2, andΦ(·, ·)
is the fundamental solution given in (8). Equation (44) can be
interpreted as the field in the ballB3

R of radiusR expressed
as the superposition of point sources on its boundary∂B3

R (the
sphere of radiusR).

Now given the addition theorem (9) we can substitute into
(44) and obtain

u(x) = ik
∑
m,n

jn
(
k‖x‖

)
h(1)
n (kR)Y mn (x̂)×∫

S2
ψR(ŷ)Y mn (ŷ) ds(ŷ)︸ ︷︷ ︸

, γmn;R

(45a)

= ik
∑
m,n

γmn;R h
(1)
n (kR)jn

(
k‖x‖

)
Y mn (x̂) (45b)

whereγmn;R is the Spherical Harmonic Transform of density
ψR(·). By comparison with the modal representation (6) we
see that for all validm andn

γmn;R ≡
4πin−1

kh(1)
n (kR)

αmn . (46)

So the coefficientsγmn;R have the advantage overαmn that they
are in`2 wheneverψR(·) ∈ L2(S2), due to the Parseval Rela-
tion of the Spherical Harmonics. Numerically, the expansion
(45) with coefficients (46) can be much superior to its math-
ematical equivalent (6) provided one finds a means to com-
pute the termh(1)

n (kR)jn
(
k‖x‖

)
without directly computing

the product. This can be gleaned from the asymptotics of the
spherical hankel function

h(1)
n (kr) = O

( 2n
ekr

)n
, asn→∞ (47)

for fixed r.
In summary, (44) can be viewed as another form of General-

ized Herglotz Wave Function. The relationships derived above
and additional ones are shown in Fig. 3.

V. CONCLUSIONS

In general, multipath may be a manifestation of specular or
diffuse, farfield or nearfield sources. Modeling of such multi-
path has been considered in a form which can be interpreted as
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u(x) ∈ H
WAVE FIELD
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ρ→∞
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vv
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2
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∞X
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Fig. 2: Mappings between the Wave Fieldu(x), the Fourier Coefficientsβm
n;∞ and the Classical Herglotz Kernelg∞(bx).

u(x) ∈ H
WAVE FIELD

(−1)ni

kJn(R)h(1)
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Z
B3

R
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(−1)n(2n+ 1)
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Fig. 3: Mappings between the Wave Fieldu(x), the Fourier Coefficientsγm
n;R and the Single Layer Potential Densityψ(bx).

a generalization of the classical Herglotz Wave Function. We
have shown that there exist a number of useful Fourier expan-
sions in spatial variables which are complete in the sense of
orthonormal expansions and in the sense of being able to model
every physically realizable multipath field. This opens the pos-
sibility of developing closed form expansions for quantities of
interest such as spatial correlation and bounds on capacity of
MIMO systems in a nearfield scattering environment.
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