
IEEE SIGNAL PROCESSING LETTERS, VOL. 9, NO. 10, OCTOBER 2002 305

Spatial Correlation for General Distributions
of Scatterers

Paul D. Teal, Thushara D. Abhayapala, Member, IEEE, and Rodney A. Kennedy, Senior Member, IEEE

Abstract—The well-known results of the spatial correlation
function for two-dimensional and three-dimensional diffuse fields
of narrowband signals are generalized to the case of general
distributions of scatterers. A method is presented that allows
closed-form expressions for the correlation function to be obtained
for arbitrary scattering distribution functions. These closed-form
expressions are derived for a variety of commonly used scattering
distribution functions.

Index Terms—Scattering distribution, sensors, spatial correla-
tion.

I. INTRODUCTION

T HERE IS GROWING interest in the literature in the use
of multiple sensors—particularly, multiple antennas for

transmission and/or reception of wireless signals. As well as
diversity reception [1], this includes such areas as acoustic
systems, fixed and mobile multiple-input multiple-output
(MIMO) systems, spatio-temporal equalization, adaptive
arrays, and space-time coding. Most of the work assumes that
each receiving sensor receives uncorrelated signals and, con-
versely, that the signal received from each transmitting source
is uncorrelated. A widely used “rule” is that half a wavelength
separation is required in order to obtain decorrelation. This
arises from the first null of the function, which is
the spatial correlation function for a three-dimensional (3-D)
diffuse field [2].

Several approaches have been used in the case of signals con-
fined to a limited azimuth and/or elevation [3]. In this letter, a
modal analysis approach is presented that can be used to obtain
closed-form expressions for the spatial correlation function for
narrowband signals for a wide variety of scattering distribution
functions.

II. SPATIAL CORRELATION FORMULATION

Consider two sensors located at pointsand . Let
and denote the complex envelope of the received signals
at two sensors, respectively. Then, the normalized spatial cor-
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relation function between the complex envelopes of the two re-
ceived signals is defined by

(1)

where denotes the expectation operator, anddenotes
complex conjugation. We consider a general scattering environ-
ment with the scatterers distributed sufficiently far from the two
sensors. If the transmitted signal is a narrowband signal
(where is the angular frequency, , and is the time),
then the received signal at theth receiver is

(2)

where is the speed of wave propagation;is a unit vector
pointing in the direction of wave propagation; and is the
complex gainof scatterers as a function of direction that cap-
tures both the amplitude and phase distribution. Also note that
the integration in (2) is over , the unit sphere in the case of a
3-D multipath environment or the unit circle in the two-dimen-
sional (2-D) case. We substitute (2) in (1), and we assume that
scattering from one direction is independent from another direc-
tion to get

(3)

where is the wave number, and

(4)

is the normalized average power of a signal received from direc-
tion , or thedistribution functionof scatterers over all angles.

III. T HREE-DIMENSIONAL SCATTERING ENVIRONMENT

To gain a better understanding of spatial correlation, we now
use a spherical harmonic expansion of plane waves, which is
given [4] as

(5)

where , are spherical
Bessel functions, and

(6)
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where and are the elevation and azimuth, respectively, of
the unit vector and where are the associated Legendre
functions of the first kind. Equations (3) and (5) may be com-
bined to obtain

(7)

where

(8)

The fact that the higher order spherical Bessel functions (and in
Section IV the higher order Bessel functions) have small values
for arguments near zero means that to evaluate the correlation
for points near each other in space, only a few terms in the sum
need to be evaluated in order to obtain a very good approxima-
tion [5].

A. Three-Dimensional Omnidirectional Diffuse Field

If waves are incident on the two points from all directions in
3-D space, then (7) reduces to a single term, and so the correla-
tion coefficient is given by

where for , and . This is
the classical result [2]. The first zero crossing is at .

B. Uniform Limited Azimuth/Elevation Field

Without loss of generality, the coordinate system may
be chosen so that and , i.e.,

. If the scatters are uniformly distributed
over the sector ; , then the
correlation can be expressed as

(9)

Note that (9) is actually expressible in closed form (the integrals
can be evaluated, for example, by using recursions inand ).
Hence, this result can be used to build up the result for a gen-
eral scattering situation. An arbitrary scattering can be regarded
as the limiting summation of a weighted set of uniformly dis-
tributed incremental solid-angle contributions.

Fig. 1 shows the case where energy is arriving from all az-
imuth directions (uniformly) but the elevation spread is in some

Fig. 1. Spatial correlation versus separation for different elevation ranges. This
figure shows that the spread of interference in elevation plays only a secondary
role in influencing spatial correlation and, hence, diversity.

range of angles on both sides of zero elevation. The spatial cor-
relation is shown for four sets of elevation spread, each centered
on . It is clear that given an azimuthal distribution, spa-
tial correlation in the horizontal plane is relatively insensitive
to the elevational distribution. Multipath that has some small
elevation spread (in many practical situations, we would not ex-
pect much) may be modeled as only coming from the horizontal
plane.

C. Spherical Harmonic Model

Given that the distribution function is defined on the
unit sphere, then the scattering environment may be specified by
giving the coefficients in the spherical harmonic expansion

(10)

where the coefficients are chosen so that the distribution
function is normalized. However, this equation simply expresses
the inverse of (8), from which we conclude that .
That is, the coefficients of the spherical harmonic expansion
(10) are the same as required for the coefficients in the spatial
correlation expansion (7).

IV. TWO-DIMENSIONAL SCATTERING ENVIRONMENT

If the fields may be considered as arriving from the azimuthal
plane only, it is more useful to consider the 2-D modal expansion
[4]

(11)

where and are the angles of and . Equations (3) and
(11) may be combined to obtain

(12)
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where

(13)

with the distribution function equivalent to in (4),
and where is the angle of the vector connecting and .
Without loss of generality, can be considered to be zero.

A. Two-Dimensional Omnidirectional Diffuse Field

For the special case of scattering overall angles in the plane
containing two points, (12) reduces to a single term, and so the
correlation coefficient is given by , another
classical result [1]. As can be seen by an examination of Fig. 1,

and are qualitatively similar.

B. Uniform Limited Azimuth Field

In the case of energy arriving uniformly from a restricted
range of azimuth ( , we have

(14)

This result is equivalent to that derived in [6].

C. Distributed Field

Another azimuthal distribution used for calculation of corre-
lation is [7]

(15)

where is a normalization constant and . Using [8,
(335.19)], we have

(16)

D. von-Mises Distributed Field

Nonisotropic scattering in the azimuthal plane may be mod-
eled by the von-Mises distribution (e.g., [9]), for which the den-
sity is given by

(17)

where represents the mean direction; represents the
degree of nonisotropy, and is the modified Bessel func-
tion of the first kind. In this case, using [10, (3.937)] we have

(18)

For the von-Mises distribution, the correlation can be calculated
without the need for a summation [9]. There are situations, how-
ever, as reported in [11] where other models of the scattering
distribution are more appropriate than von-Mises.

Fig. 2. Correlation for angle of incidence 60from broadside against
separation of sensors with angular spread as parameter, based on a Laplacian
power distribution function.

E. Laplacian Distributed Field

In [12], the Laplacian distribution is proposed as a realistic
model of the power distribution function in some circumstances.
Here

(19)

where is a normalization constant. It is straightforward to
show that

(20)

where ; for even; and
for odd. The power of the technique is demonstrated in Fig. 2,
which is similar to [11, Fig. 5b], except that the distribution used
here is the Laplacian, considered in [11] to be realistic but math-
ematically intractable. The angular spread used to distinguish
between the datasets in Fig. 2 is defined as the square root of
the variance, which for this distribution is given by

(21)

Approximately 100 terms of the summation (12) were re-
quired to obtain results to about ten significant digits at the
largest spatial separation of 5, or 70 terms for five significant
digits. For separations up to 2only 40–50 terms are required.
Evaluation of the spatial correlation to the same accuracy via
adaptive numerical quadrature requires between 100 and 500
function evaluations. The summation in (12) is over terms that
are the product of three components, dependent on the center
angle , the spatial separation , and the nonisotropy
parameter (such as, , , or ) respectively, so that if any of
these parameters are constant, as they are in many situations,
then the components need not be recalculated. Fig. 2, for in-
stance, takes approximately 175 times more CPU time to draw
using quadrature than using the modal technique.
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F. Gaussian Distributed Field

Several researchers [3], [7] have used the Gaussian distribu-
tion for modeling the distribution of scatterers, thus

(22)

where is the standard deviation, andis a normalization con-
stant. It can be shown using [13, (313.6)] and the symmetries of
the error function for complex arguments discussed in [14] that

Re erf

erf
(23)

It can be seen that contrary to the assertion of [11], a closed-form
solution for the correlation function is available for distribution
functions other than the Gaussian (such as the distribu-
tion), and that the Gaussian case is neither a simple nor natural
choice. If, however, the beam is narrow, a good approximation
for the Gaussian case can be obtained by performing integra-
tion over the domain , since the tails will cause very
little error, so using [8, (337.3)], it is straightforward to show
that .

G. Cylindric Harmonic Model

The distribution function may be expressed as the sum
of orthogonal basis functions

(24)

where the coefficients are chosen so that the distribution
function is normalized. In many cases, the number of basis func-
tions required to approximate the distribution function may be
quite small. The coefficients in (12) can be simply expressed
in terms of the coefficients as

(25)

V. MUTUAL COUPLING

When the sensors are antennas, there can be mutual coupling
effects between the sensors. For a given spacing, mutual cou-
pling of terminated antennas can actuallydecreasethe corre-
lation between the sensors from that calculated using the ex-
pressions above. One interpretation of this is that the presence
of other antennas creates a slow-wave structure that, in effect,
decreases the wavelength of the signal in their vicinity and,
thus, increases the number of wavelengths separation between
the elements. This phenomenon was first reported in [15] and
has recently been reported in [16]. If it proves true, in gen-
eral, that mutual coupling effects decrease correlation, then the
closed-form expressions of the previous sections may be con-

sidered as upper bounds on the correlation between antennas in
an electromagnetic field.

VI. CONCLUSION

Closed-form solutions have been presented for the correlation
between the signal at physically separated points in a field with
the signal power distributed in solid or planar angle following a
variety of commonly used distribution functions. Unlike some
other approaches, the method can be applied to many distribu-
tion functions, and for small spatial separations, accurate results
are obtained with very few terms.

Application of the method reveals that restriction of the
signal elevation does not have a large impact on the signal
correlation coefficient, provided there is omnidirectionality in
one plane containing the two points. Restriction of the signal
in both planes considerably increases signal correlation. In
order to exploit diversity for sensors spaced or closer, there
must be omnidirectionality in at least one plane. To obtain
uncorrelated signals with directional sensors, the spacing must
be considerably larger.
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