
Dual Selection Diversity SNR Performance in Spatially Correlated
Scattering Environments

Jaunty T.Y. Ho, Rodney A. Kennedy and Thushara D. Abhayapala
Department of Telecommunications Engineering

RSISE, The Australian National University
Canberra ACT 0200, Australia

{jaunty.ho, rodney.kennedy, Thushara.Abhayapala }@anu.edu.au

Abstract– A new expression is given for the average
signal-to-noise ratio (SNR) of a dual selection-combining
receiver where the antenna signals are correlated in a
Rayleigh fading multipath environment. This formula is
based on a recently developed expression for the bivari-
ate Rayleigh cumulative distribution function by associ-
ating the correlation parameter of the distribution with
the spatial correlation of the multipath field. By exam-
ining various multipath and receiver antenna geometries
we can determine the critical parameters which affect the
average SNR performance. Our results are shown to gen-
eralize and subsume well-known expressions based on an
independence assumption of the signals at the antennas.
We relate the average SNR diversity gain to critical pa-
rameters such as the spatial correlation, beamwidth, an-
gle of arrival and antenna separation. These results show
the subtle interplay between these parameters and reveal
there is a reduction in performance relative to unrealistic
models previously studied.

I. I NTRODUCTION

The presence of multipath scatterers in wireless com-
munication channels generally significantly degrades
the performance of wireless systems [1]. With the use
of multiple antennas, space diversity techniques can
combat this degradation [2]. In the most common form
of space diversity, signals from multiple receiver anten-
nas are combined to achieve a diversity performance
gain relative to a single receiving antenna. The most
common combining methods are maximal ratio com-
bining, equal gain combining and selection combin-
ing [1, 3]. The first two diversity schemes require co-
phasing on each received signal before combining the
signals, while selection combining does not. This paper
focuses on the selection diversity problem but restricts
attention to the use of two antennas – dual selection di-
versity.

The strategy in a dual selection diversity is to select
and only use the antenna that has the higher SNR, at
any time instant, and discard the signal from the other
antenna. Whilst this represents a loss of information,
this strategy has many benefits and the performance loss
relative to more optimal strategies need not be great.
That is, in a multipath fading environment this strategy
largely protects the receiver, in a probabilistic sense,
from deep fades. Further, selection diversity systems
have a simplicity comparable to single antenna systems
which makes them attractive from an implementation
viewpoint.

One of the meaningful diversity performance met-
rics is the average SNR diversity gain. An analytical
expression for it was determined under the statistical
assumption that the received signals from different an-
tennas are independent [4]. However, this assumption
generally (but not necessarily) requires that the anten-
nas be sufficiently well separated from each other and
this is not always feasible in practice. In fact, the case
of greater interest is when the antennas are brought into
close proximity because this matches the trend of mak-
ing communication devices smaller and less intrusive.
Hence, the independence assumption needs to be revis-
ited with the objective of determining average SNR di-
versity gain in less trivial spatially correlated scattering
environments.

The broad goal here is to determine the geometric
parameters that characterize a multipath scattering en-
vironment which are most critical for the best average
SNR gain performance of a dual selection diversity re-
ceiver. Towards this end, the concept of spatial cor-
relation is crucial as this directly influences the gains
that are possible (relative to a single antenna system)
and gives insight into how antennas should be placed in
space. The critical geometric parameters of the scatter-
ing environment in conjunction with the antenna arrays
considered in this study are: the beamwidth of the scat-
tering angle impinging the receiver, the angle of arrival
(ranging from broadside to endfire), the antenna sepa-
ration and the various interdependencies.

In this paper, we rely on a recently determined ex-
pression for the bivariate Rayleigh cumulative density
function (CDF) [5] to develop a novel analytical for-
mula for the average SNR of the correlated dual selec-
tion combining system. Then we study the various geo-
metric configurations of scattering using our expression
and corroborate the theoretical results with simulations.

II. PROBLEM FORMULATION

We assume here, as most papers do in the literature,
that the superposition of the multipath signals is com-
plex Gaussian distributed by applying (non-rigorously)
the central limit theorem [1, 6, 7]. The correlated mul-
tiplicative complex Gaussian processes on the two re-
ceivers are also assumed to be jointly Gaussian [1, 3].
This implies that the multipath environment is assumed
to be sufficiently rich (this is difficult to precisely quan-
tify) and that it is sufficient to only determine the (spa-
tial) correlation and not higher order moments of var-
ious joint distributions to fully characterize the system
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whereG(n, x) =
∫ x

0
tn−1e−tdt, n > 0, is the incom-

plete Gamma function [8, (8.35)]. This expression con-
trasts with the classical results which are expressed in
terms of the MarcumQ-function [1, 7]. With this new
expression, we can derive a novel expression for the av-
erage SNR of the correlated dual selection combining
system under slow Rayleigh fading, which is shown in
the next section.

III. D ERIVATION OF AVERAGE SNR

Based on the CDF expression (3), we now derive the
expression for the average SNR of the correlated dual
selection combining system. The expected value of the
SNR of the system is defined as
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wherefz(γ) is the PDF ofz. To simplify notation, let
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We can calculate the PDF by differentiating the CDF in
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After some simplifications, the PDF will be equal to
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Substituting (7) into (4), the expected value of the SNR
becomes
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We can further simplify (9) and (10) by using [8,
(6.455)],
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whereRe(α + β) > 0, Re(β) > 0, Re(µ + v) > 0
andF (·, ·; ·; ·) is the Gauss hypergeometric function.
Therefore, substituting (11) into (9) and (10), we obtain
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Finally, we substitute (16) and (17) into (8); the ex-
pected value of the SNR becomes the more compact
expression
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then the expected value of the SNR becomes
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The average SNR is a function of the absolute value
of correlation,|ρ|, and the local SNR average in the
two receivers,Ω1 andΩ2. In the context of this paper
the correlation is the spatial correlation which means
the signals are obtained by detecting them at physically
separated points in space. By explicitly relating the spa-
tial correlation to distance we can then explicitly deter-
mine how diversity is affected by antenna separation.

IV. RESULTS

In previous section we described the novel formulation
of the expected value of the SNR for the dual selection
diversity system. Here we will use (20) to examine the
average SNR diversity gain of the system, relate it with
the spatial correlationρ, angle of arrivalθ, beamwidth
4, and antenna spacingD; all analytically.

A. Two Standard Results

Here we want to show that (20) will lead to two well
known results [1], when two received signals are un-
correlated,ρ = 0 or fully correlated,ρ = 1. Here we
consider the case when each receiver antenna has an
identical local average SNR,m = 1 (Ω1 = Ω2), then
(20) reduces to
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When both received signals are uncorrelated,ρ = 0,
(21) simplifies to1.5Ω1 (= 1.761 dB), which agrees

with the result in [1, 4]. When two received signals are
fully correlated,ρ = 1, we obtain, by taking the limit
ρ → 1 in (21), 1 Ω1 (= 0 dB). That is, there is no
average SNR gain when the two received signals are
identical, as expected.

Let us now consider for all other spatial correlations
coefficients, the average SNR diversity gain is defined
as
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For the numerical calculations, we use only the first
1001 terms ofk andn as they are sufficient to bound
the error (caused by the truncation of the infinite series)
to below10−10. Using the truncated form of (22), in
Fig. 1 we show relationship between the diversity gain
and the correlation coefficients. Again, from Fig. 1, we
can check that the standard cases,ρ = 0 andρ = 1,
both agree with the result in [1,4].
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Fig. 1. Average SNR diversity gain in dual selection combining
system under slow Rayleigh fading.m = Ω2/Ω1. Our analytical
result agreed in both trivial cases,ρ = 0 andρ = 1. Notice that once
m 6= 1, the diversity gain reduces.

B. Branch Average SNR Imbalance

Here we want to investigate the important question of
how the local average SNR affects the diversity power
gain. We consider seven different cases here, where
m = Ω2/Ω1 = 0.125, 0.25, 0.5, 1, 2, 4, 8. We use (20)
to derive formulae similar to (21) and (22), each with
differentm. The average SNR diversity gain with dif-
ferentm is plotted in Fig. 1. Notice that bothΩ2 =
mΩ1 andmΩ2 = Ω1 give the same power gain curves,
as expected. We also notice that once the two antennas
have different local average SNRs, the diversity gain re-
duces. If the local SNR average of antennas is different,



there will be a greater chance that the antenna with the
higher local SNR average will be selected, therefore, it
reduces the diversity of the system. From Fig. 1, we
observed that when one local average SNR is the twice
the other, the available diversity gain drops by1.28dB
(from 1.761dB to 0.6695dB), compared to the balance
average SNR.

C. Diversity Gain versus Antenna Separation

In this section we want to relate the average SNR diver-
sity gain to the antenna separation. This is particularly
interesting when the separations are close as this corre-
sponds to the case when there is limited real estate on a
mobile terminal for example. We will also corroborate
our analytical results with simulation results. It is well
known that if the scatters form a 2D Omni-directional
diffuse field, the spatial correlation is given by [1]

ρ(d) = J0(2πd/λ), (23)

whereJ0(·) is the zero order Bessel function of the
first kind, andd is the antenna separation. Form =
Ω2/Ω1 = 1, we can simply substitute (23) into (22) to
relate diversity gain and antenna separation, which is
shown in Fig. 2. The simulation curves is also plotted
in Fig. 2 to corroborate the correctness of our analytical
expression. Our simulation method is reported in [11]
and is summarized in four steps here:
Step 1) Generate40 randomly directed multipaths with

Gaussian distributed amplitudeN(0, 1) and
uniformly distributed phase (0◦ to 360◦).

Step 2) Randomly locate two antennas at a distanced
apart to each other.

Step 3) Record the received signal power from the an-
tenna with the higher SNR.

Step 4) Repeat step (1) through (3)10, 000 times.
Step 5) Estimate the gain by averaging these samples.

From the analytical plot, it is noticed that the diver-
sity gain approximately increases at a rate of7dB/λ
from 0λ to 0.2λ. In order to achieve90% of the avail-
able diversity gain (1.584dB in this example), the re-
quirement of antenna separation is only0.25λ, under a
2D Omni-directional diffuse field.

D. Diversity Gain versus Beamwidth and Angle of Ar-
rival

The diversity of the system is also depending on the
beamwidth∆ and the angle of arrivalθ of the multi-
path scatters. Fig. 3 shows a scenario where all signals
arrive at the receivers within±∆ at the angleθ. The
diversity of the system reduces when the beamwidth re-
duces. The idea becomes clear if we consider an ex-
treme case that no multipath and only direct path (line
of sight) is received (i.e.∆ = 0); it is obvious that
no matter how many receiving antennas are employed,
there will be no diversity gain. With the help of the
analytical expression (20), we can investigate those re-
lationships in more details. For a 2D uniform limited
azimuth field with certain beamwidth (θ − ∆, θ + ∆),
the spatial correlation is given by [9,10]
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Fig. 2. The relationship between average SNR diversity gain and
antenna separation for a 2D diffuse field. The simulation result is
plotted to demonstrate the correctness of our analytical expression.
Notice that only0.25λ of antenna separation is required in order to
achieve90% of the available diversity gain.
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∆
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Fig. 3. The typical scenario where all signals arrive at the receivers
within ±∆ at the angleθ.

Substitute (24) into (20), we can relate the diversity
gain to the antenna separation, given a particular com-
bination of∆ andθ.

E. Minimum Antenna Separation

We have shown that the diversity average SNR gain
is related to the beamwidth∆, the angle of arrivalθ
as well as the antenna separationd. In this section
we would like to use our analytical expression (20) to
find out the minimum antenna separation, in order to
achieve90% of the available diversity gain, given a par-
ticular value of∆ andθ. We choose the local average
SNR, such thatΩ1 = Ω2 here. A similar result can be
plotted by changing the local average SNR ratiom. In



Fig. 4, we keep the angle of arrivalθ constant and relate
the minimum antenna separation to the beamwidth∆.
Then in Fig. 5, we keep the beamwidth∆ constant and
relate the minimum antenna separation to the angle of
arrival θ. Notice that both Fig. 4 and Fig. 5 are gener-
ated analytically by the use of (20), not by simulation.
Those plots are useful to design the antenna separation
of a practical system. For example, if we know both the
beamwidth∆ of the scatters and the angle of arrivalθ
are greater than30o, then1.3λ of antenna separation is
sufficient for providing90% of the available diversity
gain.
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Fig. 4. The figure show the minimum antenna separation required (in
wavelength) to achieve90% of the available average SNR diversity
gain. The angle of arrivalθ = {10o, 30o, 50o, 70o, 90o}, and the
beamwidth∆ is from0o to 180o.
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Fig. 5. The figure show the minimum antenna separation required
(in wavelength) to achieve90% of the available average SNR diver-
sity gain. The beamwidth∆ = {10o, 30o, 50o, 70o, 90o, 190o},
and the angle of arrivalθ is from 0o to 90o. Notice that if both the
beamwidth∆ of the scatters and the angle of arrivalθ are greater than
30o, then1.3λ of antenna separation is sufficient for providing90%
of the available diversity gain.

V. CONCLUSION

We derived an analytical expression of the average SNR
diversity gain in a dual selection combining system un-
der slow Rayleigh fading and related this to the spatial
correlation of the multipath field. This expression en-
abled us to analytically relate the diversity gain to criti-
cal system parameters such as beamwidth, angle of ar-
rival and antenna separation. The new analytical ap-
proach should generalize well to correlated Nakagami-
m fading channels. This is the subject of current inves-
tigations and we will report it shortly.
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